D.K.M.COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1.

NUMERICAL METHODS

UNIT – I SECTION-A (2 MARKS)

- 1. Define transcendental equation.
- 2. What is Bisection method?
- 3. Explain Regular falsie method
- 4. Define newton raphson method
- 5. Find the square root of 20
- 6. What is generalized hewton Raphson method?

SECTION-B 10 Marks

- 1. Find the Positive root of $x^4-x^3-2x^2-6x-4 = 0$ correct to 4 decimal places by bisection method.
- 2. Solve the equation $x^3-9x + 1 = 0$ for the root lies between 2 and 3.
- 3. Solve the equation $x^{3}-4x+1 = 0$, by regular falsi method.
- 4. Find the root of $x^3 x 1 = 0$ by newton's method.
- 5. Find a double root of the equation $x^3 x^2 x + 1 = 0$ and the root is nearer to 0.8

UNIT – II SECTION-A (2 marks)

- 1. Explain the forward difference formula.
- 2. Explain the backward difference formula.
- 3. Prove that $\mu = \frac{1}{2} [E_{\frac{1}{2}} + E \frac{1}{2}]$
- 4. P.T s = E 1/2 E $^{-1/2}$
- 5. P.T (i) $\nabla = 1 E^{-1}$, (ii)ke² = 1 + s²/4

6. If

х	10	15	20	25	30	35		
у	19.97	21.51	22.57	23.52	24.65	25.89		
D								

Form the difference table and find value of $\Delta^2 y_{10}$, Δy_{20} , $\Delta^3 y_{15}$, $\Delta^5 y_{10}$.

7. Define Lagrange's Interpolation Formula For unequed intervals,

- 8. Define inverse interpolation formula.
- 9. prove the Δ is linear.

10. Explain newton's general interpolation formula.

SECTION-B (10marks)

1. Estimate the population 1964 and 1966 form the following data.

	year	1961	1962	1963	1964	1965	1966	1967
1	production	200	200	260		350		430

2. From the following data find θ at x=43, x=84

			υ		,				
	x	40	50	60	70	80	90		
	θ	184	204	226	250	276	304		
3.	3. use largrange's interpolation formula find y (10) for the following data								
	X		5		6	9	1	1	
	y 12			13	14	1	6		

4. using newtons divided different formula find the value of f(2), f(8), &f(15)

x	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

UNIT-III SECTION-A (2 marks)

- 1. Explain newton's Forward difference interpolation formula.
- 2. Explain newton's backward difference interpolation formula.
- 3. Derive Simpsons one third rule.
- 4. Derive trapezoided rule.

SECTION-B (10 marks)

1. from the following values of x & y obtain dy/dx, d^2y/dx^2 for x=1.2 and x=2.2

x	1.0	1.2	1.4	1.6	1.	2.0	2.2
					8		
у	2.718	3.320	4.055	4.953		7.389	9.025
	3	1	2	0	6.049	1	0
					6		

- 2. Evaluate $\int_{-3}^{3} x^2$ taking 6 interval using
- 3. (1) Trapezoidal rule (2) simpsory 1/3 rd rule (3) Simpsons 3/8 the rule.Find the minimum value of f(x) which as values

X	0	2	4	6
f(x)	3	3	11	27

UNIT-IV SECTION-A (2 marks)

- 1. Derive Gauss Elimination method.
- 2. define factoriazation method.

(10arks)

- Solve by Gauss Elimination method. 3x+2y+4z=7, 2x+y+z=7, x+3y+5z=2.
- 2. Solve the Equations by Factoraization method . 2x+3y+z=9, x+2y+3z=6, 3x+y+2z=8

UNIT-V SECTION-A

(2 marks)

- 1. Derive taylors formula.
- 2. What is picards method.
- 3. Derive Euler's method.
- 4. Explain Range-Kutta method

SECTION-B (10 Marks)

- 1. Using faylors method, compute y(0.2) and (0.4) correct to 4 decimal places given $\frac{dy}{dx}$ =1-2xy and y(0)=0.1
 - 2. Given $\frac{dy}{dx} = x^3 + y$, y(0)=2, compute y(0.2),y(0.4),y(0.6) by Range-kutta method of order two.