D.K.M.COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1.

II- M.Sc. MATHEMATICS

SUBJECT: NUMERICAL ANALYSIS

SUBJECT CODE: 15CPMA3E

UNIT-I

Finite digit arithmetic and errors and non-linear equation

SECTION-A 6 Marks

- 1. Associative law is not true in the case of finite digit arithmetic $a = 0.345 \times 10^{0}$, $b = 0.245 \times 10^{-3}$, $c = 0.432 \times 10^{-3}$ use 3 digit arithmetic with rounding.
- 2. Compute 403000×0.0197 by 3 digit arithmetic with rounding.
- 3. Prove that $\frac{a-b}{c} \neq \frac{a}{c} \frac{b}{c}$, a = 0.41, b = 0.36, c = 0.70 use 2 digit arithmetic with rounding.
- 4. Find propagated relation error in addition and subtraction prove that

$$x_{r+y} = r_x \cdot \frac{x}{x+y} + r_y \cdot \frac{y}{x+y}$$
$$x_{r-y} = r_x \cdot \frac{x}{x-y} + r_y \cdot \frac{y}{x-y}$$

- 5. Prove propagative relative error in multiplication prove that $r_{xy} \simeq r_x + r_y$.
- 6. Prove that $\frac{r_x}{y} \simeq r_x r_y$.
- 7. Solve the equation $x^2 + 9.9x 1 = 0$ by using 2 digit arithmetic with rounding.
- 8. Evaluate $f(x) = \frac{1}{\sqrt{1+x^2}-\sqrt{1-x^2}}$ for $x = 0.2 \times 10^{-1}$ using 3 digit arithmetic with rounding.
- 9. Evaluate $f(x) = \frac{1-\cos x}{x}$ for x = 0.01 using 5 dig it decimal arithmetic.
- 10. Evaluate x = 0.125 in nested form using 5 digit arithmetic floating point with rounding $9.26x^3 - 3.48x^2 + 0.436x - 0.0182$.
- 11. Find the root of the equation $f(x) = x^3 + x 1 = 0$ by using bisection method starting with $a_0 = 0$, $b_0 = 0$ and do 5 iterations.
- 12. Find the root of the equation $f(x) = x^3 3x + 1 = 0$ by using scant method taking $x_0 = 1$, $x_1 = 0.5$ and do 3 iterations.
- 13. Find the root of the equation $f(x) = x^3 3x + 1 = 0$ starting with a = 0 and b = 0.5 by using regula falsi method.
- 14. Explain about the bisection method.

- 15. Explain about the secant method.
- 16. Explain about the Newton's method.
- 17. Explain about the Muller's method.
- 18. Find the root of the equation $f(x) = x^3 3x + 1 = 0$ by using Newton's method with $x_0 = 0.5$ and do 5 iteration.
- 19. Find cubic root of 'a' by using Newton's method.

SECTION-B 15 marks

1. Let f(x) be $n-\beta$ floating point representation of the real number x then

i.
$$|r_x| < \frac{1}{2}\beta^{-n+1}$$
 (if rounding is used)

- ii. $0 \le r_x \le \beta^{-n+1}$ (if chopping is used)
- 2. Find the root of the equation $f(x) = x^3 + x 1 = 0$ by using bisection method starting with $a_0 = 0$, $b_0 = 1$
- 3. Let $f(x) = x^3 2x^2 + x 2 = 0$ do 5 iterations to find the root of the equation using secant method with $x_0 = 1.25$, $x_1 = 1.5$
- 4. Find the root of the equation $x^3 3x + 1 = 0$ by using Muller's method with $x_0 = 0.5, x_2 = 0, x_1 = 1$ (do two iterations).

UNIT-II System of linear equations

SECTION-A 6marks

1. Solve the equations by using simple pivoting

$$0x_1 + x_2 + x_3 = 1$$

$$x_1 + 0x_2 + x_3 = 1$$

- $x_1 + x_2 + 0x_3 = 1$
- 2. Solve the system of given equation by using Gauss elimination with scaling, partial pivoting and 5 digit decimal arithmetic with rounding store the multipliers also

0.4x+8y+5z = -8.2 6x+0.5y+0z = -19.5 5x-3y+0.2z = 19.6

3. Solve the matrix by using Gauss elimination with scaling and partial pivoting and 5 digit arithmetic with rounding

$$\mathbf{A} = \begin{pmatrix} 0.4 & 8 & 5\\ 6 & 0.5 & -10\\ 5 & -3 & 0.2 \end{pmatrix}$$

