## D.K.M.COLLEGE FOR WOMEN (AUTONOMOUS),VELLORE-1.

## I M.Sc MATHEMATICS

## UNIT-I ORDINARY DIFFERENTIAL EQUATION

1. Write about linear equation with constant co-efficient.
2. Write about homogenous and non-homogenous equation.
3. Define differential operator.
4. Define second order homogenous equation.
5. Define characteristic polynomial and its different cases.

6 . If $\phi_{1}, \phi_{2}$ be any two solution of $\mathrm{L}(\mathrm{y})=0$ and $\mathrm{c}_{1}, \mathrm{c}_{2}$ are two constants then the function $\phi=\mathrm{c}_{1} \phi_{1}+\mathrm{c}_{2} \phi_{2}$ is also a solution of $\mathrm{L}(\mathrm{y})=0$.
7. Find the solution of the differential equation $y^{11}+y^{1}-2 y=0$.
8. Define initial value problem for second order equation.
9. Define the solution of the initial value problem $y^{11}-2 y^{1}-3 y=0, y(0)=0, y^{1}(0)=1$.
10. Define linear dependent and linear independent.
11. Prove that the function defined by $\phi_{1}=e^{r_{1 \mathrm{x}}, \phi_{2}=} e^{r_{2} \mathrm{x}}$ are linearly independent on any interval I.
12. Prove that the function defined by $\phi_{1}=e^{r_{1 \mathrm{x}}}, \phi_{2}=\mathrm{x} e^{r_{2} \mathrm{x}}$ are linearly independent on any interval I.
 constant.
14. Define wronskian of order two.
15. If the determinant $\Delta$ of the coefficient in the system of equations.
$a_{11} z_{1}+a_{12} z_{2}+\ldots \ldots \ldots+a_{1 n} z_{n}=c_{1}$
$a_{21} Z_{1}+a_{22} Z_{2}+\ldots$ $\qquad$ $+a_{2 n} z_{n}=c_{2}$
(A)
$a_{n 1} Z_{1}+a_{n 2} z_{2}+\ldots \ldots . .+a_{n n} z_{n}=c_{n}$
where $\mathrm{a}_{\mathrm{ij}}, \mathrm{c}_{\mathrm{j}}$ are complex constant. is given by $z_{\mathrm{k}}=\frac{\Delta_{k}}{\Delta}(\mathrm{k}=1,2, \ldots \ldots . \mathrm{n})$ where $\Delta_{k}$ is the determinant obtained from $\Delta$ by replacing its $\mathrm{k}^{\text {th }}$ column ie., $\mathrm{a}_{1 \mathrm{k}}, \mathrm{a}_{2 \mathrm{k}}, \ldots \ldots . \mathrm{a}_{\mathrm{nk}} \mathrm{byy}_{\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots \ldots . \mathrm{c}_{\mathrm{n}}}$. ii) $\mathrm{c}_{1}=\mathrm{c}_{2}=\ldots \ldots . .=\mathrm{c}_{\mathrm{n}}=0$ in (A) and the determinant of the coefficient $\Delta=0$ there is a solution $\operatorname{of}(\mathrm{A})$ such that not all $z_{\mathrm{k}}$ are zero.
16.obtain two solution $\phi_{1}, \phi_{2}$ of $\mathrm{L}(\mathrm{y})=0$ are the linearly independent

On an interval I if and only if $\mathrm{W}\left({ }^{\phi}, \phi_{2}\right) \neq 0$ for all x in I.
17. Let $\phi_{1}, \phi_{2}$ be two solution of $\mathrm{L}(\mathrm{y})=0$ on an interval I and let $\mathrm{x}_{0}$ be any point I then $\phi_{1,} \phi_{2}$ are linearly independent on I iff
$\mathrm{W}\left(\phi_{1,} \phi_{2}\right)\left(\mathrm{x}_{0}\right) \neq 0$.
18. Let $\phi_{1,} \phi_{2}$ be two linearly independent solution of $\mathrm{L}(\mathrm{y})=0$ on an Interval I.Every solution $\phi$ of $\mathrm{L}(\mathrm{y})=0$ can be written uniquely as $\phi=\mathrm{c}_{1} \phi_{1}+\mathrm{c}_{2} \phi_{2}$ where $\mathrm{c}_{1}, \mathrm{c}_{2}$ are constant.
19. If $\phi_{1,} \phi_{2}$ are the solution of $\mathrm{L}(\mathrm{y})=0$ on any interval I containing a point $\mathrm{x}_{0}$ then $\mathrm{W}\left(\phi_{1,} \phi_{2}\right)\left(\mathrm{x}_{0}\right)=e^{-a\left(x-x_{0}\right)} \mathrm{W}\left(\phi_{1}, \phi_{2}\right)\left(\mathrm{x}_{0}\right)$.
20. Is the function $\phi_{1(x)=\sin x}, \phi_{2(x)=} e^{i x}$ linearly independent?

