D.K.M.COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1.

II- M.Sc. MATHEMATICS

SUB: DIFFERENCE EQUATION

SUB. CODE:15CPMA4D

UNIT- I DIFFERENCE EQUATION

SECTION-A 6 MARKS

- 1. Prove that k th order difference of Kth degree polynomial is a constant
- 2. Prove $P(E)(b^n g(n)) = b^n P(bE)g(n)$
- 3. Prove that the following statements
 - (i) $\Delta x^k = k x^{k-1}$
 - (ii) $\Delta^n x^k = k(k-1)...(k-n+1)x^{k-x}$
 - (iii) $\Delta^k x^k = k!$
- 4. Prove Δ^{-1} is linear, $\Delta^{-1}[ax(n) + by(n) = a\Delta^{-1}x(n) + b\Delta^{-1}y(n)$
- 5. Solve $y(n+3) \frac{n}{n+1}y(n+1) + ny(n+1) 3y(n) = n$, y(1) = 0, y(2) = -1, y(3) = 1, find the value of y(4), y(5), y(6) and y(7)
- 6. Prove initial value problem have a unique solution
- 7. Show that the function $3^n, n3^n, n^23^n$ for $n \ge 1$
- 8. Find w(n) of 3^n , $n3^n$, n^23^n
- 9. State and prove Abel's lemma
- 10. Let $x_1(n)$ and $x_2(n)$ be two solutions of $x(n+k) + P_1(n)x(n+k-1)$
 - 1)+...+ $P_k(n)x(n)=0$ then the following statements are true
 - (i) $x(n) = x_1(n) + x_2(n)$ is a solution of above equation
 - (ii) $\bar{x}(n) = ax(n)$ is a solution of above equation for any constant a
- 11. Find the solution of x(n+3)-7x(n+2)+16x(n+1)-12x(n)=0, x(0)=0, x(1)=1,x(2)=2.
- 12. Find the casoration of the function 5^n , $(3,5^{n+2})$, e^n
- 13. Solve $y(n+2)+y(n+1) 12y(n) = n2^n$
- 14. Solve y(n+2)-5y(n+1) + 6y(n)=1-n
- 15. Solve $y(n+2)+8y(n+1) + 12y(n) = e^n$
- 16. $(E-3)(E+2)y(n) = 5.3^n$
- 17. The condition $1+p_1+p_2 > 0$, $1-p_1+p_2 > 0$, $1-p_2 > 0$ are necessarily and sufficient condition for the equilibrium point of the equation y(n+2) $+p_1 y(n+1) + p_2 y(n) = M$ and $y(n+2)+p_1 y(n+1)+p_2 y(n) = 0$ is asymptotically stable.

SECTION-B **15 MARKS**

- 1. State and prove Abel's lemma
- 2. State and prove limiting behavior of solution
- 3. The condition $1+p_1+p_2 > 0$, $1-p_1+p_2 > 0$, $1-p_2 > 0$ are necessarily and sufficient condition for the equilibrium point of the equation y(n+2) $+p_1 y(n+1) + p_2 y(n) = M$ and $y(n+2) + p_1 y(n+1) + p_2 y(n) = 0$ is asymptotically stable.
- 4. Find the condition under which the solution of the equation y(n+2)- $\alpha(1+\beta)y(n+1) + \alpha\beta y(n) = 1$, $\alpha, \beta > 0$ converges to the equilibrium points y^* and oscilates about y^*

UNIT-II SECTION-A 6 MARKS

- 1. Find the solution of the difference system x(n+1) = Ax(n) Where, A= $\begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix}$
- 2. State and prove existence and uniqueness solution of x(n+1) = A(n)x(n)
- 3. State and prove Abel's formula
- 4. There are k linearly independent solutions of system x(n+1) = A(n)x(n) for $n \ge n_0$ where $A(n) = a_{ii}(n)$ is a k×k non- singular matrix functions
- 5. State and prove variation of constant formula
- 6. Let B be a $k \times k$ non singular matrix and let m be any positive integer. Then there exists some $k \times k$ matrix C such that $C^m = B$.
- 7. For every fundamental matrix $\phi(n)$ of a periodic system of equations there exist a non-singular matrix p(n) of periodic N, such that $\phi(n) =$ $P(n) B^n$