4. Solve the following system of equation by crout's method using 5 digit arithmetic

 $x_1 + x_2 - 2x_3 = 2.5$ $4x_1 - 2x_2 + x_3 = 5.5$ $3x_1 - x_2 + 3x_3 = 9$

5. Solve the following system of equation by crout's method using 5 digit arithmetic

 $x_1 + 2x_2 + x_3 = 2$ $2x_1 + x_2 - 10x_3 = 4$ $2x_1 + 3x_2 - x_3 = 2$

6. Find the inverse of the matrix by using Gauss elimination and 5 digit

arithmetic, also find
$$A = \begin{bmatrix} 1 & 1 & -2 \\ 4 & -2 & 1 \\ 3 & -1 & 3 \end{bmatrix}$$
 the value of $|A|$
7. Find the inverse of matrix $A = \begin{pmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{pmatrix}$ by crout's method.

- 8. Explain about the Ill condition system.
- 9. Let AX = b be written as X = BX+C with some ||B|| < 1, then X = BX+C has unique solution further the sequence $\{x^n\}$ generated by $x^{(m+1)} = Bx^{(m)} + C$, starting with some initial value $x^{(0)}$ will converge to true solution vector ξ .
- 10. Derive the inequality to find the minimum number of iterations required to meet certain accuracy of the solution is derived.

SECTION-B 15 Marks

1. Let AX = b be the system of equation with

	[0.003	4.00	ן 5.00	[9.003]
A =	-3.00	3.85	$5.00 \\ -6.75 \\ -3.50$	$\mathbf{b} = \begin{bmatrix} 9.003 \\ -5.900 \\ -4.750 \end{bmatrix}$
	l 4.75	-5.25	-3.50	L-4.750]

Gauss elimination is used with 5 digit arithmetic with rounding.

2. Solve the following system of equation by using crout's method

 $6x_1 + 3x_2 + x_3 = 12$ $2x_1 + 5x_2 + 2x_3 = 3$ $2x_1 + 4x_2 + 7x_3 = 21$

3. Find the inverse of the matrix by using Gauss elimination A = $\begin{bmatrix} 4 & 0.5 & 2 \\ 0.6 & -3 & 4 \\ -5 & 2 & 0.8 \end{bmatrix}$ also find the determinant value of |A|

- 4. Find the inverse of the matrix by using crout's method $\begin{bmatrix} 2 & -2 & 4 \\ 2 & 3 & 2 \\ -1 & 1 & -1 \end{bmatrix}$
- 5. Solve the system of equation by using Jacobi's method using 5 digit arithmetic also find the minimum number of iterations required so that the solution is correct to 6 decimal places

3x - 6y - 2z = 23-4x + y - z = -15x - 3y + 7z = 16

UNIT-III INTERPOLATION SECTION-A 6 Marks

- 1. Explain about the lagrangian interpolating polynomial.
- 2. Find the interpolating polynomial in lagrangian form for the given data

х	-2	-1	1	3
f(x)	-15	-4	0	20

3. Find the interpolating polynomial is lagrangian form for the data

х	-2	0	1	3
f(x)	7	3	1	27

4. Find the divided difference form of polynomial for the given data

х	-2	-1	1	3	4
f(x)	-15	-4	0	20	-39

5. Find the divided difference form of polynomial for the given data

х	-3	-2	0	1	2	4
f	23	-10	-4	-1	18	296

hence interpolate f(-1)

SECTION-B 15 marks

1. Generate the forward difference table and find interpolating polynomial for the data

x	0	0.2	0.4	0.6	0.8		
f	0.12	0.46	0.74	0.9	1.2		

hence interpolating the value of f(0.1)

2. Prepare the forward difference table for the data

х	-1	0	1	2	3			
f	10	2	0	10	62			
£	f_{1} f_{2} f_{3} f_{3							

find the approximate value of f(-0.5)

3. Prepare the forward form of interpolating polynomial for the data

х	2	2.2	2.4	2.6	2.8	3			
f	0.301	0.342	0.380	0.415	0.447	0.477			
1									

hence estimate f(2.15)

4. Find the given data

х	0.2	0.4	0.6	0.8	1.0
f	3.2	3.6	2.8	3	2.4

by using backward difference of polynomial hence interpolate f(0.95)

