D.K.M.COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1.

ALGEBRA-II

UNIT-1 SECTION-A 6 MARKS

- 1.State& Prove Transitivity of a finite extension.
- 2.If L is a finite extension of F and if K is a subfield of L which contains F then [K:F]/[L:F].
- 3. Every finite extension is a algebraic extension.
- 4.If aEK is algebraic of degree n over F.Then [F(a):F]=n
- 5.If a,b in K are algebraic over F.Then $a\pm b$, ab, a/b if $b\neq 0$ are all algebraic over F. In otherwords the element K which are algebraic over F form a subfield of K.
- 6.If L is algebraic extensions of K and K is a algebraic extension of F. Then show that L is a algebraic extension of F.
- 7.Let F be a field and f(x) be a ring of polynomial over F.Let g(x) be a polynomial of degree n in F[x]. The ring of all polynomial V=g(x) be the ideal generated by g(x), $g \in F[x]$ prove that $\frac{F[x]}{V}$ is adimensional vector space over F.
- 8. If a \in K is algebraic over F and P(x) is irreducible polynomial of degree n over F. Show that F(a) is a finite extension of F.
- 9.Let R be a field of real number and Q be a field of rational number. Show that $\sqrt{2} \& \sqrt{3}$ are
- algebraic over Q and exist a polynomial of degree 4 over Q satisfies by $\sqrt{2}$ + $\sqrt{3}$.
- 10. Prove that $\frac{d^i}{dx^i} \frac{g(x)}{p-1!}$ is divisible by P where $g(x) = \sum_{n=1}^k a_n x^n$, $i \ge P$.

SECTION-B 15 MARK QUESTIONS:

- 11. The element aEK is algebraic over F iff F(a) is a finite extension of F.
- 12. Prove that e is Transcendental.

UNIT-II SECTION-A 6 MARK QUESTIONS

- 1.State & prove Remainder Theorem.
- 2.State & prove Factor Theorem.
- 3.Let a \in K be the root of p(x) \in F[x] of multiplicity m and if p(x)=(x a)^m q(x) then any other root of
- P(x) in K must be a root of $q(x) \in K[x]$ in the field K. Conversely any other root of q(x) is also a root of P(x).
- 4.If p(x) is a polynomial in F[x] of degree $n \ge 1$ and it is irreducible over F. then there is an extension
 - E of F such that [E:F]=n in which p(x) has a root in E.
- 5.T* defines an isomorphism of F[x] onto F'[t] with the property that $\alpha(T^*)=\alpha'$ for $\alpha \in F$.
- 6.If $p(x) \in F[x]$ is irreducible and if a,b are the roots of p(x). Then $F(a) \cong F(b)$ by an isomorphism which
 - takes $a \xrightarrow{onto} b$ and leaves every element of F fixed.
- 7. For every $f(x),g(x)\in F[x]$ for every $\alpha\in F$. Prove that i)(f(x)+g(x))'=f'(x)+g'(x) $ii)(\alpha f(x))'=\alpha f'(x)$
 - iii)(f(x)g(x))'=f(x)g'(x)+f'(x)g(x).
- 8. The Polynomial $f(x) \in F[x]$ has a multiple root iff f(x) and f'(x) have a non-trivial common factors.
- 9.If $f(x) \in F[x]$ is irreducible. Then
 - i)char f=0 then f(x) has no multiple roots
- ii) If char $f=p\neq 0$ then f(x) is multiple roots if it is of the form $f(x)=g(x^p)$.
- 10.If F is a field of Char f=p≠0 then the polynomial x^{p^n} -x∈F[x] where n≥1 has distinct roots.
- 11.show that any field of character zero is perfect.
- 12.If a,b are seperable over F of charF=0 then prove that F(a,b) is a simple extension.
- 13.In particular any 2 splitting field of the same polynomial over a given field F are isomorphism by
 - an isomorphism leaving for all element of F fixed.

14. If p is a prime nmber the splitting field over F the field of rational number of the polynomial x^p -1

Is of degree p-1.

15.If E is an extension of F and $f(x) \in F[x]$ and ϕ is an automorphism of E leaving element of F fixed.

Prove that ϕ must take a root of f(x) lying in E into a root of f(x) in E.

16. Prove that if the complex number Z is a root of a polynomial p(x) having real coefficients then \bar{z}

the complex conjugate of z is also a root of p(x).

17. Prove that m is an integer which is not a perfect square and if $\alpha + \beta(\sqrt{m})$, $[\alpha, \beta]$ rational] is the root

of a polynomial .p(x) having rational co-efficient, then $\alpha.\beta\sqrt{m}$ is also a root of p(x).

SECTION-B 15 MARK QUESTIONS

18.If $f(x) \in F[x]$ then there is a finite extension E of F in which f(x) has a root in E. Moreover

 $[E:F] \leq \deg f(x)$.

19.Let $f(x) \in F[x]$ be of degree $n \ge 1$ then prove that there is an extension E of F degree atmost factorial

Of n in which f(x) has n roots.

- 20. Prove that a polynomial of degree n over a field F[x] can be atmost n roots in any extension field.
- 21.If p(x) is irreducible polynomial in f[x] and if V is a root of p(x) . then F(V) is isomorphic to F'(w)

where $\,w$ is the root of p'(t). Moreover the isomorphism σ can be choosen that $i)V(\sigma){=}w$

ii) $\alpha(\sigma) = \alpha'$ for all $\alpha \in F$.

22.If F is of char0 and if a and b are algebraic over F.Then there exists an elements $c \in F[a,b]$ such that

F[a,b]=F[c].

- 23. Any finite extension of a field of char0 is a simple extension.
- 24. Any splitting field E and E' of the polynomial $f(x) \in F[x]$ and $f'(t) \in F'[t]$ respectively are isomorphic by an isomorphism ϕ with the property $a\phi = a'$ for all $a \in F$.