SECTION-B **15 MARKS**

- 8. Find the solution of the difference system x(n+1) = Ax(n) Where, A=
 - $\begin{pmatrix} 4 & 1 & 2 \\ 0 & 2 & -4 \\ 0 & 1 & 6 \end{pmatrix}$

9. Solve the system y(n+1) = A(n)y(n)+g(n). Where $A(n) = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$, $g(n) = \begin{bmatrix} n \\ 1 \end{bmatrix}$, $y(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 10. Find the general solution of x(n+1) = Ax(n) where $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$, $x(0) = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

11. Find the general solution of x(n+1) = Ax(n) where $A = \begin{pmatrix} 4 & 1 & 2 \\ 0 & 2 & -4 \\ 0 & 1 & 6 \end{pmatrix}$

UNIT –III Z- TRANSFORM 6 MARKS

- 1. Find the z- transform of $\{a^n\}$
- 2. Find the z- transform of $z(n^2a^n)$

3. Prove that
$$z[n^k x(n)] = \left(-z \frac{d}{dz}\right)^k \bar{x}(z)$$

4.Obtain inverse z- transform
$$\overline{x(z)} = \frac{z(z+1)}{(z-1)^z}$$

5. Solve the difference equation x(n+2)+3x(n+1)+2x(n)=0, x(0)=1, x(1)=-4.

6. Solve the difference equation x(n+4)+9x(n+3)+30x(n+2)+44x(n+1)+24x(n)=0,

$$x(0)=0, x(1)=0, x(2)=1, x(3)=-10$$

7. Solve
$$\frac{z(z+1)}{(z+2)^2(z_-1)}$$

8. Solve the difference equation x(n+3)-x(n+2)+2x(n)= 0 , x(0)=1, x(1)= 1, x(2)=1.

9. Solve
$$\overline{x}(z) = \frac{z(z-1)}{(z-2)^2(z+3)}$$

10.Solve
$$\overline{x}(z) = \frac{z(z-1)}{(z+2)^3}$$

SECTION-B 15 MARKS

1.If $x_n \in l_1$ then

- (i) $\overline{x}(z)$ is an analytic function for $|z| \ge 1$ (ii) $|\overline{x}(z)| \le ||x||$, for $|z| \ge 1$
- 2. Solve the difference equation x(n+4)+9x(n+3)+30x(n+2)+44x(n+1)+24x(n)=0 x(0)=0, x(1)=0,x(2)=1, x(3)=-10
- 3. The zero solution of $x(n+1) = Ax(n) + \sum_{j=0}^{n} B(n-j) x(j)$ uniform ly stable if and only if
 - (a). Z- A- $\overline{B}(z) \neq 0$ for all |z| > 1

(b). if z, is a zero of g(z) with $|z_r| = 1$. Then the residue of g(z) at z_r is bounded as $n \rightarrow \infty$.

4. The zero solution of $x(n+1) = Ax(n) + \sum_{j=1}^{n} B(n-j) x(j)$ uniformly asympttically stable is either one of the condition is hold

(i)
$$\sum_{j=1}^{k} (|a_{ij}| + \beta_{ij}) < 1$$
 for each i, $1 \le i \le k$
(ii) $\sum_{i=1}^{k} (|a_{ij}| + \beta_{ij}) < 1$ for each j, $1 \le j \le k$, where $\beta_{ij} = \sum_{n=0}^{\infty} |b_{ij}(n)|, 1$

 $\leq i, j \leq k$

$\mathbf{UNIT} - \mathbf{IV}$

ASYMPTOTIC BEHAVIOUR OF DIFFERENCE EQUATION

SECTION-A 6 – MARKS

- 1. Show that $t^2 \log t + t^3 = O(t^3)$ as $n \to \infty$
- 2. Suppose that $\lim_{n\to\infty} \frac{x(n+1)}{x(n)} = \lambda$, $\lambda \neq 0$ then $x(n) = \pm \lambda^n e^{nv(n)}$ for sequence v(n)
- 3. State and prove Benzaid- lutz therom
- 4. suppose that the matrix A has k linearly independent eigen vector ε_1 $\varepsilon_2 \dots \varepsilon_k$ and k corresponding eigen values $\lambda_1 \ \lambda_2 \dots \lambda_k$. If $\sum_{n=n_0}^{\infty} \frac{1}{|\lambda_i(n)|} ||B(n)|| < \infty$, hold for B(n) then the system y(n+1) = (A+B(n)) y(n) has solutions $y_i(n)$.
- 5. Find the asymptotic estimate of a fundamental set of solution y(n+1) = [A+B(n)] y(n)

