D.K.M.COLLEGE FOR WOMEN (AUTONOMOUS),VELLORE-1.

II- M.Sc. MATHEMATICS

SUB: DIFFERENCE EQUATION

SUB. CODE: 15CPMA4D

UNIT- I DIFFERENCE EQUATION

SECTION-A 6 MARKS

1. Prove that k th order difference of Kth degree polynomial is a constant
2. Prove $P(E)\left(b^{n} g(n)\right)=b^{n} P(b E) g(n)$
3. Prove that the following statements
(i) $\Delta x^{k}=k x^{k-1}$
(ii)

$$
\Delta^{n} x^{k}=k(k-1) \ldots(k-n+1) x^{k-x}
$$

(iii) $\Delta^{k} x^{k}=k$!
4. Prove $\quad \Delta^{-1}$ is linear, $\Delta^{-1}\left[a x(n)+b y(n)=a \Delta^{-1} x(n)+b \Delta^{-1} y(n)\right.$
5. Solve $\mathrm{y}(\mathrm{n}+3)-\frac{n}{n+1} y(n+1)+\mathrm{ny}(\mathrm{n}+1)-3 \mathrm{y}(\mathrm{n})=\mathrm{n}, \mathrm{y}(1)=0, \mathrm{y}(2)=-1, \mathrm{y}(3)=1$, find the value of $y(4), y(5), y(6)$ and $y(7)$
6. Prove initial value problem have a unique solution
7. Show that the function $3^{n}, n 3^{n}, n^{2} 3^{n}$ for $\mathrm{n} \geq 1$
8. Find $\mathrm{w}(\mathrm{n})$ of $3^{n}, n 3^{n}, n^{2} 3^{n}$
9. State and prove Abel's lemma
10. Let $x_{1}(\mathrm{n})$ and $x_{2}(\mathrm{n})$ be two solutions of $\mathrm{x}(\mathrm{n}+\mathrm{k})+P_{1}(n) \mathrm{x}(\mathrm{n}+\mathrm{k}-$
$1)+\ldots+P_{k}(n) x(n)=0$ then the following statements are true
(i) $\mathrm{x}(\mathrm{n})=x_{1}(n)+x_{2}(n)$ is a solution of above equation
(ii) $\bar{x}(\mathrm{n})=\operatorname{ax}(\mathrm{n})$ is a solution of above equation for any constant a
11. Find the solution of $x(n+3)-7 x(n+2)+16 x(n+1)-12 x(n)=0, x(0)=0$, $x(1)=1, x(2)=2$.
12. Find the casoration of the function $5^{n},\left(3,5^{n+2}\right), e^{n}$
13. Solve $y(n+2)+y(n+1)-12 y(n)=n 2^{n}$
14. Solve $y(n+2)-5 y(n+1)+6 y(n)=1-n$
15. Solve $\mathrm{y}(\mathrm{n}+2)+8 \mathrm{y}(\mathrm{n}+1)+12 \mathrm{y}(\mathrm{n})=e^{n}$
16. $(\mathrm{E}-3)(\mathrm{E}+2) \mathrm{y}(\mathrm{n})=5.3^{n}$
17. The condition $1+p_{1}+p_{2}>0,1-p_{1}+p_{2}>0,1-p_{2}>0$ are necessarily and sufficient condition for the equilibrium point of the equation $\mathrm{y}(\mathrm{n}+2)$ $+p_{1} \mathrm{y}(\mathrm{n}+1)+p_{2} \mathrm{y}(\mathrm{n})=\mathrm{M}$ and $\mathrm{y}(\mathrm{n}+2)+p_{1} \mathrm{y}(\mathrm{n}+1)+p_{2} \mathrm{y}(\mathrm{n})=0$ is asymptotically stable.

SECTION-B

1. State and prove Abel's lemma
2. State and prove limiting behavior of solution
3. The condition $1+p_{1}+p_{2}>0,1-p_{1}+p_{2}>0,1-p_{2}>0$ are necessarily and sufficient condition for the equilibrium point of the equation $y(n+2)$ $+p_{1} \mathrm{y}(\mathrm{n}+1)+p_{2} \mathrm{y}(\mathrm{n})=\mathrm{M}$ and $\mathrm{y}(\mathrm{n}+2)+p_{1} \mathrm{y}(\mathrm{n}+1)+p_{2} \mathrm{y}(\mathrm{n})=0$ is asymptotically stable.
4. Find the condition under which the solution of the equation $\mathrm{y}(\mathrm{n}+2)$ $\alpha(1+\beta) y(n+1)+\alpha \beta y(n)=1, \alpha, \beta>0$ converges to the equilibrium points y^{*} and oscilates about y^{*}

