D.K.M COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE

DEPARTMENT OF MATHEMATICS

SUB: ALGEBRA SUB CODE: 15CPMA1A

SECTION- A UNIT-1

- 1. Define conjugate of a in G and prove that conjugacy is an equivalence relation on G
- 2. Define normalizer of a in G and prove that N(a) is a subgroup of G.
- 3. If G is a finite group then prove that $C_a = \frac{O(G)}{O(N(a))}$
- 4. Prove that the number of elements conjugate to a in G is the index of the normalizer of a in G.
- 5. State and prove class equation.
- 6. Prove that O(G)= $\sum \frac{O(G)}{O(N(a))}$
- 7. If a£ Z if and only if N(a)=G. If G is finite, a£Z iff O(N(a))=O(G).
- 8. If $O(G)=p^n$, p is a prime number then $Z(G) \neq \{e\}$.
- 9. If $O(G)=p^2$, where p is a prime number then G is abelian.
- 10. State and prove Cauchy's theorem for finite group.
- 11. If p is a prime number and p/O(G) then G has an element of order p.
- 12. If $p^m|O(G)$, $p^{m+1} \nmid O(G)$ then G has a subgroup of order p^m .
- 13. Prove that $n(k) = 1 + p + ... + p^{k-1}$.
- 14. If A and B are finite subgroup of G then O(AxB)= $\frac{O(A).O(B)}{O(A \cap xBx^{-1})}$
- 15. Define internal and external direct product
- 16. Suppose that G is the internal direct product of N_1, N_2, \dots, N_n then for $i \neq j$, $N_i \cap N_i = \{e\}$ and if $a \pounds N_i$, $b \pounds N_i$ then ab = b
- 17. Let G be a group and suppose that G is the internal direct product of N_1, N_2, \dots, N_n . Let $T = N_1 X N_2 X \dots, X N_n$ then G and T are isomorphic.
- 18. Obtain class equation of S₃.
- 19. State and prove third part of sylow's theorem.
- 20. Prove that the number of p- sylow subgroup in G for a given prime is of the form 1+kp

SEC-B

- 21. State and prove first part of sylow's theorem.
- 22. State and prove second part of sylow's theorem.
- 23. State and prove third part of sylow's theorem.

- 24. State and prove fundamental theorem on finitely generate R-module.
- 25. If P is a prime number and $p^{\alpha}|O(G)$ then G has a subgroup of order p^{α}

UNIT-II SEC-A

- 1. Define module and give one example.
- 2. Define solvable and give one example.
- 3. G is solvable iff $G^{(k)}=\{e\}$ for some integer K.
- 4. Prove that homomorphic image of a solvable group is solvable.
- 5. Prove that subgroup of a solvable group is solvable.
- 6. If G is solvable group and if \overline{G} is a homomorphic image of G then \overline{G} is solvable.

SEC-B

- 7. Prove that any finite abelian group is the direct product of cyclic groups.
- 8. Prove that S_n is not solvable for $n \ge 5$.
- 9. Let $G = S_n$, $n \ge 5$ then $G^{(k)}$, $K = 1, 2, \dots$ Contains every 3-cycle of S_n .

UNIT-III SEC-A

- 1. If W \subset V is invariant under T then T induces a linear transformation \overline{T} on $\frac{V}{W}$ defined by (V+W) \overline{T} =VT+W. if satisfies q(x)£F[x] then so does \overline{T} . If P1(x) is the minimal polynomial for \overline{T} over F and if P(x) is that for T1 then $P_1(x)/P_2(x)$.
- 2. If V is n-dimensional over F and if T&A(V) has all its characteristic roots in F then T satisfies a polynomial of degree n over F.
- 3. If $V = V_1 \oplus V_2 \oplus \oplus V_k$, where each subspace V_i is of dimension n_i and is invariant under T, an element A(V) then a basis of V can be found so that the matrix of T in this is of the

form
$$\begin{pmatrix} A_1 & 0 & 0 \\ 0 & A_2 & 0 \\ 0 & 0 & A_k \end{pmatrix}$$
 where each A_i is an $n_i x n_i$ matrix of the liner transformation induced

- 4. If $T \pounds A(V)$ is nilpotent then $\alpha_0 + \alpha_1 T + \dots + \alpha_m T^m$ where $\alpha_i \pounds F$ is invertible if $\alpha_0 \neq 0$.
- 5. If $u \pounds V_1$ is such that $u T^{n_{1-k}} = 0$ where 0 < k < n, then $u = u_0 T^k$ for some $u_0 \pounds V_1$.
- 6. If M of dimension m is cyclic with respect to T then the dimension of MT^K is m-k for all k<m.
- 7. Suppose that $V = V_1 \oplus V_2$ where V_1 and V_2 are subspaces of V invariant under T. Let T_1 and T_2 be the linear transformations induced by T on V_1 and V_2 respectively. If the minimal polynomial of T_1 over F is $P_1(x)$ while that of T_2 is $P_2(x)$ then the minimal polynomial for T over F is the LCM of $P_1(x)$ and $P_2(X)$

- 1. Let T£A(V) has all its characteristics roots in F then the is a basis of V in which the matrix of T is triangular.
- 2. If $A\&F_n$ has all its characteristics roots in F then there is a matrix $C\&F_n$ such that CAC^{-1} is triangular.
- 3. If T&A(V) is nilpotent of index of nilpotence n_1 then a basis of V can be found such that the matrix of T in the basis has the form $\begin{pmatrix} M_{n_1} & 0 & 0 \\ 0 & M_{n_2} & 0 \\ 0 & 0 & M_{n_r} \end{pmatrix}$ where $n_1 \ge n_2 \ge \ge n_r$ and
 - $n_1 + n_2 + n_r = \dim V$.
- 4. Prove that there exists a subspace W of V is invariant under T such that $V = V_1 \oplus W$.
- 5. Prove that the two nilpotent liner transformation are similar iff and only if they have the same invariant.