5. Find the data

х	0	2	4	6	8
f	1	5	31	121	341

hence interpolate f(7) by using backward difference form

6. Find the given data

х	0	0.2	0.4	0.6	0.8
f	0.12	0.46	0.74	0.9	1.2

by using backward difference form and hence interpolate at x = 0.65

- 7. Find hermit interpolating polynomial for the data f(1) = -4, f'(-1) = 12, f(0) = -1, f'(0) = 0, f(2) = 23, f'(2) = 60
- 8. Find the oscillatory interpolating polynomial for the given data f(-1) = -2, f'(-1) = 13, f(0) = 3, f'(0) = 0, f''(0) = -8, f(2) = 19 hence interpolate f(0.5)
- 9. Find the divided difference form of polynomial for the given data

х	-3	-2	-1	0	2
f	-239	-29	1	1	31

Add f(3) = 241 and f(4) = 104 to the table prepared using the table, after find the polynomial, which interpolates f(x) at -1, 0, 2 and 3. Hence interpolate f(-0.5)

UNIT- IV NUMERICAL DIFFERENTIATION

SECTION-A 6 Marks

1. Find first derivative of f(x) at

x	0.1	0.2	0.3	0.4	0.5	0.6
f(x)	0.425	0.475	0.400	0.450	0.525	0.575

- 2. Explain the basic trapezoidal rule.
- 3. Explain the compute trapezoidal rule.
- 4. Use compute trapezoidal rule to evaluate the integral $\int_{0.1}^{0.6} f(x) dx$ of the

function f(x) is given by

x	0.1	0.2	0.3	0.4	0.5	0.6
f(x)	0.425	0.475	0.4	0.450	0.575	0.675

- 5. Evaluate the integral $\int_{1}^{2} \frac{e^{2x}}{1+x^2}$ using composite trapezoidal with 6 function values that is h = 0.2
- 6. Evaluate the integral $\int_{-1}^{1} x^2 e^{-x}$ by composite simpsons $\frac{1}{3}$ rule h = 0.25
- 7. Using composite $\frac{1}{8}$ rule, evaluate $\int_{1}^{3} f(x) dx$ for the data

X	-1	-0.5	0	0.5	1	1.5	2	2.5	3
f(x)	7	5	3.5	4	5.5	6	65	5	4.5

8. Using composite Simpson's $\frac{3}{8}$ rule find the velocity after 18 sec. If the rocket has acceleration as given in the table

t (time in	0	2	4	6	8	10	12	14	16	18	
---------------	---	---	---	---	---	----	----	----	----	----	--

sec)										
a (m/s)	40	60	70	75	80	83	85	87	88	88

9. Using simpsons $\frac{1}{3}$ rule, evaluate $\int_{-1}^{3} f(x) dx$ for the data

X	-1	0.5	0	0.5	1	1.5	2	2.5	3
f(x)	7	5	3.5	4	5.5	6	6.5	5	4.5

- 10. Use composite trapezoidal rule to evaluate $\int_{0}^{2} \frac{e^{-x^{2}}}{1+x} dx$ with sparing h = 0.25 11. Evaluate the $\int_{0}^{2} \frac{e^{-x^{2}}}{1+x} dx$ with h = 0.25 using composite Simpsons $\frac{1}{3}$ rule.
- 12. A rocket is launched given below a table of acceleration 'a ' at seconds, find the velocity after 90 seconds using Simpson's $\frac{3}{8}$ rule

ſ	t	0	10	20	30	40	50	60	70	80	90
	а	30	35	40	50	60	75	90	95	105	120

13. Evaluate the $\int_{1}^{4} \frac{xe^{2x}}{1+x^2} dx$ using composite simpsons $\frac{3}{8}$ rule with h = 0.3

14. Explain about the method of undeterminant parameters.

- 15. Evaluate $\int_{-1}^{1} \frac{x \sin x}{1+x^2} dx$ using 3 point gauss Legendre quadrature. 16. Evaluate $\int_{-1}^{1} \frac{(1+x)e^x}{\sqrt{1-x^2}} dx$ using 3 point Gaussian quadrature.
- 17. Evaluate the integral $\int_{-\infty}^{\infty} \frac{e^{-x^2}}{1+x^2} dx$
- 18. Evaluate $\int_{0}^{\infty} \frac{e^{-x} \sin 2x}{1+x^2} dx$ using 2 point gauss Legendre quadrature.