UNIT- II SECTION-A 6 MARKS

1. Find the solution of the difference system $x(n+1)=A x(n)$ Where, $A=$ $\left(\begin{array}{cc}1 & 1 \\ -2 & 4\end{array}\right)$
2. State and prove existence and uniqueness solution of $x(n+1)=A(n) x(n)$
3. State and prove Abel's formula
4. There are k linearly independent solutions of system $x(n+1)=A(n) x(n)$ for $\mathrm{n} \geq n_{0}$ where $\mathrm{A}(\mathrm{n})=a_{i j}(n)$ is a $\mathrm{k} \times \mathrm{k}$ non- singular matrix functions
5. State and prove variation of constant formula
6. Let B be a $\mathrm{k} \times \mathrm{k}$ non singular matrix and let m be any positive integer. Then there exists some $\mathrm{k} \times \mathrm{k}$ matrix C such that $C^{m}=\mathrm{B}$.
7. For every fundamental matrix $\varnothing(n)$ of a periodic system of equations there exist a non- singular matrix $\mathrm{p}(\mathrm{n})$ of periodic N , such that $\varnothing(n)=$ $\mathrm{P}(\mathrm{n}) B^{n}$

SECTION-B 15 MARKS

8. Find the solution of the difference system $x(n+1)=A x(n)$ Where, $A=$

$$
\left(\begin{array}{ccc}
4 & 1 & 2 \\
0 & 2 & -4 \\
0 & 1 & 6
\end{array}\right)
$$

9. Solve the system $y(n+1)=A(n) y(n)+g(n)$. Where $A(n)=\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right], g(n)=\left[\begin{array}{l}n \\ 1\end{array}\right]$, $y(0)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
10. Find the general solution of $x(n+1)=A x(n)$ where $A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$, $\mathrm{x}(0)=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$
11. Find the general solution of $x(n+1)=A x(n)$ where $A=\left(\begin{array}{ccc}4 & 1 & 2 \\ 0 & 2 & -4 \\ 0 & 1 & 6\end{array}\right)$
12. Find the z - transform of $\left\{a^{n}\right\}$
13. Find the z - transform of $z\left(n^{2} a^{n}\right)$
14. Prove that $\mathrm{z}\left[n^{k} \mathrm{x}(\mathrm{n})\right]=\left(-z \frac{d}{d z}\right)^{k} \bar{x}(z)$
4.Obtain inverse z - transform $\quad \bar{x}(z)=\frac{z(z+1)}{(z-1)^{z}}$
15. Solve the difference equation $x(n+2)+3 x(n+1)+2 x(n)=0, x(0)=1, x(1)=-4$.
16. Solve the difference equation $x(n+4)+9 x(n+3)+30 x(n+2)+44 x(n+1)+24 x(n)=0$, $x(0)=0, x(1)=0, x(2)=1, x(3)=-10$
17. Solve $\frac{z(z+1)}{(z+2)^{2}(z-1)}$
18. Solve the difference equation $x(n+3)-x(n+2)+2 x(n)=0, x(0)=1, x(1)=1$, $x(2)=1$.
19. Solve $\bar{x}(z)=\frac{z(z-1)}{(z-2)^{2}(z+3)}$
20. Solve $\bar{x}(z)=\frac{z(z-1)}{(z+2)^{3}}$

SECTION-B
 15 MARKS

1.If $x_{n} \in l_{1}$ then
(i) $\bar{x}(z)$ is an analytic function for $|z| \geq 1$
(ii) $|\bar{x}(z)| \leq\|x\|$, for $|z| \geq 1$
2. Solve the difference equation

$$
\begin{aligned}
& x(n+4)+9 x(n+3)+30 x(n+2)+44 x(n+1)+24 x(n)=0 \quad x(0)=0, x(1)=0 \\
& x(2)=1, x(3)=-10
\end{aligned}
$$

3. The zero solution of $\mathrm{x}(\mathrm{n}+1)=\mathrm{Ax}(\mathrm{n})+\sum_{j=0}^{n} B(n-j) x(j)$ uniform ly stable if and only if
(a). $Z-\mathrm{A}-\bar{B}(z) \neq 0$ for all $|z|>1$
(b). if z, is a zero of $g(z)$ with $\left|z_{r}\right|=1$. Then the residue of $g(z)$ at z_{r} is bounded as $n \rightarrow \infty$.
4. The zero solution of $\mathrm{x}(\mathrm{n}+1)=\mathrm{Ax}(\mathrm{n})+\sum_{j=1}^{n} B(n-j) x(j)$ uniformly asympotically stable is either one of the condition is hold
(i) $\sum_{j=1}^{k}\left(\left|a_{i j}\right|+\beta_{i j}\right)<1$ for each i, $1 \leq i \leq k$

$$
\text { (ii) } \sum_{i=1}^{k}\left(\left|a_{i j}\right|+\beta_{i j}\right)<1 \text { for each } \mathrm{j}, 1 \leq j \leq k \text {, where } \beta_{i j}=\sum_{n=0}^{\infty}\left|b_{i j}(n)\right|, 1
$$

