D.K.M. COLLEGE FOR WOMEN(AUTONOMOUS), VELLORE-1.

DEPARTMENT OF MATHEMATICS

III B.SC MATHEMATICS

FUZZY MATHEMATICS

SUBJECT CODE: 11SMA6B

UNIT I SECTION-A

- 1.Define Fuzzy set with example.
- 2. Define crisp set.
- 3. Define subset with example.
- 4. Define height of fuzzy set.
- 5. Define subnormal fuzzy subset.
- 6. Define partial order relation.
- 7. Define partial ordered set.
- 8. Define Total ordered set.
- 9. Define upper and lower bound for fuzzy set.
- 10. Define Least upper bound (or) supremum.
- 11. Define greatest lower bound (or) Infimum.
- 12. Define Lattice.
- 13. Define Boolean algebra.
- 14. Define Union of fuzzy subsets.
- 15. Define Intersection of fuzzy subsets.
- 16. Define complementation with examples.
- 17. Define fuzzy subset function.

UNIT II

- 18. Define fuzzy relation with example.
- 19. Define inverse fuzzy relation with example.
- 20. Define height of fuzzy relation with relation.
- 21. Define support of fuzzy relation with example. with example.

- 22. Define algebraic of fuzzy relation with example.
- 23. Define crisp relation with example.
- 24. Define fuzzy compatability relation.
- 25. Define fuzzy partial ordered set with example.
- 26. Define dominating class of x with example.
- 27. Define fuzzy lattice.
- 28. Define fuzzy logic.
- 29. Define connectives with example.
- 30. Define conjunction with example.
- 31. Define Disjunction with example.
- 32. Define Truth table.
- 33. Define conditional statement with example.
- 34. Define biconditional statement with example.
- 35. Define contrapositive with example.
- 36. Define atomic statement with example.
- 37. Define molecular statement with example.
- 38. Define Tautology with example.
- 39. Define duality law with example.

UNIT III

- 40. Define fuzzy groupoids.
- 41. Define characteristic function.
- 42. Define lattice of fuzzy subgroup.
- 43. Define homomorphis of groupoids.
- 44. Define fuzzy invariant subgroup.
- 45. Define fuzzy quotient group.

UNIT IV

- 46. Define fuzzy subring with example.
- 47. Define fuzzy field with example.
- 48. Define fuzzy linear space with example.

UNIT V

- 49. Define fuzzy subspace with example.
- 50. Define Ideal with example.
- 51. Define right ideal with example.
- 52. Define left ideal with example.

SECTION-B

- 53. Write the properties of lattices.
- 54. Given $x \le y \ne (xVy) = x$. Prove that ' \le ' is partial ordering.
- 55. Prove that x/y is the infimum of x and y.
- 56. Write the properties of fuzzy subset set.
- 57. Prove that $(\mu_1 \cup \mu_2) \cap \mu_3 = (\mu_1 \cap \mu_3) \cup (\mu_2 \cap \mu_3)$
- 58. Prove that $(\mu_1 \cap \mu_3)^c = \mu_1^c \cup \mu_2^c$
- 59. Write down the properties are satisfied by addition and product of fuzzy subsets.
- 60. Prove that (i) $(\mu_1, \mu_3)^c = \mu_1^c + \mu_2^c$ (ii) $(\mu_1 + \mu_3)^c = \mu_1^c \cdot \mu_2^c$
- 61.Let f is a function f: $X\rightarrow Y$ be a function then
- (i) $f^{-1}[\eta^c] = (f^{-1}[\eta])^c$ for any subset η of Y.
- (ii) $f[\mu^c] \supseteq (f[\mu])^c$ for any fuzzy subset μ of X if f is onto.
- (iii) $\mu_1 \subset \mu_2 \Longrightarrow f[\mu_1] \subset f[\mu_2]$ for any fuzzy subsets μ_1 , μ_2 of X.
 - 63. onstruct the truth table for $P \Rightarrow Q$, $Q \Rightarrow P$, $\neg P \Rightarrow \neg Q$, $\neg Q \Rightarrow \neg P$.
 - 64. Construct the truth table for $\neg (P \land Q) \Leftrightarrow (\neg P \lor \neg Q)$.
 - 65. Prove that $\{\uparrow\}$ is functionally complete set. To prove this it is sufficient to show that $\{\land,\neg\}$ and $\{\lor,\neg\}$ can be expressed in terms of \uparrow alone.
 - 66. For any $\theta \in [0,1]$, the θ level set $[\mu]_{\theta} = \{x \in S \mid \mu(x) \ge \theta\}$ is a subgroupoid if μ is a fuzzy subgroupoid.
 - 67. Show that the intersection of any set of fuzzy subgroupoids is a fuzzy groupoids.

