D.K.M.COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1. COMPLEX ANALYSIS
 UNIT I SECTION-A
 2 Marks

1. Define Triangle inequality.
2. Prove that $|z-1|=|z+i|$ represents the line through the origin

Origin whose slope is -1
3. The limit of a function is unique.
4. Define entire function.
5. Define harmonic function.
6. Prove that $u=y^{3}-3 x^{2} y$ is harmonic
7. If $f^{\prime}(z)=0$ in a domain D. then $f(z)$ must be a constant throughout D
8. Define analytic function.
9. Define continuity of a function
10. Define derivatives of a function
11. Prove that $f(z)=z^{2}$ is harmonic
12. If $v=2 x y$. Find $f(z)$

SECTION-B 5 Marks

1. Supposethatf $(z)=u(x, y)+i v(x, y), z_{0}=x_{0}+i y_{0}, w_{0}=u_{0}+i v_{0}$ then $\lim _{z \rightarrow z_{0}} f(z)=w_{0}$ if $\lim _{(x, y) \rightarrow\left(x_{0}, y\right)} u(x, y)=u_{0}, \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u(x, y)=v_{0}$
2. Explain stereographic projection.
3. If the derivatives are f and F exists at a points Z then
i. $\quad(f \pm F)^{\prime}(z)=f^{\prime}(z) \pm F^{\prime}(z)$
ii. (f.F)'(z) $=\mathrm{f}(\mathrm{z}) \mathrm{F}^{\prime}(\mathrm{z})+\mathrm{f}^{\prime}(\mathrm{z}) \mathrm{F}(\mathrm{z})$
iii. $\left(\frac{f}{F}\right)^{\prime}(z)=\frac{F(z) f^{\prime}(z)-F^{\prime}(z) f(z}{(F(z))^{2}}$

Provided $F(z) \neq 0$

4. Necessary condition for a function f to be differentiate at z_{0}.suppose that $\mathrm{f}(\mathrm{z})=\mathrm{u}(\mathrm{x}, \mathrm{y})+\mathrm{iv}(\mathrm{x}, \mathrm{y})$ and $\mathrm{f}^{\prime}(\mathrm{z})$ exist at $\mathrm{z}_{0}=\mathrm{x}_{0}+\mathrm{i} y_{0}$ then the first order partial derivatives of u and v must exists at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ and they satisfy Cauchy-Riemann equations. $\mathrm{u}_{\mathrm{x}}=\mathrm{v}_{\mathrm{y}}$, $u_{y}=-v_{x}$ and $f^{\prime}(z)$ can be written as $f^{\prime}\left(z_{0}\right)=u_{x}+i v_{x}$. Where this partial derivatives are to be evaluated at($\left.\mathrm{x}_{0}, \mathrm{y}_{0}\right)$.
5. For any function of $\boldsymbol{\phi} \frac{\partial^{2} \emptyset}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \emptyset}{\partial \mathrm{y}^{2}}=\frac{4 \partial^{2} \emptyset}{\partial \mathrm{z} \partial \overline{\mathrm{z}}}$
6. An analytic function with constant modulus is constant.
7. If $f(z)=u+i v$ is an analytic form of z and $u-v=\frac{\cos x+\sin x-e^{-y}}{2 \cos x-e^{y}-e^{-y}}$ find $f(z)$ subject to the condition $f\left(\frac{\pi}{2}\right)=0$
8. Prove that $\left(\frac{\partial}{\partial x^{2}}+\frac{\partial}{\partial y^{2}}\right)|f(z)|^{p}=p|f(z)|^{p-2}\left|f^{1}(z)\right|^{2}$
9. If $u=e^{x}(x \operatorname{cosy}-y$ sinc $)$. Prove that u is harmonic and find $f(z)=u+i v$

SECTION-C 10 MARKS

1. If f is differentiable at z_{0}, then f is continuous at z_{0}
2. Sufficient condition for a function $f(z)$ to be differentiable at z_{0}.
3. Let the function $f(z)=u(r, v)+i v(r, \boldsymbol{\theta})$. We define throughout some $\boldsymbol{\varepsilon}$-neighbourhood of a non-zero point $z_{0}=r_{0} \exp \left(\mathrm{iv}_{\mathrm{o}}\right)$
4. If $f(z)$ is analytic function of z

Prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)=4\left(\frac{\partial^{2} z}{\partial z \partial \bar{z}}\right)$
Prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$
5. Necessary condition for a function f to be differentiable at z_{o}.
6. State and prove Cauchy-Riemann equations in polar form.

