D.K.M COLLEGE FOR WOMEN (AUTONOMOUS), VLR-1 DEPARTMENT OF MATHEMATICS

CLASS: II M.SC(MATHEMATICS)

SUBJECT: FUNCTIONAL ANALYSIS SUB.CODE:15CPMA4C

UNIT - I SECTION-A 6 MARKS

- 1. Let 'N' be a non-zero normed linear space, and Prove that 'N' is a Banach space if and only if $\{x:||x|| = 1\}$ is complete.
- 2. State and Prove "Cauchy's Inequality".
- 3. Let N and N' be normed linear space and T be a linear transformation of N into N'. Then the following conditions on T are all equivalent to one another,
 - (i). T is continuous.
 - (ii). T is continuous at the origin, in the sense that $x_n \to 0 = T(x_n) \to 0$.
- 4. State and Prove "Holder's Inequality".
- 5. State and Prove "Minkowski's Inequality".
- 6. If N and N' are normed linear space, then the $\mathbb{B}(N,N)$ of all continuous linear transformation of N into N'is itself a normed linear space with respect to the point wise linear operations and the norm defined by $||T|| = Sup\{||T(x)||: ||x|| \le 1\}$. Further, if N' is a Banach space, then $\mathbb{B}(N,N)$ is also a Banach space.
- 7. If M is a closed linear subspace of a normed linear space N, and if T is the natural mapping of N onto N/M defined by T(x) = x + m, show that T is a continuous linear transformation for which $||T|| \le 1$.
- 8. Let M be a linear subspace of a normed linear space N, and Let f be a functional defined on M. If x_0 is a vector not in M, and if $m_0 = M + [x_0]$.
- 9. If N is a normed linear space and x_0 is a non-zero vector in N, then there exists a functional f_0 in N* such that $f_0(x_0) = ||x_0||$ and $||f_0|| = 1$.

UNIT-II

- 1. A one-to-one continuous linear transformation of one Banach space onto another is a homomorphism. In particular, if a one-to-one linear transformation T of a Banach space onto itself is continuous, then its inverse T^{-1} is automatically continuous.
- 2. If P is a projection on a Banach space B, and if M and N are its range and null space, then M and N are closed linear subspaces of B such that $B = M \oplus N$.
- 3. Let B be a Banach space, and Let M and N be closed linear subspace of B such that $B = M \oplus N$. If z = x+y is the unique representation of a vector in B as a sum of vectors in M and N, then the mapping P defined by P(z) = x is a projection on B whose range and null space are M and N.
- 4. If B and B' are Banach spaces, and if T is a linear transformation of B into B', then T is continuous if and only if its graph is closed.
- 5. State and Prove "The Closed graph Theorem".
- 6. Let B be a Banach space and N be a normed linear space. If $\{T_i\}$ is a non-empty set of continuous linear transformations of B into N with the property that $\{T_i(x)\}$ is a bounded set of N for each vector x in B, then $\{\|T_i\|\}$ is a bounded set of numbers; that is $\{T_i\}$ is bounded as a subset of $\mathbb{B}(B, N)$.
- 7. A non-empty subset x of a normed linear space N is bounded if and only if f(x) is a bounded set of numbers for each f in N*.
- 8. Let B be a Banach space and N be a normed linear space. If $\{T_n\}$ is a sequence in $\mathbb{B}(B,N)$ such that $T(x) = \lim_{n \to \infty} T_n(x)$ exists for each x in B. Prove that T is a continuous linear transformation.
- 9. State and Prove "The Uniform Boundedness Theorem".
- 10. Let T be an operator on a Banach space B. Show that T has an inverse T^{-1} if and only if T* has an inverse $(T^*)^{-1}$, and that in this case $(T^*)^{-1} = (T^*)^{-1}$.
- 11. If x and y are any two vectors in a Hilbert space, then $|(x,y)| \le ||x|| ||y||$.
- 12. State and Prove "The Cauchy's Schwartz's Inequality".
- 13. A closed convex subset of C of a Hilbert space H contains a unique vector of smallest norm.
- 14. State and Prove "The Parallelogram Law".