- 68. Show that $\mu(xy^{-1}) = \mu(e)$ implies $\mu(x) = \mu(y)$.
- 69. Every level subgroup $\mu_k(\theta < t \le 1)$ of a fuzzy normal subgroup μ of a group G is a normal subgroup of G.
- 70. Every normal subgroup H of a group G can be considered as a level set of a fuzzy normal subgroup.
- 71. Let z be an ideal of a ring R if μ is a fuzzy left (right) ideal of R then the fuzzy subset η of R/I defined by $\eta(a+z) = \sup_{u \notin I} \mu(a+u)$ is a fuzzy left (right) ideal of the quotient ring R/I.
- 72. F is a fuzzy field X iff, (i) $\mu_F(x-y) \ge \min(\mu_F(x), \mu_F(y))$ for all $x, y \in X$. (ii) $\mu_F(xy^{-1}) \ge \min(\mu_F(x), \mu_F(y))$ for all $x \in X, y \ne 0 \in Y$.
- 73. Let R be skew field and $(\mu \neq 0)$ be a fuzzy subset of R, then μ is a fuzzy (left, right) ideal of R iff $\mu(x) = \mu(e) \leq \mu(0) \quad \forall x \neq 0 \in R$ where 0 is the unity in (R,+) and e is the unity of (R,\bullet) .
- 74. Let X and Y be fields and f is a homomorphism from X into Y. Let F be a fuzzy field in Y. Then the inverse images $f^{-1}(F)$ of f is a fuzzy field in X.
- 75. Let V be a fuzzy linear space in Y (over the fuzzy field F in X) if $\mu_{\nu}(\lambda x + \mu y) \geq \min \left\{ \min \left\{ \mu_{F}(\lambda), \mu_{\nu}(x) \right\}, \min \left\{ \mu_{F}(\mu), \mu_{\nu}(y) \right\} \right\} \ \forall \lambda, \mu \in X \ \& \ x, y \in Y$ then $\lambda_{\nu}(\lambda x + \lambda y) \geq \min \left(\mu_{\nu}(x), \mu_{\nu}(y) \right) \forall x, y \in Y.$
- 76. If L is a complete lattice then the intersection of a family of fuzzy linear space is a fuzzy linear space.

UNIT-V

- 77. Let μ be a fuzzy subset of a vector space X then the following are equivalent:
 - (i) μ is a fuzzy subspace of X.
 - (ii) $a\mu + b\mu \subset \mu$ For all scalars a and b.
 - (iii) $\mu(ax+b) \ge \min\{\mu(x), \mu(y)\}\$ For all scalars a and b and for all x, y in X.

- 78. Let X and Y be linear space over the same field and $f: X \to Y$ be linear map
 - (i) If μ is a linear subspace of X, then $f(\mu)$ is a linear subspace of Y.
 - (ii) If η is a fuzzy subspace of Y then $f^{-1}(\eta)$ is a fuzzy subspace of X.
- 79. If μ , μ_1 and μ_2 are fuzzy subspaces of a linear space X then $\mu_1 + \mu_2$ and $k \mu$ are also fuzzy subspace of X for any scalar k.
- 80. If $\{\mu_i\}$ be a family of linear subspaces of a linear space X. Then $\bigcap_i \mu_i$ are also fuzzy subspaces of X.
- 81. For a fuzzy subset μ of the linear space X the following are equivalent
 - (i) μ is affine (convex).
 - (ii) $\mu(kx+(1-k)y) \ge \min(\mu(x), \mu(y)).$
 - (iii) $[\mu]_{\alpha} = \mu^{-1}[\alpha,1]$ is ordinary affine (convex).
- 82. For a fuzzy subset μ of the linear space X the following are equivalent
 - (i) μ is balanced.
 - (ii) $\mu(xx) \ge \mu(x) \forall x \in X$ and all scalar k with $|k| \le 1$.
 - (iii) $[\mu]_{\alpha} = \mu^{-1}[\alpha,1]$ is balanced.
- 83. X and Y are two linear space and f: X → Y is a linear map if μ is affine (convex/balanced) fuzzy subset of X then f(μ) is affine (convex/balanced) fuzzy subset of Y.
- 84. If μ_1 and μ_2 are affine (convex/balanced) fuzzy subset of X then so is $\mu_1 + \mu_2$.
- 85. Let A is a fuzzy algebra in Y over F iff for all x, $y \in Y$ and λ_1 , $\lambda_2 \in X$
 - (i) $\mu_A(\lambda_1 x + \lambda_2 y) \ge \min \left\{ \min \left\{ \mu_F(\lambda_1), \mu_A(x) \right\}, \min \left\{ \mu_F(\lambda_2), \mu_A(y) \right\} \right\}$
 - (ii) $\mu_A(xy) = \min \{ \mu_A(x), \mu_A(y) \}$