D.K.M.COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1.

II-B. Sc. MATHEMATICS

SUB: DIFFERENTIAL EQUATIIONS

SUB. CODE: 15CMA3A

UNIT - 1: (Ordinary Differential Equations/linear)

SECTION-A 2 Marks

- 1. Define solvable for p.
- 2. Define solvable for x.
- 3. Define solvable for y.
- 4. Define clairout's equations.
- 5. Solve $p^2 sp + 2 = 0$.
- 6. Solve $xp^2 (2x + xy)p + 6y = 0$.
- 7. Solve $x^2p^2 + xyp 6y^2 = 0$.
- 8. Find the general solution of $y=xp+\alpha/p$.
- 9. Solve p=tan(y-xp).
- 10. Solve (y-px)(p-1)=p.
- 11. Solve y=xp+ $\sqrt{1 + p^2}$.
- 12. Solve $y=px+\sqrt{a^2 + p^2}$.

SECTION-B 5 Marks

1.
$$xyp^{2} + (x + y)p + 1 = 0.$$

2. $x^{2}p^{2} + 3xyp + 2y^{2}.$
3. $\frac{dy}{dx} - \frac{dx}{dy} = \frac{x}{y} - \frac{y}{x}.$
4. Solve $y = 2px + y^{2}p^{3}.$
5. Solve $y = 3px + 6p^{2}y^{2}.$
6. Solve $p^{2}+px^{3} - 2x^{2}y = 0.$
7. Solve $y-2px=tan^{-1}(xp^{2}).$
8. Solve $y+xp=x^{4}p^{2}.$
9. Solve $y=psinp+cosp.$
10. Solve $xp^{2} - yp - x = 0.$
11. Solve $e^{3x}(p-1) + p^{3}e^{2y} = 0.$

12. Solve (px-y)(py+x)=2p.
13. Solve x²(y - px) = yp².

SECTION-C 10 Marks

1. Solve $p^{2} + 2ypcotx - y^{2} = 0$. 2. Solve $y(\frac{dy}{dx})^{2} + (x - y)\frac{dy}{dx} - x = 0$. 3. Solve $yp^{2} - xp + 2y = 0$. 4. Solve $yp^{2} - 2xp + y = 0$. 5. Solve $p^{2} + y^{2}px + y^{3} = 0$. 6. Solve $xyp^{2} + (x^{2} + xy + y^{2})p + x^{2} + xy = 0$. 7. Solve $(x^{2} + x)p^{2} + (x^{2} + x - 2xy - y)p + y^{2} - xy = 0$.

UNIT – II (Linear Differential equations of second Order with constant coeficinets.

SECTION-A 2 Marks

- 1. Define linear differential equations of second order.
- 2. Solve $(D^2 4D + 3)y = 0$. 3. Solve $(D^2 + D + 1)y = 0$. 4. Solve $(D^2 - 6D + 9)y = 0$. 5. Solve $(D^2 - 1)y = e^x$. 6. Solve $(D^2 - 6D + 9)y = e^{3x}$. 7. $\frac{d^2y}{dx^2} = \frac{dy}{dx}$. 8. Solve $(D^2 + 3D + 2)y = \sin 3x$. 9. Solve $(D^2 + D + 1)y = x$.

SECTION-B 5 Marks

- 1. Solve $(D^2 D 2)y = e^{5x} + 2$.
- 2. Solve $\frac{d^2y}{dx^2} \frac{2dy}{dx} 3y = 8\cos 2x$.
- 3. Solve $(D^2 4D 12)y = sinxsin2x$.
- 4. Solve $(D^2 + 4D 5)e^{3x} + 4\cos 4x$.
- 5. Solve $(D^2 + 3D 2)y = sin3xcos2x$.
- 6. Solve $(D^2 + D 2)y = x^2 2x + 3$.