- 15. If B is a Complex Banach Space whose norm obeys the Parallelogram Law, and if an inner product is defined on B by $4(x,y) = ||x + y||^2 ||x y||^2 + i||x + iy||^2 i||x iy||^2$, then B is a Hilbert space.
- 16. State and Prove "The Pythagorean Theorem".
- 17. Let M be a Closed linear subspace of a Hilbert Space H, Let x be a vector not in M, and let d be the distance from x to M. Then there exists a unique vector y_0 in M such that $||x y_0|| = d$.
- 18. If M is a proper closed linear subspace of a Hilbert Space H, then there exists a non-zero vector z_0 in H such that $z_0 \perp M$.
- 19. If S is a non-empty subset of a Hilbert Space, show that $S^{\perp} = S^{\perp \perp \perp}$.
- 20. If M is a linear subspace of a Hilbert Space, show that M is closed if and only if $M = M^{\perp \perp}$.
- 21. If $\{e_i\}$ is an Orthonormal set in a Hilbert Space H, then the set $S = \{e_i : (x, e_i) \neq 0\}$ is either empty or countable.
- 22. Every non-zero Hilbert Space contains a complete Orthonormal set.

UNIT-III

- 1. Let H be an Hilbert space, and let f be an arbitrary functional in H*. Then there exists a unique vector y in H. such that f(x)=(x,y) for every x in H.
- 2. Let T be an operator on Hilbert space H. Then there exist a unique operators T^* on H exist a unique operators T^* on H such that $(Tx,y)=(x,T^*y)$ for all $x,y\in H$.
- 3. If P is a projection on a closed linear subspace M of H if and only if I-P is a projection on

 M^{\perp} .

- 4. If 0 & I be zero and identity operator on Hilbert space H then show that $0^*=0$, I =I*. Hence prove that T' is a non-singular then $(T^*)^{-1}=(T^{-1})^*$.
- 5. Show that the mapping $\Psi: H \to H^*$ defined by $\Psi(y) = f_y$ where $f_y(x) = (x,y)$ for every $x \in H$ is 1-1,onto,additive & isometry but not linear.
- 6. H** is the second conjugate operator of H is also a Hilbert space.
- 7. Every Hilbert space is reflexive.
- 8. If A_1 & A_2 are self-adjoint operator on H then the product A_1,A_2 is self-adjoint iff $A_1A_2 = A_2 A_1$.

- 9. If T is an operator and if $(T_x,x) = 0$ for all $x \in H$ for all T = 0.
- 10. An operator T on H is unitary iff is an isometric isomorphism of H onto itself.
- 11. A closed linear subspace M of H reduces an operator T iff M is invariant under both T & T*

UNIT-IV

1. If $||xy|| \le ||x|| ||y||$ shows that multiplication is jointly continuous is any banach algebra. i.e., If $x_n \to x$ and

$$y_n \rightarrow y$$
. Then $x_n y_n \rightarrow xy$.

- 2. If $G = \{g_1, g_2, \ldots, g_n\}$ is a finite group then its group algebra $L_1(G)$ is the set of all complex function defined on G.
- 3. Show that $a \to m_a$ where $m_a(x) = ax$ is an isomorphism of a into (A).
- 4. G is an open set and therefore S is a closed set.
- 5. The mapping $x \rightarrow x^{-1}$ of G into G is continuous and is therefore a homeomorphism of G onto itself.
- 6. If I is a prover closed two sided ideal in A, then the Quotient algebra A.
- 7. Z is a subset of S.
- **8.** The self adjoint operator in B(H) form a closed real linear subspace of B(H) and therefore real banach space which contains an identity transformation.
- 9. If N_1 & N_2 are normal operator on H with property that either commutes with adjoint of other than N_1+N_2 & $N_1.N_2$ are normal.
- 10. If A is a positive operator on H. Then)I+A) is a non-singular for any arbitrary T on H.
- 11. If N is normal operator on H then $||N^2|| = ||N||^2$.
- 12. The boundary of S is a subset of Z
- 13. Every maximal left ideal in A is closed.
- 14. If I is a proper closed two sided ideal in A, then the quotient algebra A/I is a banach algebra.
- 15. If A is a division algebra , then its equals the set of all scalar multiplies of the identity

