D.K.M.COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1. MECHANICS

UNIT I Section-A (6 Marks)

- 1. Define Mechanics, Dynamics and Mechanical system
- 2. Explain the types of forces.
- 3. Define Degrees of Freedom with example.
- 4. Prove that the degrees of freedom of any system is unique.
- 5. Define Co-ordinate transformation, Generalised co-ordinates and independent Generalised co-ordinates.
- 6. Define configuration space and classification of constraints.
- 7. Explain sceleronomic system with example.
- 8. Explain Rheonomic system with example.
- 9. Define Non-holonomic constraints and explain the characteristics of non-holonomic constraints.
- 10. Write the difference between holonomic and non-holonomic constraints.
- 11. Write a notes on Bilateral constraint and unilateral constraints.
- 12. Define virtual displacement and its vector and virtual velocity.
- 13. Explain virtual work of Applied Forces.
- 14. Explain D'Alembert's principle.
- 15. Explain Lagrangiom Form of D'Alembert's principle.
- 16. State and prove principle of work and kinetic energy.
- 17. Explain the total kinetic energy of a rigid body.
- 18. Explain Angular momentum of system of particles w.r.to fixed point and in terms of centre of mass.

UNIT II

- 1. Explain the characteristic of the terms T_2,T_1,T_0 .
- 2. Derive the standard form of Lagrange's Equation for Holonomic system.
- 3. Derive the standard form of Lagrange's Equation for non-holonomic system.
- 4. Find the differential equation of motion for a spherical pendulum of length 1.
- 5. Two Particles are connected by a rigid massless rod of length 1 which rotates in a horizontal plane with a constant angular velocity w knife-edge supports at the two particles prevent either particle from having a velocity component at the rod. Find the different equation of motion at the origin and has a velocity v_0 in the positive y direction.
- 6. Discuss Kepler problem using Routhian function.
- 7. Explain Natural system with Example.
- 8. Explain the term ignorable Coordinates.
- 9. Derive Equations of motion.

UNIT III

- 1. Explain the Stationary values of a Function.
- 2. Find the necessary condition for a stationary value of the definite integral $I=\int_{x_0}^{x_1} F(y(x),y'(x),x)dx$ where y'(x)=dy/dx and the limits x_0 and x_1 are fixed.
- 3. Explain the brachistochrone problem.
- 4. Explain geodesic problem that is the problem of finding the shortest path between the two points in a given space.
- 5. Find the stationary values of the function F=z, subject to the constraints Φ_1 =x²+y²+z² -4=0, Φ_2 =xy-1=0.
- 6. Solve Kepler's problem using polar co-ordinates.
- 7. Derive modified Hamilton's principle.
- 8. Derive Jacobi's form of principle of least action.
- 9. Obtain the orbit for the Kepler problem using the Jacobi form of the principle of least action.

UNIT IV

- 1. State and prove Jacobi's theorem.
- 2. Define 1)orthogonal systems, 2)seperability, 3)Lioville's system.
- 3. Derive modified Hamilton-Jacobi equation.
- 4. Define Pfaffian differential form and explain it.
- 5. Explain conservative systems and Ignorable co-ordinates.
- 6. Using Hamilton Jacobi method analyze the kepler problem.
- 7. Solve Kepler problem using Jacobian equation.

UNIT V

- 1. Show that the transformation $Q = \sqrt{2qe^t \cos p}$, $P = \sqrt{2qe^{-t} \sin p}$ is constant.
- 2. State and prove Poisson's theorem.
- 3. Show that the transformation $Q=1/2(q^2+p^2)$ and $p=-\tan^{-1}(q/p)$ is canonical.
- 4. Explain canonical transformations for holonomic systems.
- 5. Explain point transformations & Moment transformations.
- 6. Derive the expression of Lagrangian bracket.
- 7. Consider the transformation $Q=\sqrt{e^{-2q}-p^2}$, $p=\cos^{-1}(pe^q)$ using poisson bracket, show that it is Canonical.

UNIT I Section B (15 marks)

- 1. State and prove principles of virtual work.
- 2. Explain the application of the virtual work.
- 3. Obtain the virtual work of the applied forces in terms of generalized coordinates.
- 4. State and prove principle of conservation of energy.
- 5. State and prove koniy's theorem.
- 6. Obtain the expression for the rotational K.E(T_{rot})

- 7. Obtain the angular momentum of system of N particles w.r to an orbitrary reference
- point P.
- 8. A particle of mass 'm' is suspended by amass less wire of length r=a+b coswt (a>b>0) to form a Spherical Pendulum. Find the equation of motion.

Unit II

- 1. Derive Lagrange's equations for holonomic & non holonomic System.
- 2. Derive the expression for total kinetic energy of system of particle.
- 3. Derive the lagrange's equation.
- 4. Obtain the forms of equation of motion.
- 5. A double pendulum consists of two particles suspended by massless rods. Assuming that all motion takes place in a vertical plane. Find the differential equations of motion.
- 6. Derive the expression of Routhian function.

Unit III

- 1. State and prove principle of least action.
- 2. Find a curve y(x) between the origin 'o' and the point (x,y) such that a particle starting from a rest at 'o' and sliding curve without friction under gravity will reach the end of curve in a minimum time.
- 3. Obtain the stationary value of a Definite Integral.
- 4. State and prove Hamilton's principle.
- 5. Explain Hamilton's principle for non-holonomic system.
- 6. Obtain the Derivation of Hamilton's Equation.
- 7. Explain the Legendre Transformation.

Unit IV

- 1. State and prove Stackel's theorem.
- 2. Derive Hamilton's Canonical Integral.
- 3. Explain Hamilton-Jacobi method through simple mass spring system.

Unit V

- 1. Explain the bilinear Covirat and prove that it is invariant with respect to a canonical.a
- 2. For the transformation $Q=q-tp+1/2gt^2$, P=p-gt. Find K-H and the generating function.
- 3. Explain principle forms of Generating functions.
- 4. Explain Homogeneous Canonical Transformations.
- 5. State and prove Poisson's theorem.