$\leq i, j \leq k$

UNIT - IV

ASYMPTOTIC BEHAVIOUR OF DIFFERENCE EQUATION

SECTION-A 6 - MARKS

1. Show that $t^{2} \log t+t^{3}=\mathrm{O}\left(t^{3}\right)$ as $\mathrm{n} \rightarrow \infty$
2. Suppose that $\lim _{n \rightarrow \infty} \frac{x(n+1)}{x(n)}=\lambda, \lambda \neq 0$ then $\mathrm{x}(\mathrm{n})= \pm \lambda^{n} e^{n v(n)}$ for sequence $\mathrm{v}(\mathrm{n})$
3. State and prove Benzaid- lutz therom
4. suppose that the matrix A has k linearly independent eigen vector ε_{1} $\varepsilon_{2} \ldots \varepsilon_{k}$ and k corresponding eigen values $\lambda_{1} \lambda_{2} \ldots \lambda_{k}$. If $\sum_{n=n_{0}}^{\infty} \frac{1}{\left|\lambda_{i}(n)\right|}\|B(n)\|<\infty$, hold for $\mathrm{B}(\mathrm{n})$ then the system $\mathrm{y}(\mathrm{n}+1)=(\mathrm{A}+\mathrm{B}(\mathrm{n}))$ $\mathrm{y}(\mathrm{n})$ has solutions $y_{i}(n)$.
5. Find the asymptotic estimate of a fundamental set of solution $y(n+1)=$ [A+B(n)] y(n)

$$
\text { Where } \mathrm{A}=\left[\begin{array}{lll}
2 & 2 & 1 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{array}\right] \text { and } \mathrm{B}(\mathrm{n})=\left[\begin{array}{ccc}
\frac{1}{n^{2}}+1 & 0 & (0.5)^{n} \\
0 & (0.2)^{n} & 0 \\
e^{-n} & 0 & \frac{\log n}{n^{2}}
\end{array}\right]
$$

6. Suppose that the following assumption old
(i). The system $\mathrm{x}(\mathrm{n}+1+=\mathrm{D}(\mathrm{n}) \mathrm{x}(\mathrm{n})$ possess an ordinary Dichotony
(ii). $\underset{n \rightarrow \infty}{\operatorname{lt}} y(n)=0$
(iii). $\mathrm{s} \sum_{N=n_{0}}^{\infty}\|B(n)\|<\infty$ then for each bounded solution $\mathrm{x}(\mathrm{n})$ of the given system there correspondes the bounded solution $y(n)$ of $y(n+1)=$ (B(n) +D(n))y(n)
Such that $y(n)=x(n)+O(1)$

SECTION-B 15 MARKS

1. State and prove Poincare theorem
2. State and prove variation of constant formula
3. Find the asymptotic estimate of a fundamental set of solution $y(n+1)=$ $[A+B(n)] y(n)$

$$
\text { Where } \mathrm{A}=\left[\begin{array}{lll}
2 & 2 & 1 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{array}\right] \text { and } \mathrm{B}(\mathrm{n})=\left[\begin{array}{ccc}
\frac{1}{n^{2}}+1 & 0 & (0.5)^{n} \\
0 & (0.2)^{n} & 0 \\
e^{-n} & 0 & \frac{\log n}{n^{2}}
\end{array}\right]
$$

4. Let $\mathrm{x}(\mathrm{n})$ be any non- zero solution of $\mathrm{x}(\mathrm{n}+\mathrm{k})+P_{1} \mathrm{x}(\mathrm{n}+\mathrm{k}-1)+P_{2} \mathrm{x}(\mathrm{n}+\mathrm{k}-$ $2)^{+}+\ldots P_{k}=0$ then
$\underset{n \rightarrow \infty}{l_{n \rightarrow \infty}} \frac{x(n+1)}{x(n)}=\lambda_{m}$ for some characteristic roots provided that distinct characteristic root have distinct module, moreover if there are two or more distinct root with same modulus then $\underset{n \rightarrow \infty}{l t} \frac{x(n+1)}{x(n)}=\lambda_{m}$ may not exist in general but for particular solution $\lambda_{r}, \lambda_{j} \mathrm{n}$ can always be found, for the result $\underset{n \rightarrow \infty}{ } \frac{x(n+1)}{x(n)}=\lambda_{m}$ exist and this equal to characteristic λ_{n}