7. Solve
$$(D^2 - 2D + 1)y = x^2 + 1 + \sin 2x$$
.
8. Solve $(D^2 + 4D + 3)y = 8xe^x - 6$.
9. Solve $(D^2 - 4D + 3)y = e^x \cos 2x$.
10. Solve $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - 3y = e^{2x}(1 + x^2)$.

SECTION-C 10 Marks

- 1. Solve $(D^2 + a^2)y = sinax + acosax$.
- 2. Solve $(D^2 + 2D + 2)y = -2\cos 2x 4\sin 2x$, Given that y(0) and $y^1(0) = 1$.
- 3. Solve $\frac{d^2y}{dx^2} \frac{dy}{dx} + y = x^3 3x^2 + 1$. 4. Solve $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = xe^{3x} + \sin 2x$.

UNIT -III -LinearDifferential Equation of Second order with Variable co-efficients

SECTION-A 2 Marks

- 1. Define Cauchy Euler equation.
- 2. Solve $\frac{x^2d^2y}{dx^2} \frac{xdy}{dx} + y = x^2.$
- 3. Convert $(x^{3}D^{2} + 3x^{2}D + 5x)y = \pi$ into the differential equation with constant coefficient.
- 4. Convert $(x^2y^{11} xy^1 + y) = \log x + \pi$ into the differential equation with constant coefficient.
- 5. Convert $(2x+3)^2y^{11} 2(2x+3)y^1 + 2y = 6x$.
- 6. Define Legender linear equation.

SECTION-B 5 Marks

1. Solve $x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + 2y = \sin(\log x)$. 2. Solve $x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + 2y = 6x$. 3. Solve $\frac{d^2y}{dx^2} + \frac{1}{x} \frac{dy}{dx} = \frac{12 \log x}{x^2}$. 4. Solve $x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} = x + 1$. 5. Solve $(x^2D^2 - 2xD - 4)y = x^22 \log x$. 6. Solve $((1+x^2)D^2 + (1+x)D + 1)y = 4\cos(\log(1+x))$.

7. Solve
$$(x+1)^2 \frac{d^2y}{dx^2} - 3(x+1)\frac{dy}{dx} + 4y = x^2 + x + 1$$

8. Solve $(5+2x)^2 \frac{d^2y}{dx^2} - 6(5+2x)\frac{dy}{dx} + 4y = 6x$.

SECTION-C 10 Marks

1. Solve $x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 5y = x^2 \sin(\log x)$. 2. Solve $x^2 \frac{d^3y}{dx^2} + 3x \frac{d^2y}{dx^2} + \frac{dy}{dx} = x^2 \log x$. 3. Solve $x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + y = \frac{\log x(\sin \log x) + 1}{x}$. 4. Solve $(2x+1)^2 - 2(2x+1)\frac{dy}{dx} - 12y = 6x$. 5. Solve $(3x+2)^2 \frac{d^2y}{dx^2} + 3(3x+2)\frac{dy}{dx} - 36y = 3x^2 + 4x + 1$. 6. Solve $(1+x^2)\frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = \log(1+x)^4 + \cos(\log(1+x))$.

UNIT - IV -Method of variation of parameter

SECTION-A 2 Marks

- 1. Define Wronskian.
- 2. Write about the trial solution for the method of undetermined co-efficients.
- 3. Solve $y^1 + y = e^{-x}$ by the method of variation of parameter.
- 4. Solve the differential equation $xy^1 2y = x^4$ by the method of variation of parameter.

SECTION-B 5 Marks

- 1. Solve $y^{11} + ya^2 = seax$ by the method of variation of parameter.
- 2. Solve $y^{11} + 4y = \tan 2x$ by the method of variation of parameter.
- 3. Solve $\frac{dy}{dx} y\cos x = \sin 2x$ by the method of variation of parameter.
- 4. Solve $(D^2 + 1)y = x(sinx)by$ the method of variation of parameter.
- 5. Solve $y^{11} + 3y^1 + 2y = 4e^{2x} + x$ by the method of undetermined co-efficients.
- 6. Solve $y^1 + y = sinx$ by the method of undetermined co-efficients.