UNIT-V

- 1. If A/R is a semi simple banach algebra.
- 2. The Gelfand mapping $x \to \hat{x}$ is a norm-decreasing (and therefore continuous) homorphism of A into C(m) with the following properties.
 - i) The image \bar{A} of A is a subalgebra of C(m) which separates the points of m and contains the identity of C(m).
 - ii) The radical R of A equals the set of all elements x for which $\hat{x} = 0$, so $x \rightarrow \hat{x}$ is an isomorphism iff A is semi_simple.
 - iii) An element x in A is regular iff it does not belong to any maximal ideal $\Leftrightarrow \hat{x}(M) \neq 0$ for every M.
 - iv) If x is an element of A then its spectrum equals the range of the function \hat{x} and its spectral radius equals the norm of \hat{x} , that is, $\sigma(x) = \hat{x}(m)$ and $r(x)=\sup|\hat{x}(m)|=||\hat{x}||$.
 - 3. Show that M is compact Hausdroff space.
- 4. If f_1 and f_2 are multiplicative functional on A with the same null space M then $f_1 = f_2$.

 $M{\to}f_M$ is a one to one mapping of the set m of all maximal ideals in A onto the set of all its functionals .

- 5. The maximal ideal space m is a compact Hausdroff space
- 6. If A is self-adjoint, then \hat{A} is dense in c(m).
- 7. If A is self-adjoint and if $||x^2|| = ||x||^2$ for every x, then the Gelfand mapping $x \to \hat{x}$ is an isometric isomorphism of A onto c.

UNIT-I SECTION-B 15 MARKS

1) 1. Let M be a closed linear subspace of a normed linear space N if the norm of a coset x + M in the quotient space N/M is defined by $||x + M|| = \inf\{||x + M|| : m \in M\}$, then N/M is a normed linear space. Further, if N is a Banach space, then so is N/M.

- 2) Let a banach space B be a direct sum of a linear subspace M, N so that $B = M \oplus N$. If z = x + y is the unique expression to a vector z in B has the sum of vectors x and y in M and N then a new norm ca be defined on the linear space B by ||z||' = ||x|| + ||y||.
- 3) Let N and N' be normed linear transformation of N into N'. Then the following conditions on T are all equivalent to one another:
 - i) T is continuous
 - ii) T is continuous at the origin in the sense that $x_n \to 0 \Rightarrow T(x_n) \to 0$;
 - iii) There exist a real number $k \ge 0$ with the property that $||T(x)|| \le k||x|| \ \forall x \in \mathbb{N}$.

i.e., T is bounded.

- iv) If $S = \{x/||x|| \le 1\}$ is a closed unit sphere in N then its image T(S) is a bounded set in N'.
- 4) State and prove "Hahn Banach Theorem."
- 5) State and prove Application of Hanbanach theorem.
- 6) State and prove Natural imbedding theorem.
- 7) Let N be a normed linear space then each vector x in N induces a functional F_x in N^* defined by $F_x(f) = f(x) \ \forall f \in N^*$ such that $||F_x|| = ||x||$. The mapping T: N \rightarrow N^{**} such that $T(x) = F_x \ \forall x \in N$ gives an isometric isomorphism of N into N^{**} .

UNIT-II

- 1. State and prove Open mapping theorem.
- 2. If B and B' are banach spaces and if T is a continuous linear transformation of B onto B'. Then T is open mapping.
- 3. Let S(x, r) be an open sphere with centre at the origin and radius r, then i) $S(x, r) = x + S_r$

ii)
$$S_r = rS_1$$
.

- 4. State and prove application of open mapping theorem.
- 5. A one-to-one continuous linear transformation of one Banach space onto another is a homeomorphism. In particular, if a one-to-one linear transformation T of a Banach space onto itself is continuous, then its inverse T^{-1} is automatically continuous.

6. If B is a complex banach space whose norm obvious the parallelogram law, and if an inner product is defined on B by

$$4(x, y) = ||x + y||^2 - ||x - y||^2 + i||x + iy||^2 - i||x - iy||^2$$
. Then B is a Hilbert space.