UNIT- V OSCILLATING SEQUENCE
 SECTION-A 6MARKS

1. Suppose that $\mathrm{p}(\mathrm{n}) \quad \geq 0$ and $\lim _{n \rightarrow \infty} \sup (p(n))<\frac{k^{k}}{(k+1)^{k+1}}$ then $\mathrm{x}(\mathrm{n}+1)-\mathrm{x}(\mathrm{n})+\mathrm{p}(\mathrm{n}) \mathrm{x}(\mathrm{n}-\mathrm{k})=0$ has non- oscillatory solution.
2. Suppose that $\mathrm{b}(\mathrm{n})>0$ for $\mathrm{n} \in z^{+}$then every solution $\mathrm{x}(\mathrm{n})$ of $\mathrm{p}(\mathrm{n}) \mathrm{x}(\mathrm{n}+1)$ $+\mathrm{p}(\mathrm{n}-1) \mathrm{x}(\mathrm{n}-1)=\mathrm{b}(\mathrm{n}) \mathrm{x}(\mathrm{n})$ is non -oscillatory iff every solution $\mathrm{z}(\mathrm{n})$ if $\mathrm{c}(\mathrm{n}) \mathrm{z}(\mathrm{n})+\frac{1}{z(n-1)}=1$ for n N for some $\mathrm{N}>0$
3. State and prove Gyori and Lada's theroem
4. If there exists a subsequence $\mathrm{b}\left(n_{k}\right) \leq 0$ with $n_{k} \rightarrow \infty$ as $\mathrm{k} \rightarrow \infty$ then every solution of $\mathrm{p}(\mathrm{n}) \mathrm{x}(\mathrm{n}+1)+\mathrm{p}(\mathrm{n}-1) \mathrm{x}(\mathrm{n}-1)=\mathrm{b}(\mathrm{n}) \mathrm{x}(\mathrm{n})$ oscillates
5. If $\mathrm{c}(\mathrm{n}) \geq \mathrm{a}(\mathrm{n})>0$ for all $\mathrm{n}>0$ and $\mathrm{z}(\mathrm{n})>0$ is a solution of $\mathrm{c}(\mathrm{n}) \mathrm{z}(\mathrm{n})+\frac{1}{z(n-1)}=$ 1 then the equation $\mathrm{a}(\mathrm{n}) \mathrm{y}(\mathrm{n})+\frac{1}{y(n-1)}=1$ has a solution $\mathrm{y}(\mathrm{n}) \geq \mathrm{z}(\mathrm{n})>$ 1 , for all $\mathrm{n} \in z^{+}$
6 . If $\mathrm{b}(\mathrm{n}) \mathrm{b}(\mathrm{n}+1) \geq 4 p^{2}(\mathrm{n})$ for $n \geq \mathrm{N}$ then every solution of $\mathrm{p}(\mathrm{n}) \mathrm{x}(\mathrm{n}+1)+\mathrm{p}(\mathrm{n}-$ $1) \mathrm{x}(\mathrm{n}-1)=\mathrm{b}(\mathrm{n}) \mathrm{x}(\mathrm{n})$ is non-oscillatory

SECTION-B 15 MARKS

1. Suppose that $\underset{n \rightarrow \infty}{l t} \inf p(n)=p>\frac{k^{k}}{(k+1)^{k+1}}$ then the following statement hold
(i) $\quad \mathrm{X}(\mathrm{n}+1)-\mathrm{x}(\mathrm{n})+\mathrm{p}(\mathrm{n}) \mathrm{x}(\mathrm{n}-\mathrm{k}) \leq 0$ has no eventually positive solution
(ii) $\quad \mathrm{X}(\mathrm{n}+1)-\mathrm{x}(\mathrm{n})+\mathrm{p}(\mathrm{n}) \mathrm{x}(\mathrm{n}-\mathrm{k}) \geq 0$ has no eventually negative solution 2.State and prove Strum Seperation theorem
3.If $\mathrm{b}(\mathrm{n}) \mathrm{b}(\mathrm{n}+1)<(4-\xi) p^{2}(n)$ for some $\xi>0$, for all $\mathrm{n} \geq \mathrm{N}$ then every solution of $\mathrm{p}(\mathrm{n}) \mathrm{x}(\mathrm{n}+1)+\mathrm{p}(\mathrm{n}-1) \mathrm{x}(\mathrm{n}-1)=\mathrm{b}(\mathrm{n}) \mathrm{x}(\mathrm{n})$ is oscillatory.