## UNIT-II

21. Define homogenous equation of order $n$.
22. Let $\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots \ldots . \mathrm{r}_{\mathrm{n}}$ be the distinct root of the characteristic polynomial $P$ and Suppose $r_{i}$ as multiplicity $m_{i}$ thus $\left(\mathrm{m}_{1}+\mathrm{m}_{2}+\ldots \ldots . . \mathrm{m}_{\mathrm{s}}=\mathrm{n}\right)$ then the n function

$$
\begin{gathered}
e^{r_{1} x}, \mathrm{x}
\end{gathered} e^{r_{1} x}, \ldots \ldots \ldots \cdots x^{m_{1}^{-1}} e^{r_{1}^{x}}
$$

$$
e^{r_{s}^{x}}, \mathrm{x} e^{r_{s}^{x}}, \ldots \ldots \ldots \cdots x^{m_{s}^{-1}} e^{r_{s}^{x}} \quad \text { are solution of } \mathrm{L}(\mathrm{y})=0
$$

23. prove that the n -solution given by

$$
\begin{aligned}
& e^{r_{1}^{x} x}, \mathbf{x} \\
& e^{r_{1}^{x}}, \ldots \ldots \ldots . . x^{m_{1}^{-1}} e^{r_{1} x} \\
& e^{r_{2} x}, \mathbf{x} \\
& e^{r_{2} x}, \ldots \ldots \ldots \ldots x^{m_{2}^{-1}} e^{r_{2} x}
\end{aligned}
$$

$$
e^{r_{s} x}{ }_{, \mathbf{x}} e^{r_{s} x}{ }_{, \ldots . . . . . . . . . . ~}^{x^{m_{s}-1}} e^{r_{s} x} \text { are linearly independent on }
$$

interval I .
24. Define initial value problem for $\mathrm{n}^{\text {th }}$ order equation.
25. Define wronskian of $n$ derivatives.
26. If ${ }^{\phi}{ }_{1}, \phi_{2}, \ldots \ldots . . \phi_{\mathrm{n}}$ are n solution of $\mathrm{L}(\mathrm{y})=0$ on any interval I they are linearly Independent if and only if $\mathrm{w}\left(\phi_{1}, \phi_{2}, \ldots \ldots \ldots .{ }_{\mathrm{n}}\right)(\mathrm{x}) \neq 0$.
27. State and prove existence theorem for order n .
28. let $\phi_{1}, \phi_{2}, \ldots \ldots \ldots \phi_{\mathrm{n}}$ be n solution of $\mathrm{L}(\mathrm{y})=0$ on any interval I containing a point $x_{0}$ then
${ }_{\mathrm{w}}\left(\phi_{1}, \phi_{2}, \ldots \ldots \ldots \phi_{\mathrm{n})(\mathrm{x})}=e^{-a\left(x-x_{0}\right)}{ }_{\mathrm{w}( } \phi_{1}, \phi_{2}, \ldots \ldots \ldots \phi_{\mathrm{n}}\right)\left(\mathrm{x}_{0}\right)$.
29. Define non-homogenous equation of order $n$.
30. write about annihilator method.
31. Using annihilator method find a particular solution of the equation $y^{11}-3 y^{1}+2 y=x^{2}$.
32. write the characteristic polynomial of an annihilator method of function
(i) $e^{a x}$ (ii) $\mathcal{X}^{k} e^{a x}$ (iii) sinax, $\operatorname{cosax}$ (real)
(iv) $x^{k}$ sinax, $x^{k} \operatorname{cosax}$ ( a real).
33. Define operators and its different types.
34. The correspondence which associates with each $\mathrm{L}=\mathrm{a}_{0} \mathrm{D}^{\mathrm{n}}+\mathrm{a}_{1} \mathrm{D}^{\mathrm{n}-1}+\ldots \ldots . .+\mathrm{a}_{\mathrm{n}}$ Its characteristic polynomial p is given by $p(r)=a_{0} r^{n}+a_{1} r^{n-1}+\ldots \ldots . .+a_{n}$ is one to one correspondence between all linear differential with constanst coefficient and all polynomials if L,M are associated with $\mathrm{p}+\mathrm{q}$, MLi associated pq \&
aL is associated with ap ( a is a constant).
35. consider the equation with constants coefficient $\mathrm{L}(\mathrm{y})=\mathrm{p}(\mathrm{x}) \quad e^{a x}$ where p is a polynomial given by $\mathrm{p}(\mathrm{x})=\mathrm{b}_{0} \mathrm{r}^{\mathrm{m}}+\mathrm{b}_{1} \mathrm{r}^{\mathrm{m}-1}+\ldots \ldots \ldots+\mathrm{b}_{\mathrm{m}}$ $\left(\mathrm{b}_{0} \neq 0\right)$ suppose a is a root of the characteristic polynomial P of L of multiplicity j then there is a unique solution x of equation of the form $X(x)=x^{j}\left(c_{0} X^{m}+c_{1} X^{m-1}+\ldots \ldots . .+c_{m}\right) e^{a x}$ where $\mathrm{c}_{0}, \mathrm{c}_{1}, \ldots \ldots \ldots, \mathrm{c}_{\mathrm{m}}$ are constants determinant by the annihilator method.

