D.K.M. COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1 DEPARTMENT OF CHEMISTRY (UG)

General Chemistry-II

Unit - I Section A

- 1. What is meant by ionic bond?
- 2. What are the conditions for the formation of ionic bond?
- 3. What is meant by hydration energy?
- 4. What is meant by solvation energy?
- 5. Define lattice energy.
- 6. Why ionic solids conduct electricity in the molten state?
- 7. What is meant by polarization of ions?
- 8. What is meant by polarity of bonds?
- 9. What are the different types of orbital overlap?
- 10. What is meant by bond length?
- 11. What is meant by sigma and pi bond?
- 12. Write the geometry of NH₃ molecule.
- 13. Write the geometry of H₂O molecule.
- 14. What are bonding orbitals?
- 15. What are anti bonding orbitals?
- 16. What is meant by bond order?
- 17. Calculate the bond order for He₂ molecule.
- 18. Calculate the bond order for CO molecule.
- 19. Calculate the bond order in O_2 molecule.

Section - B

- 1. What are the characteristic properties of ionic bond?
- 2. Explain Born Haber Cycle.
- 3. Write the different types of overlap and the formation of sigma and pi bond.
- 4. Discuss the geometry of ClF₃ and Pcl₅ molecule.

- 5. Write the partial ionic character of a covalent molecule based on dipole moment data.
- 6. Draw the MO diagram for O₂ molecule.
- 7. Give the similarities and differences between valence bond and molecule orbital bonds.

Section - C

- 1. How will you calculate lattice energy by means of Born Haber cycle?
- 2. State and explain Fajan's rule.
- 3. What are the conditions for the formation of covalent bond?
- 4. Based on VSEPR theory, predict the geometry of H₂O, NH₃ and PCl₅ molecules.
- 5. Based on MOT theory explain why O₂ molecule is paramagnetic in nature?

Unit - II Section - A

- 1. What are alkali metals?
- 2. Write the occurrence of Li metal.
- 3. What is meant by diagonal relationship?
- 4. Write the diagonal relationship between Li and Mg.
- 5. Write the flame colouration of alkali metals.
- 6. What are alkaline earth metals?
- 7. Write the occurrence of Be metal.
- 8. Which is more reducing Li or Na? Why?

Section - B

- 1. Write the diagonal relationship between Li and Mg.
- 2. How Li is extracted from its ore?
- 3. Write the exceptional property of Li.
- 4. Write the exceptional property of Be.
- 5. How be is extracted from its ore?
- 6. Show the diagonal relationship between Be and Al.

Section - C

- 1. Write a comparative study of oxides, halides, hydroxides and carbonates of alkali metals.
- 2. Write the extraction of Li metal.
- 3. Write a comparative study of the elements with respect to oxides, hydroxides, halides and sulphates of alkaline earth metals.
- 4. Write the extraction of Berylium.

Unit - III Section - A

- 1. What are ideal gases?
- 2. What are real gases?
- 3. What is meant by Boyle's temperature?
- 4. Define inversion temperature.
- 5. State Boyle's law.
- 6. State Charles' law.
- 7. Write Graham's law of diffusion.
- 8. Write Avagadro's law.
- 9. Write the expression for RMS velocity.
- 10. What is meant by equipartition of energy?
- 11. State Joule's law.
- 12. Define Joule- Thomson effect.

Section - B

- 1. Derive Boyle's law and Charles' law from kinetic gas equation.
- 2. Derive the relationship between RMS velocity and most probable velocity.
- 3. Derive the relationship between RMS velocity and average velocity.
- 4. Discuss the postulates of kinetic theory of gases.
- 5. Explain Joule Thomson effect.
- 6. Derive an expression for Joule Thomson coefficient.
- 7. Write notes on Boyle's law and ideal gas equation.

Section - C

 Write notes on Maxwell's distribution of molecular velocities. Define Boyle's law and Charles' law

- 2. Derive an expression for kinetic gas equation.
- 3. Discuss Joule Thomson effect, Joule -Thomson coefficient and its derivation.
- 4. Write notes on virial equation of state, inversion temperature and Joule's law.
- 5. Derive gas laws from kinetic gas equation.
- 6. Give the expressions for average velocity, most probable velocity and rms velocity and give the relation between them.

UNIT - IV Section - A

- 1. Write the structural formula for the following: Neopentane and 2,2-dimethyl butane.
- 2. Write the general molecular formula of alkanes, alkenes and alkynes.
- 3. What is Markownikoff's rule?
- 4. What is meant by peroxide effect?
- 5. What are alkynes? Give example.
- 6. Name the following: CH_2 = CH CH= CH CH_2 CH= CH CH_3 and $(CH_3)_2$ C = CH_2

Section - B

- 1. Discuss the mechanism of free radical substitution in alkanes.
- 2. What happens when propylene is treated with HI in presence and absence of peroxide?
- 3. Write short notes on the reactions which are used to detect the position of double bonds.
- 4. Write notes on the allyic substation by NBS.
- 5. Write notes on ozonalysis.
- 6. Discuss the acidity of alkynes.
- 7. Explain the addition of water to alkynes with mercuric sulphate catalyst.

Section - C

1. Write notes on hydroboration, hydroxylation with KMnO₄ and ozonalysis.

- 2. What happens when propylene is treated with sulphuric acid, water, halogen and HX?
- 3. Write notes on Markownickoff's rule and peroxide effect.
- 4. (i). Discuss the acidic nature of acetylene.
 - (ii) How will you prepare the following? n- Propyl bromide from propene, Allyl chloride from propyne and Glycol from ethylene.
- 5. Write down the structural formula of olefins from which the following products are obtained on ozonalysis: ethylmethylketone and propanaldehyde, formaldehyde only.

Unit - V Section - A

- 1. What is Grignard regent?
- 2. What happens when glycerol is oxidized?
- 3. What is LTA?
- 4. How will you prepare allyl alcohol?
- 5. What is Wurtz reaction?
- 6. What is meant by Dieckmann's condensation?
- 7. What are cycloalkanes? Give example.
- 8. What are alicyclic compounds? Give example.
- 9. How will you convert benzene to cyclohexane?
- 10. What happens when cyclopentanone is reduced?
- 11. What is the action of heat on calcium adipate?
- 12. What happens when 1, 4- Dibromobutane is treated with sodium?
- 13. How is cyclohexane prepared from benzene?

Section - B

- 1. What is meant by oxymercuration reaction?
- 2. Write notes on theory of strainless rings.
- 3. Complete the reaction:

rings.

I. Cyclopropane + Chlorine

II. $\underline{\text{Cyclopropane} + Br_2}$

4. Describe Sashase Mohr theory of strainless

- 5. Explain hydroboration reaction and its application.
- 6. Write notes on ozonalysis and oxidation with KMnO₄ reaction of olefins.

Section - C

- 1. Give the preparation and properties of allyl alcohol.
- 2. Show how Bayer's strain theory accounts for the relative stability of cycloalkanes.
- 3. Discuss the substitution and ring opening reactions of cycloalkanes.
- 4. How the stability of cycloalkanes is explained on the basis of Baeyer strain theory?
- 5. Explain why:
 - (i) Angle strain for cyclopropane is more than that of cyclobutane.
 - (ii) Cyclohexane is more stable than cyclopentane.