Where A =
$$\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$
 and B(n) = $\begin{bmatrix} \frac{1}{n^2} + 1 & 0 & (0.5)^n \\ 0 & (0.2)^n & 0 \\ e^{-n} & 0 & \frac{\log n}{n^2} \end{bmatrix}$

6. Suppose that the following assumption old

(i). The system x(n+1+ = D(n)x(n) possess an ordinary Dichotony (ii). $\lim_{n \to \infty} y(n) = 0$

(iii). s $\sum_{N=n_0}^{\infty} ||B(n)|| < \infty$ then for each bounded solution x(n) of the given

system there correspondes the bounded solution y(n) of y(n+1) = (B(n) + D(n))y(n)Such that y(n) = x(n) + O(1)

SECTION-B 15 MARKS

- 1. State and prove Poincare theorem
- 2. State and prove variation of constant formula
- 3. Find the asymptotic estimate of a fundamental set of solution y(n+1) = [A+B(n)] y(n)

Where A =
$$\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$
 and B(n) = $\begin{bmatrix} \frac{1}{n^2} + 1 & 0 & (0.5)^n \\ 0 & (0.2)^n & 0 \\ e^{-n} & 0 & \frac{\log n}{n^2} \end{bmatrix}$

4. Let x(n) be any non- zero solution of x(n+k) + P_1 x(n+k-1)+ P_2 x(n+k-2)+..., P_k = 0 then

 $\lim_{n\to\infty} \frac{x(n+1)}{x(n)} = \lambda_m \quad \text{for some characteristic roots provided that distinct characteristic root have distinct module, moreover if there are two or more distinct root with same modulus then <math display="block">\lim_{n\to\infty} \frac{x(n+1)}{x(n)} = \lambda_m \text{ may not exist in general but for particular solution } \lambda_r, \lambda_j \text{ n can always be found, for the result } \lim_{n\to\infty} \frac{x(n+1)}{x(n)} = \lambda_m \text{ exist and this equal to characteristic } \lambda_n$

UNIT- V OSCILLATING SEQUENCE SECTION-A 6MARKS

- 1. Suppose that $p(n) \ge 0$ and $\lim_{n\to\infty} \sup(p(n)) < \frac{k^k}{(k+1)^{k+1}}$ then x(n+1)-x(n)+p(n)x(n-k) = 0 has non-oscillatory solution.
- 2. Suppose that b(n) > 0 for n∈ z⁺ then every solution x(n) of p(n)x(n+1) +p(n-1)x(n-1) =b(n)x(n) is non -oscillatory iff every solution z(n) if c(n)z(n) + 1/(z(n-1)) = 1 for n N for some N > 0
- 3. State and prove Gyori and Lada's theroem
- 4. If there exists a subsequence $b(n_k) \le 0$ with $n_k \to \infty$ as $k \to \infty$ then every solution of p(n)x(n+1)+p(n-1)x(n-1)=b(n)x(n) oscillates
- 5. If $c(n) \ge a(n) > 0$ for all n > 0 and z(n) > 0 is a solution of $c(n)z(n) + \frac{1}{z(n-1)} = 1$ 1 then the equation $a(n)y(n) + \frac{1}{y(n-1)} = 1$ has a solution $y(n) \ge z(n) > 1$, for all $n \in z^+$
- 6. If $b(n)b(n+1) \ge 4p^2(n)$ for $n \ge N$ then every solution of p(n)x(n+1)+p(n-1)x(n-1) = b(n)x(n) is non-oscillatory

SECTION-B 15 MARKS

1. Suppose that $\lim_{n \to \infty} \inf p(n) = p > \frac{k^k}{(k+1)^{k+1}}$ then the following statement

hold

- (i) $X(n+1)-x(n)+p(n)x(n-k) \le 0$ has no eventually positive solution
- (ii) $X(n+1)-x(n)+p(n)x(n-k) \ge 0$ has no eventually negative solution

2.State and prove Strum Seperation theorem

3.If $b(n)b(n+1) < (4-\xi)p^2(n)$ for some $\xi > 0$, for all $n \ge N$ then every solution of p(n)x(n+1)+p(n-1)x(n-1)=b(n)x(n) is oscillatory.