- 7. If S_1, S, S_2 are non-empty subset of Hilbert space H we have i) $\{0\}^{\perp} = H$.
 - ii) $H^{\perp} = \{0\}.$

iii)
$$S \cap S^{\perp} \subset \{0\}$$
 iv) $S_1 \subset S_2 \Rightarrow S_2^{\perp} \subset S_1^{\perp}$ v) $S \subset S^{\perp}$

- 8. State and prove Bessel's inequality for finite set.
- 9. Let $\{e_1, e_2, \dots, e_n\}$ be a finite orthonormal set in a Hilbert space H. If x is a any vector in H. Then $\sum_{i=1}^{n} |(x, e_i)|^2 \le ||x||^2$. Further more, $x \sum_{i=1}^{n} (x, e_i) e_i \perp e_j \ \forall j$.
- 10. Let $\{e_i\}$ be a finite orthonormal set in a Hilbert space H. If x is a any vector in H. Then $x \sum_{i=1}^{n} (x, e_i) e_i \perp e_j \forall j$.

UNIT-III

- 1. State and prove Riesz Representation theorem..
- 2. The adjoint operator $T \rightarrow T^*$ on B(H) as the following properties.

a.
$$(T1+T2)*=T1*+T2*$$

b.
$$(\alpha T)^* = \overline{\alpha} T^*$$

c.
$$(T_1 + T_2)^* = T_1^* T_2^*$$

e.
$$||T|| \leq ||T^*||$$

$$f. ||T^*|| < ||T||^2$$

- 3. Let y be a fixed vectors in aHilbert space H and let f_y be a function defined as $f_y(x) = (x,y)$ for every $x \in H$ then f_y is functional on H & $||f_y|| = ||y||$.
- 4. If P is a projection on a Hilbert space H then (i) P is a positive on H . (ii). $0 \le P \le 1$. (iii). $\|Px\| \le \|X\|$ for every $x \in H$.(IV). $\|P\| \le 1$.
- 5. The ste of all normal operator on a Hilbert space is a closed subset of B(H) which contains the self-adjoint operator and it is closed under scalar multiplication.

- 6. If P is a projection on a Hilbert space H with large M and a null space N then $M \perp N$ iff P is self adjoint in this case $N = M^{\perp}$.
- 7. If $P_1,P_2,...,P_n$ are projectionclosed linear subspaces $M_1,M_2,...,M_n$ on H then P = $P_1,P_2,...,P_n$ iff P_i 's are pairwise orthogonal i.e p_i,p_j =0 where $i \neq j$ and in this case P is a projection on M where $M = M_1 + M_2 + ... + M_n$.
- 8. State and prove : Uniform continuity Theorem ".

UNIT-IV

- 1. Prove: $\sigma(x^n) = \sigma(x)^n$.
- 2. If A is a banach subspace of a banach algebra A' then the spectrum of an element x in A w.r.to A and A' are related as follows (i). $\sigma A'(x) \subseteq \sigma A(x)$ (ii). Each boundary point of $\sigma A(x)$ is also boundary point of $\sigma A'(x)$.
- 3. $\sigma(x)$ is non-empty.
- 4. $(x) = \lim_{n \to \infty} |x^n|^{1/n}$.
- 5. The mapping $x\rightarrow x^{-1}$ of G into G is continuous and is a homeomorphism of G onto itself.

UNIT-V

- 1. If M is a maximal ideal in A, then the Banach algebra A/M is a division algebra, and therefore equals the Banach algebra C of complex numbers. The natural homomorphism $x \to x + M$ of A onto A/M = C assign to each element x in A complex number x(M) defined by x(M) = x + M and the mapping $x \to x(M)$ has the following properties:
 - i. (i) (x + y)(M) = x(M) + y(M) (ii) $(\alpha x)(M) = \alpha x(M)$ (iii) $x(M) = 0 \Leftrightarrow x \in M$ (iv) 1(M) = 1 (v) $|x(M)| \le ||x||$
- 2. The following conditions on A are all equivalence to one another:
 - i) $\|x^2\| = \|x\| 2$ for every x ii) $\mathbf{r}(\mathbf{x}) = \|x\|$ for every x iii) $\|\hat{x}\| = \|x\|$ for every x.
 - 3. State and prove Gelfand-Neumark Theorem.