1. $\boldsymbol{\omega}=\mathrm{b}+\mathrm{Az}$ where $\mathrm{A} \& \mathrm{~B}$ are complex constant.
2. Find the image strip $0<x<1$ under the transformation $\mathrm{w}=\mathrm{iz}$
3. Define isogonal and conformal transformation
4. Define critical point .with example
5. Define $\mathrm{w}=\mathrm{z}^{2}$
6. Define Bi-linear Transformation.
7. Define cross-Ratio.

SECTION-B

5 MARKS

1. Every bilinear transformation preserves the cross ratio
2. Find the bilinear transformation with maps $z_{1}=-1, z_{2}=0, z_{3}=1$ to $w_{1}=-I, w_{2}=1, w_{3}=i$
3. Every bilinear transformation which has only one fixed point acan be put in the form $\frac{1}{w-\alpha}=\frac{1}{z-\alpha}+\lambda$
4. Find the fixed point and bring it to the normal form of following bi-linear transformation. $\omega=\frac{(z+i) z-2}{z+i}$
5. Find the bi-linear transformation which transformation the half plane $R(z) \geq 0$ into the circle $|\omega| \leq 1$
6. Find the mobius transformation which transformation the circle $|z|=1$ and $|\omega|=1$ and makes the points $z=1,-1$ correspondence to $\boldsymbol{\omega}=1,-1$

SECTION-C 10 MARKS

1. Discuss the transformation $\boldsymbol{\omega}=\frac{1}{z}$
2. Necessary condition for conformality.
3. Sufficient condition for conformality.
4. Discuss the transformation $\boldsymbol{\omega}=e^{z}$
5. Discuss the transformation $\boldsymbol{\omega}=z^{2}$
6. Find the bilinear transformation which transforms the circle
$|z| \leq \rho$ to the circle of $|\omega| \leq \rho$

UNIT III SECTION-A 2 MARKS

1. Define arc and simple arc.
2. Define simple closed curve and Jordan curve .
3. Find the value of integral $\mathrm{I}=\int_{c} \bar{z} d z$ where c is the right hand half $\mathrm{z}=2 e^{i \theta} \quad\left(-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\right)$ of the circle $|z|=2$ from $z=-2 i$ to $z=2 i$
4. Define multiple connected domain.
5. Define Cauchy-goursat for multiple connected domain.
6. Evaluate: $\int_{c} \frac{z . d z}{2 z+1}$

SECTION-B 5 MARKS

1. C_{1} denote the contour OAB find $\int_{c} f(z) d z$ where $\mathrm{f}(\mathrm{z})=\mathrm{y}-\mathrm{x}-\mathrm{i} 3 \mathrm{x}^{2}, \mathrm{O}(0,0), \mathrm{A}(\mathrm{i}), \mathrm{B}(1+\mathrm{i})$
2. $\mathrm{I}=\int_{c} z^{\frac{1}{2}} d z$ where c is the semicircle $\mathrm{z}=3 e^{i \theta}$ where $0 \leq \boldsymbol{\theta} \leq \boldsymbol{\pi}$ from the point $\mathrm{z}=3$ to $\mathrm{z}=-3$
3. Evaluate : $\int_{c} \frac{d z}{z(z-2)}$ where c is $|z|=1$
4. $\int_{\Gamma} \frac{e^{5 z}}{z^{3}} d z$ where $\dot{\Gamma}$ is a circle $|z|=1$. Trace the anticlockwise direction
5. using Cauchy's integral formula, evaluate
6. $\int_{c} \frac{z d z}{\left(9-z^{2}\right)(z+i)} \quad$ where c is the circle $|z|=2$
7. Find the value of the integral
8. $\int_{0}^{1+i}(x-y+i x) d z$ along the straight line from $z=0$ to $z=1+i$

SECTION-C
 10 MARKS

1. State and prove cauchy's theorem.
2. If a function f is analytic at a point then its derivatives of all orders at that point and they are analytic.
3. State and prove maximum modulas theorem.
4. Suppose that $\mathrm{f}(\mathrm{z})$ is analytic throughout a neighbourhood $\left|z-z_{0}\right|<\epsilon$ of a point z_{0}. If $|f(z)| \leq\left|f\left(z_{0}\right)\right|$ for each point z in that neighbourhood then $f(z)$ has a constant value $f\left(z_{0}\right)$ throughout the neighbourhood.
5. State and prove maximum Cauchy integral formula.