## UNIT-III

36. Define linear equation with variable coefficient .
37. Obtain there exist $x$ linear independent solution $L(y)=0$ on $I$.
38. Let $\phi_{1,} \phi_{2}, \ldots \ldots \ldots{ }^{\phi_{\mathrm{n}}}$ be n solution of $\mathrm{L}(\mathrm{y})=0$ on I satisfying
 there are n constant $\mathrm{c}_{1}, \ldots \ldots \ldots, \mathrm{c}_{\mathrm{n}}$ such that
$\phi=\mathrm{c}_{1} \phi_{1}+\mathrm{c}_{2} \phi_{2}+\ldots \ldots . .+\mathrm{c}_{\mathrm{n}} \phi_{\mathrm{n}}$.
39. Define linear space.
40. Define basis.
41. Let $\phi_{1}$ be a solution of $\mathrm{L}(\mathrm{y})=0$ on any interval I and suppose $\phi_{1(x)} \neq 0$ on $I$ if $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \ldots . . \mathrm{v}_{\mathrm{n}}$ is any basis on I for the solution of linear equation
 $(\mathrm{n}-1) \&$ if $\mathrm{v}_{\mathrm{k}}=\mathrm{v}_{\mathrm{k}}(\mathrm{k}=1,2, \ldots \ldots . \mathrm{n})$ then $\phi_{1, \mathrm{u}_{2}} \phi_{1, \ldots \ldots . \mathrm{u}_{\mathrm{n}}} \phi_{1}$ is a basis for the solution $\mathrm{L}(\mathrm{y})=0$ on I .

and $\phi_{1} \neq 0$ on I. A second solution $\phi_{2}$ of equation on I is given by $\phi_{2}, \phi_{1}(\mathrm{x})=\int_{x_{0}}^{x} \frac{1}{\left[\phi_{1}(x)\right]^{2}} \exp \left[-\int_{x_{0}}^{x} a_{1}(t) d t\right] \mathrm{dx}$ the function $\phi_{1}, \phi_{2}$ form a basis for a solution of equation on I.
42. Define legendre equation.
43. Obtain the legendre polynomial of the legendre equation.
44. If $\mathrm{p}_{\mathrm{n}}(\mathrm{x})$ is a legendre polynomial of the legendre polynomial then

$$
\int_{-1}^{1} p_{n}^{2}(x) d x=\frac{2}{2 n+1}
$$

46. Show that $\int_{-1}^{1} p_{n}(x) p_{m}(x) d x=0$ for $\mathrm{m} \neq \mathrm{n}$ where $\mathrm{p}_{\mathrm{n}}, \mathrm{p}_{\mathrm{m}}$ are legendre polynomial.