UNIT-III SECTION-A 6 MARK QUESTIONS

1.If K is a field and if σ_1, σ_2 are distinct automorphism of K then it is impossible to find the elements

 a_1, a_2, \dots, a_n not all zero in K such that $a_1\sigma_1(u) + a_2\sigma_2(u) + \dots + a_n\sigma_n(u) = 0$.

- 2. Fixed field of G is a subfield of K.
- 3. Show that G(K,F) is a subgroup of automorphism of G.
- 4.If K is a finite extension of F then G(K,F) is a finite group and its order of G(K,F) satisfies the

Inequality $O(G(K,F)) \leq [K:F]$.

5.Let K be a normal extension of a field F of charF=0. Then [K:F]=O(G(K,F)).

6.Let K be the splitting field of f(x) in F[x]. Let p(x) be an irreducible factor r of f(x) in F[x]. If the root

of p(x) are $\alpha_1, \alpha_2, \dots, \alpha_r$ then for each i there exist an automorphism σ_i in G(K,F). Such that

 $\sigma_i(\alpha_1) = \alpha_i$.

7.Let $f(x) \in F[x]$ be an irreducible polynomial and charF=0. Then f(x) has no multiple roots.

SECTION-B 15 MARK QUESTIONS

8.Let K be a normal extension of F and charF=0. If T is the subfield of K containing F. Then T is the

Normal extension of $F \Leftrightarrow \sigma(T)CT$.

9.state & prove Fundamental theorem of Galoi's Group.

10.Let F be a field and $F(x_1,x_2,...x_n)$ be the field of rational function in $x_1,x_2,....x_n$ over F. Suppose S is the field of symmetric rational function

i) $F(x_1, x_2, x_n)$ over n! i.e) $[F(x_1, x_2, x_n):S]=n!$.

ii) $G((x_1,x_2,...x_n),S)=S_n$ where S_n is a symmetric group of degree n.

iii)S=F($a_1,a_2,....a_n$) if $a_1,a_2,....a_n$ has elementary symmetric functions of $x_1,x_2,....x_n$. Iv)F($x_1,x_2,....x_n$) Is the splitting field over F($a_1,a_2,....a_n$)=S of the polynomial $t^n-a_1t^{n-1}+a_2t^{n-2}....(-1)^na^n$.

11. Suppose K is a finite extension of F char 0 and H is a subgroup of G(K,F). Let K_H is a

Fixed field of H. Then i)[K: K_H]=O(H) ii)H=G(K, K_H).

12.If K is a normal extension of F iff K is the splitting field of some polynomial over F.

UNIT-IV SECTION-A 6 MARK QUESTIONS

- 1.Let F be a finite field having q elements. Let F(K where K is a finite field & [K:F]=n then K has
- q^n elements.
- 2.Let F be a finite field then F has p^m elements where the prime number p is the charF
- i.e)charF=P.
- 3.If the finite field F has p^m elements then for all aEF, satisfies a^{p^m} =a.
- 4.If the finite field F has p^m elements then the polynomial x^{p^m} -x in F[x] can be Factorized as x^{p^m} -x= $\prod_{\lambda \in F} (x-\lambda)$.
- 5. If the field F has p^m elements then F is the splitting field of the polynomial x^{p^m} -x In F[x].
- 6.Any 2 finite fields having the same number of elements are isomorphic.
- 7. For every prime p & every positive integer m then there exist a field having p^m elements.
- 8.If F is a finite field and $\alpha \neq 0, \beta \neq 0$ are 2 elements of F then we can find a&b in F Suchthat $1+\alpha a^2+\beta b^2=0$.
- 9.Let G be a finite abelian group then for every integer n, the relation x^n =e is satisfied
- by atmost n elements of finite abelian group G. Prove that G is a cyclic group.
- 10.Let K be the field & G be finite subgroup of the multiplication group of non-zero Elements of K then G is cyclic group.
- 11. The multiplicative group of non-zero elements of a finite field is cyclic.

SECTION-B 15 MARK QUESTIONS

1.State and prove Wedder Burns theorem.

UNIT-V SECTION-A 6 MARK QUESTIONS

- 1.Let G' be a commutator subgroup of G then G is abelian \Leftrightarrow G' = {e}.
- 2.Let G'be a commutator subgroup of G then i)G' is normal in G. ii) $^{G}/_{G'}$ is abelian.
- 3.Let G' be the commutator subgroup of G then G' is generated by U where $U=\{x^{-1}y^{-1}xy/x,y\in G\}$. Let H be a normal subgroup of G then $\frac{G}{H}$ is abelian \Leftrightarrow G'CH.
- 4. The adjoint in Q satisfies the following $i)x^{*} = x$ $ii)(\delta x + 9y)^{*} = \delta x^{*} + 9y^{*}$ $iii)(xy)^{*} = y^{*}x^{*}$.
- 5.If for all $x,y \in Q \& N(xy) = N(x)N(y)$.
- 6. State and prove Lagrange's Identity.
- 7.H is a subring of Q, if $x \in H$ then $x \in H \otimes N(x)$ is a positive integer for every non-zero x in H.
- 8. State and prove Left Division Algorithm.
- 9.Let L be the left sided ideal of H then there exists an element u \in L such that x=cu for

every xEL, where cEH.

- 10.If a \in H then $a^{-1}\in$ H iff N(a)=1.
- 11.Let c be the field of complex numbers and suppose that the division ring D is algebraic Over C. Then D=C.

SECTION-B 15 MARK QUESTIONS

- 12. State and prove Four square theorem.
- 13. State and Prove Theorem of Frobenius.