SECTION-C 10 Marks

- 1. Solve $(D^2 + n^2)y = cosecns by the method of variation of parameter.$
- 2. Solve $y^{11} + 7y^1 8y = e^{2x}$ by the method of variation of parameter.
- 3. Solve $(D^2 + 1)y = sinx + cos2x$ by the method of undetermined co efficients.
- 4. Solve $(D^2 + D)y = e^x \sin x$ by the method of undetermined co efficients.
- 5. Solve $y^{11} 3y^1 + 4y = 2sinx$ by the method of undetermined co efficients.

UNIT – 5-Simultaneous equations

SECTION-A 2 Marks

1. Define Simultaneous equations.

2. Eliminate y between $\frac{dx}{dt} - 7x + y = 0$; $\frac{dy}{dt} - 2x - 5y = 0$.

- 3. Eliminate x between from the differential equation $\frac{dx}{dt} + 2y = 0$; $\frac{dy}{dt} 2x = 0$. 4. Define simultaneous equations of first order and first degree.
- 5. solve $\frac{dx}{yz} = \frac{dy}{xz} = \frac{dz}{xz}$. 6. Solve the equation $\frac{dx}{-y^2 - z^2} = \frac{dy}{xy} = \frac{dz}{xz}$.

SECTION-B 5 Marks

1. Solve the equations $\frac{dx}{dt} + 2y = -\sin t; \frac{dy}{dt} - 2x = \cos t.$ 2. Solve the equations $\frac{dx}{dt} + 2y = \sin 2t; \frac{dy}{dt} - 2x = \cos 2t.$ 3. Solve $\frac{dx}{dt} + \frac{dy}{dt} + x + y = 10e^t; \frac{dx}{dt} - \frac{dy}{dt} + x - y = 0$ Given that x(0)=2; y(0)=3.4. Solve $\frac{dx}{dt} = 4x - 2ye^t; \frac{dy}{dt} = 6x - 3y.$ 5. Solve $\frac{dx}{y-xz} = \frac{dy}{yz+x} = \frac{dz}{x^2+y^2}.$ 6. Solve $\frac{dx}{mz-ny} = \frac{dy}{nx-lz} = \frac{dz}{ly-mx}.$ 7. Solve $\frac{dx}{y+z} = \frac{dy}{z+x} = \frac{dz}{x+y}.$ 8. Solve $\frac{dx}{x^2-y^2-z^2} = \frac{dy}{2xy} = \frac{dz}{2xz}.$ 9. Solve $\frac{dx}{x(y-z)} = \frac{dy}{y(z-x)} = \frac{dz}{z(x-y)}.$ 10. Solve $\frac{dx}{y+xz} = \frac{dy}{-x-yz} = \frac{dz}{x^2-y^2}$.

SECTION-C 10 Marks

1. solve $(2D-3)x+Dy=e^{t}$; $Dx + (D + 2)y = \cos 2t$. 2. Solve the equation $2\frac{dx}{dt} + x + \frac{dy}{dt} = \cos t$; $\frac{dx}{dt} + 2\frac{dy}{dt} + y = 0$. 3. Solve $\frac{dx}{dt} + \frac{dy}{dt} - 2y = 2\cos t - 7\sin t$; $\frac{dx}{dt} - \frac{dy}{dt} + 2x = 4\cos t - 3\sin t$. 4. Solve $\frac{dx}{dt} + 5x - 2y = t$; $\frac{dy}{dt} + 2x + y = 0$, given that x = 0. 5. Solve $\frac{dx}{x(y^2-z^2)} = \frac{dy}{y(z^2-x^2)} = \frac{dz}{z(x^2-y^2)}$. 6. Solve $\frac{dx}{x^2+y^2+yz} = \frac{dy}{x^2+y^2-xz} = \frac{dz}{z(x+y)}$. 7. Solve $\frac{dx}{x^2-y^2} = \frac{dy}{y^2-2x} = \frac{dz}{z^2-xy}$.