## UNIT-IV

47. Prove that a basis for the solution of the Euler equation on any interval not containing $\mathrm{x}=0$ is given by $\phi_{1}=|x|^{\mu_{1}}, \phi_{2}=|x|^{\gamma_{2}}$ In case $\mathrm{r}_{1}, \mathrm{r}_{2}$ are distinct roots of q and by $\phi_{1}=|x|^{\gamma_{1}}, \phi_{2}=|x|^{\gamma^{1}} \log |x|$ if $\mathrm{r}_{1}$ is a root of multiplicity 2 .
48. Find the solution of $x^{2} y^{11}+x y^{1}+y=0$ for $x \neq 0$.
49. Let $\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots . . \mathrm{r}_{\mathrm{s}}$ be the distinct roots of the indicial polynomial q for $\mathrm{L}(\mathrm{y})=\mathrm{x}^{\mathrm{n}} \mathrm{y}^{(n)}+\mathrm{a}_{1} \mathrm{x}^{\mathrm{n}-1} \mathrm{yn}^{-1}+\ldots \ldots . .+\mathrm{a}_{\mathrm{n}} \mathrm{y}=0 \rightarrow(1)$ and suppose $\mathrm{r}_{\mathrm{i}}$ has multiplicity $\mathrm{m}_{\mathrm{i}}$ then the function,

$$
\begin{aligned}
& |x|^{\gamma_{1}},|x|^{1_{1}} \log |x| \ldots \ldots \ldots .|x|^{\gamma_{1}} \log ^{m_{1}^{-1}}|x| ; \\
& |x|^{r_{2}},|x|^{r_{2}} \log ^{|x|} \ldots \ldots \ldots .|x|^{r_{2}} \log ^{m_{2}^{-1}}|x| ;
\end{aligned}
$$

$|x|^{r_{s}},|x|^{r_{s}} \log ^{|x|} \ldots \ldots \ldots . .|x|^{r_{s}} \log ^{m_{s}^{-1} \mid} \mid x ;$
form a basis for the solution of the $\mathrm{n}^{\text {th }}$ order Euler equation any interval not containing $\mathrm{x}=0$.
50. Obtain the second order equation with regular singular point.

## UNIT-V

1. Write the general method of successive approximation.
2. State and prove the existence theorem for successive approximation.
3. Find the solution of the equation
i) $x^{2} y^{\prime \prime}+2 x y^{\prime}-6 y=0$
ii) $\quad 2 x^{2} y^{\prime \prime}+x y^{\prime}-y=0$
4. Obtain the exact equation $M(x, y)+N(x, y) y^{\prime}=0$ in rectangle R and F is a real valued function such that $\frac{\partial F}{\partial x}=M, \frac{\partial F}{\partial y}=N$ in R every differential functions $\phi$ define implicit by a relation $F(x, y)=c$ where C is a constant is the solution of the equation.
5. Write the necessary and sufficient condition for an equation to be exact.
6. Find the solution of the equation $y^{\prime}=\frac{3 x^{2}-2 x y}{x^{2}-2 y}$
7. Solve the equation $\frac{d y}{d x}=x^{2}+y^{2}, y(0)=1$ by the method of successive approximation.
8. Solve the equation $y^{\prime}=x y, y(0)=1$ by the method of successive approximation.
9. The successive approximation $\phi_{k}$ defined by $\phi_{0}(x)=y_{0}$, exist as $\phi_{k+1}(x)=y_{0}+\int_{x_{0}}^{x}\left[f(t) \phi_{k}(t)\right] d t$ continuous function on $I:\left|x-x_{0}\right| \leq \alpha=\min \operatorname{imum}\{a, b / m\}$ and $\left(x, \phi_{k}(x)\right)$ is in R for x in I indeed the $\phi_{k}$ satisfy $\left|\phi_{k}(x)-y_{0}\right| \leq M\left|x-x_{0}\right| \forall x \varepsilon I$
10. Find first four approximation $\phi_{0}, \phi_{1}, \phi_{2}, \phi_{3}$ to the equation $y^{\prime}=3 y+1, y(0)=2$
11. Show that i) $x^{1 / 2} J_{1 / 2}(x) \frac{\sqrt{2}}{\Gamma\left(\frac{1}{2}\right)} \sin x \quad$ ii) $\quad x^{1 / 2} J_{-1 / 2}(x) \frac{\sqrt{2}}{\Gamma\left(\frac{1}{2}\right)} \cos x$
12. Let F be a real valued continuous function on the strip $S:\left|x-x_{0}\right| \leq a ;|y|<\infty$ $(a>0)$ and suppose that f satisfies on S a lipschitz condition with constant $\mathrm{k}>0$.

Find the solution of the equation $x^{3} y^{\prime \prime \prime}-3 x^{2} y^{\prime \prime}+6 x y^{\prime}-6 y=0$ for $\mathrm{x}>0$ and $\phi_{1}(x)=0$.