UNIT-IV SEC-A

- 1. If $V = V_1 \oplus V_2 \oplus \oplus V_k$ where each V_i is invariant under T and if $P_i(x)$ is the minimal polynomial over F of T_i , the liner transformation induced by T on V_i , then the minimal polynomial of T over F is the L.C.M. of $p_1(x), p_2(x), p_k(x)$.
- 2. State and prove Jordan theorem
- 3. Prove that for each i= 1,2,.....k, $V_i \neq 0$ and $V = V_1 \oplus V_2 \oplus \oplus V_k$ the minimal polynomial of T_i is $q_i(x)$
- 4. If all the distinct characteristic roots $\lambda_i \lambda_k$ of T lie in F then $V = V_1 \oplus V_2 \oplus \oplus V_k$ where $V_i = \{ v \in V \setminus v (T \lambda_i)^{l_i} = 0 \}$ and where T_i has only one characteristic root λ_i on V_i .
- 5. Let T&A(V) has all its characteristic roots $\lambda_1, \ldots, \lambda_n$ in F then a basis of V can be found in

$$\text{which the matrix T is of the form} \begin{pmatrix} J_1 & & & \\ & J_2 & & \\ & & J_k \end{pmatrix} \quad \text{where each } J_i = \begin{pmatrix} B_{i_1} & & & \\ & B_{i_2} & & \\ & & B_{i_{ri}} \end{pmatrix} \text{ and }$$

where $B_{i_1}B_{i_2}...B_{i_n}$ are basic Jordon blocks belonging to λ_i

6. Suppose that T in A(V) has minimal polynomial over F the polynomial $P(x) = \gamma_0 + \gamma_1 x + ... + \gamma_{r=1} x^{r-1} + x^r$ Then there is a basis of V over F,

$$m(T) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\gamma_0 & -\gamma_1 & \dots & -\gamma_{r-1} \end{pmatrix}$$

1. State and Prove Jordon theorem?

2. If
$$P(x) = q(x)^e$$
 then $m(T) = \begin{pmatrix} C(q(x)^{e_1}) \\ & & \\ & & C(q(x)^{e_r}) \end{pmatrix}$

3. If T£A(V) has $P(x) = q_1(x)^{t_1} q_k(x)^{t_k}$ then $m(T) = \begin{pmatrix} R_1 & & \\ & R_2 & \\ & & R_k \end{pmatrix}$ where

$$R_{i} = \begin{pmatrix} C(q_{i}(x)^{e_{1i}}) & & \\ & & \\ & & C(q_{i}(x)^{e_{iri}}) \end{pmatrix}$$

4. Let V and W be two vector spaces over F and suppose that ψ is a isomorphism of V onto W suppose $S\&A_F(V)$, $T\&A_F(W)$ such that $(VS)\psi = (V\psi)T$ Then S and T have the same elements divisors.

Unit-V SEC-A

- 1. For A,B&F_n and $\lambda \varepsilon F$, i) $tr(\lambda A) = \lambda tr A$ ii) tr(A+B) = tr A + tr B iii) tr(AB) = tr(BA).
- 2. If T£A(V) then trT is the sum of the characteristic roots of T.
- 3. If F is a field of characteristic 0 and if T&A(V) is such that trT^i for all $i \ge 1$ then T is nilpotent.
- 4. If F is of characteristic o and if S,T&A(V) are such that ST-TS commutes with S then ST-TS is nilpotent.
- 5. For all A,B \pounds F_n, i) (A')'=A ii) (A+B)'=A'+B' iii) (AB)'=B'A'
- 6. If T£A(V) is such that (UT,V)=0 & v£V then T=0
- 7. If T&A(v) them v&V, there exists an element w&v dependent on v and T such that (uT,v)=(u,w) for all u&V
- 8. If T£A(v) then T*£A(v) then i) $(T^*)^* = T$ ii) $(S + T)^* = S^* + T^*$ iii) $(\lambda S)^* = \lambda S^*$ iv) $(ST)^* = T^*S^*$
- 9. T£A(v) is unitary iff $TT^* = 1$
- 10. If S£A(v) and if USS*=0 then US=0
- 11. If T is Hermitian $vT^k=0$ for $K \ge 1$, then VT=0.
- 12. If N is normal Linear transformation and if UN=0 for u£V then UN*=0.
- 13. If N is normal and if UNk=0 then UN=0
- 14. If $\lambda \& u$ are distinct characteristic roots of N then VN=V λ , WN=uw & (u,w)=0
- 15. If N is normal & AN=NA then AN*=N*A

- 1. The Linear transformation T on V is unitary if and only if it takes an orthonormal basis of V into an orthonormal basis of V.
- 2. If $\{v_1, v_2, \dots, v_n\}$ is an orthonormal basis of V and if T£A(V) in this basis (α_{ij}) then m(T*) is $(\beta_{ij}) = \overline{\alpha_{ij}}$
- 3. If T£A(v) is Hermitial then all its characteristic roots are real.
- 4. If N is normal then UNU-1(UNU*) is diagonal where V is a unitary matrix.
- 5. The normal transformation N is
 - (i) Hermitian iff its characteristic roots are real
 - (ii) Unitary iff its characteristic roots are all of absolute value 1.
- 6. State and Prove Sylvester's law