SECTION-B 15 Marks

1. Find A_0 , A_2 , x_1 so that the following rule exact for all polynomial of degree as high as possible and find the error term also $\int_{0}^{2} f(x)dx = A_0f_0 + \frac{4}{3}f_1 + A_1f_2 +$

E(I) where $E(I) = \alpha f'''(\xi)$

- 2. Find x_0 , x_1 , A_0 , $A_1 \xi \alpha$ so that the following rule is exact for all polynomial of degree as high as possible $\int_{-1}^{1} f(x)dx = A_0f_0 + A_1f_1 + \alpha f^{IV}(\xi)$
- 3. Derive the formula for 2 point gauss Legendre quadrature.
- 4. Derive the formula for 3 point gauss Legendre quadrature.
- 5. Derive the formula for 2 point and 3 point gauss chebychev quadrature.
- 6. Derive the formula for 2 point gauss hermit quadrature.
- 7. Derive the formula for 3 point gauss hermit quadrature.

8. Prove that
$$\int_{0}^{\infty} e^{-x^{2}} f(x) dx = \frac{2+\sqrt{2}}{4} f(2-\sqrt{2}) + \frac{2-\sqrt{2}}{4} f(2+\sqrt{2}) + E(I)$$
 by using gauss

leguere quadrature.

9. Evaluate the integral $\int_{-1}^{2} \int_{1}^{3} (x^{2} + y^{2}) dy dx$ using composite trapezoidal with

spacing h = k = 0.5 along x-axis and y-axis.

UNIT-V Difference equation SECTION-A 6 Marks

- 1. Find the solution of homogenous difference equation.
- 2. Solve $y_{n+2} 5y_{n+1} + 6y_n = 4$
- 3. Solve $y_{n+2} 4y_{n+1} + 3y_n = 2^n$ $y_0 = 1, y_1 = 1$
- 4. Solve $y_{n+2} 3y_{n+1} + 2y_n = 2^n$
- 5. Solve $y_{n+2} + 4y_n = 0$
- 6. Solve $y_{n+2} 3y_{n+2} + 3y_{n+1} y_n = 4n + 3$
- 7. Solve $y_{n+2} 4y_{n+1} + 4y_n = 8n$
- 8. Explain about the single step method.
- 9. Solve $\frac{dy}{dx} = xy^2 + e^x$, y(1) = 4 spacing h = 0.1 by Taylor's series method.

10.Do 2 step method of Runge-kutta method for the equation $\frac{dy}{dx} = xy + y^2 y(1) = 2$ spacing h = 0.1

11. Explain about the Adam-bash fork method.

- 12. Explain about the Milni method
- 13. Explain about Adam-Moulton method.

SECTION-B 15 Marks

1. Solve the difference equation obtain by applying Euler's method to the equation

 $\frac{dy}{dx} = 2y y(0) = 1$ also find the value of y with spacing h = 0.1 over the interval (0 1)

2. Compute approximation to y(2.1) and y(2.2) as a solution of difference equation

 $\frac{dy}{dx} = x^2 + y^2$ y(2) = 3 using 4th order Runge-Kutta method.

3. Compute the value of y at x = 1.4 as a solution of $\frac{dy}{dx} = xy + x^2 - 1$ with spacing

h = 0.1,
$$x_0 = 1, x_1 = 1.1, x_2 = 1.2, x_3 = 1.3$$
 and $y_0 = 0.649, y_1 = 0.731$,

- $y_2 = 0.854$, $y_3 = 1.028$ using adom bashfourth predictor corrector method.
- 4. Use second order Runge-Kutta method to compute the values of y(0.1) and z(0.1) as solution of $\frac{dy}{dx} = y + z = f_1(x,y,z)$, y(0) = 0, h = 0.1 $\frac{dz}{dx} = -yz = f_2(x, y, z)$, z(0) = 1
- 5. Solve by second order Runge-Kutta method

$$\frac{dy}{dx} = y + \frac{z}{2} - x = f_1(x, y, z), \text{ hence } h = 0.1, y(0) = 1$$
$$\frac{dz}{dx} = \frac{1}{2}y + z + x = f_2(x, y, z), z(0) = 1$$

6. Solve the initial value problem

$$\frac{d^2y}{dx^2} + 4y = x y(0) = 1, y'(0) = 2.25, h = 0.1$$