UNIT IV
SECTION-A
2 MARKS

1. Define convergent and divergent series.
2. Define maclaurin series.
3. Define pole.
4. Define essential singular point and removable singular point
5. Define principal part of f at z_{0}.
6. Define convergence of the series
7. Prove absolute convergence implies convergence
8. A series converges iff the sequence of remainders tends to zero

SECTION-B 5 MARKS

1. Suppose that $\mathrm{z}_{\mathrm{n}}=\mathrm{x}_{\mathrm{n}}+\mathrm{iyn}, \mathrm{n}=1,2 \ldots, \mathrm{z}=\mathrm{x}+\mathrm{iy}$ then $\lim _{n \rightarrow \infty} z_{n}=z \Leftrightarrow \lim _{n \rightarrow \alpha} x_{n}=x ; \lim _{n \rightarrow \alpha} y_{n}=y$.
2. Suppose that $\mathrm{z}_{\mathrm{n}}=\mathrm{x}_{\mathrm{n}}+\mathrm{i} \mathrm{y}_{\mathrm{n}}, \mathrm{n}=1,2 \ldots, \mathrm{z}=\mathrm{x}+\mathrm{iy}$ then $\sum_{n=1}^{\alpha} x_{n}=X \operatorname{and} \sum_{n=1}^{\alpha} y_{n}=y$
3. $\mathrm{F}(\mathrm{z})=\frac{1}{z\left(z^{2}-3 z+2\right)}$ for the region
i. $\quad 0<|z|<1$
ii. $\quad 1<|z|<1$
iii. $\quad|z|>1$
4. Find the Laurent's expansion for $f(z)=\frac{1}{(z+1)(z+3)}$ in the domain $1<|z|<3$.
5. Find the Laurent's expansion for $f(z)=\frac{z+3}{z\left(z^{2}-z-2\right)}$ in the domain $1<|z|<2$
6. 4. Evaluate $\int_{c} \frac{3 z-4}{z(z-1)(z+2)} d z$ where C is the circle $|z|=3 / 2$

SECTION-C

10 MARKS

1. State and prove Taylor's series.
2. State and prove Laurent's series.

UNIT V SECTION-A

1. Find the poles and residues $\mathrm{f}(\mathrm{z})=\frac{1}{z+z^{2}}$
2. Find the poles and residues $\mathrm{f}(\mathrm{z})=\frac{1}{z^{2}+a^{2}}$
3. Define Residue
4. Find the Residue at Singularity $\mathrm{f}(\mathrm{z})=\frac{z+1}{z^{2}-3 z+2}$
5. Write the formula to compute the residue of $f(z)$ at a pole of order m at z_{0}
6. State Cauchy's Residue theorem
7. Find the Residue and pole of $z+\frac{3}{z-2}$
8. Find the Residue and pole of $\mathrm{f}(\mathrm{z})=\frac{z^{3}+3 z}{(z-i)^{3}}$

SECTION-B

5 MARKS

1. State and prove Cauchy residue theorem.
2. An isolated singular point z_{0} of a function f is a pole of order m iff $f(z)=\frac{\phi(z)}{\left(z-z_{0}\right)^{m}}$ where $\boldsymbol{\phi}(z)$ is analytic an non-zero at z_{0} and if $\mathrm{m}=1 \operatorname{res}_{z=z_{0}} f(z)=\emptyset\left(z_{0}\right)$ and if $\mathrm{m} \geq$ 2 res $_{z=z_{0}} f(z)=\frac{\phi^{m+\left(z_{0}\right)}}{m!-1}$
3. $\int_{c} \frac{z+1}{z^{2}-2 z} d z$ where c is the circle $|z|=3$
4. find the pole and residue $\mathrm{f}(\mathrm{z})=\left(\frac{z}{2 z+1}\right)^{3}$
5. find the pole and residue $\mathrm{f}(\mathrm{z})=\frac{1}{z^{2}+a^{2}}$

SECTION-C
 10 MARKS

1. Show that $\int_{0}^{\alpha} \frac{x^{2} d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}=\frac{\pi}{6}$
2. Show that $\int_{-\infty}^{\alpha} \frac{\cos 3 x d x}{\left(x^{2}+1\right)^{2}}=\frac{2 \pi}{e^{3}}$
3. Prove that $\int_{0}^{\infty} \frac{1}{1+x^{2}} d x=\frac{\pi}{2}$
4. Prove that $\int_{0}^{\infty} \frac{1}{x^{4}+1} d x=\frac{\pi}{2 \sqrt{2}}$
5. Evaluate $\int_{0}^{\infty} \frac{1}{\left(x^{2}+1\right)^{2}} d x$
6. Evaluate $\int_{0}^{\infty} \frac{\cos x}{1+x^{2}} d x$
7. Prove that $\int_{-\infty}^{\infty} \frac{\cos a x}{x^{2}+1} d x=\frac{\pi}{2} e^{-a}$