## UNIT-I Section-B

1. State and prove Existence theorem.
2. State and prove uniqueness theorem.
3. Let $\Phi$ be any solution of $\mathrm{L}(\mathrm{y})=\mathrm{y}^{\prime \prime}+\mathrm{a}_{1} \mathrm{y}^{\prime}+a_{2} \mathrm{y}=0$ on an interval I counting a point $\mathrm{x}_{0}$ then for all x in I .

$$
\left\|\Phi(x) \mid e^{-k\left|x-x_{0}\right|} \leq\right\| \Phi(x)\|\leq\| \Phi\left(x_{0}\right) \| e^{-k\left|x-x_{0}\right|} \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . . . . . . . . . .
$$

where $\|\Phi(x)\|=\left[\left.\Phi(x)\right|^{2}+\Phi^{1}(x)^{2}\right]^{1 / 2}$ and $\mathrm{K}=1+\left|a_{1}\right|+\left|a_{2}\right|$.
4. Let b be continuous on an interval I every solution $\Psi[L(y)]=b(x)$ on I can be written as $\Psi=\Psi_{p}+C_{1} \Phi_{1}+C_{2} \Phi_{2}$ Where $\Psi_{p}$ is a particular solution $\Phi_{1}$ and $\Phi_{2}$ are two linearly independent solution of $\mathrm{L}(\mathrm{y})=0$ and $C_{1}$ andc $c_{2}$ are constants.

A particular Solution $\Psi_{p}$ is given by $\Psi_{p}(x)=\int_{x_{0}}^{x} \frac{\left[\Phi_{1}(t) \Phi_{2}(x)-\Phi_{1}(x) \Phi_{2}(t)\right]}{W\left(\Phi_{1}, \Phi_{2}\right)(T)} d t$
Conversely every such $\Psi$ is a solution of $\mathrm{L}(\mathrm{y})=\mathrm{b}(\mathrm{x})$.
5.Solve $\mathrm{L}(\mathrm{y})=\mathrm{b}(\mathrm{x})$ in the case $\mathrm{p}(\mathrm{r})=r^{2}+a_{1} r+a_{2}$ as the two distinct root $\Phi_{1}(x)=e^{r_{1} x}$ and $\Phi_{2}(x)=e^{r_{2} x}$

## UNIT-II

6. obtain the homogenous equation of order $n$.
7.obtain the n function $\Phi_{1} \Phi_{2} \Phi_{3} \ldots \ldots . . . . \Phi_{n}$ on an interval I are said to be linearly
dependent on I if there are constant $C_{1}, C_{2} \ldots \ldots \ldots \ldots \ldots . . . . . C_{n}$ not all zero such that $C_{1}$ $C_{1} \Phi(x)+C_{2} \Phi_{2}(x)+\ldots \ldots \ldots \ldots \ldots \ldots . . . . . .$.
7. Let $\Phi$ be any solution of $\mathrm{L}(\mathrm{y})=\mathrm{y}^{n}+\mathrm{a}_{1} \mathrm{y} n-1+\mathrm{a}_{2} \mathrm{y} n-2+\ldots \ldots \ldots \ldots+\mathrm{a}_{n} \mathrm{y}=0$ on an interval $Z$ Containing $\mathrm{a} \neq \mathrm{x}_{0}$ then for all $\left\|\Phi\left(x_{0}\right)\right\| e^{-k\left|x-x_{0}\right|} \leq\|\Phi(x)\| \leq\left\|\Phi\left(x_{0}\right)\right\| e^{k\left|x-x_{0}\right|}$

Where $\mathrm{K}=1+\left|a_{1}\right|+\left|a_{2}\right| \ldots \ldots \ldots \ldots .\left|a_{n}\right|$.
9.If $\Phi_{1} \Phi_{2} \Phi_{3} \ldots \ldots . . . \Phi_{n}$ are n soutions of $\mathrm{L}(\mathrm{Y})=0$ on an interval I they are linearly independent if and only if $\mathrm{W}\left(\Phi_{1} \Phi_{2} \Phi_{3} \ldots \ldots . . . \Phi_{n}\right)(\mathrm{x}) \neq 0$.
10.Let $\Phi_{1} \Phi_{2} \Phi_{3} \ldots \ldots . . . \Phi_{n}$ are linearly independent solution of $\mathrm{L}(\mathrm{Y})=0$ on an interval I if $C_{1}, C_{2} \ldots \ldots \ldots \ldots \ldots . . . C_{n}$ are any constant $\Phi=C_{1} \Phi(x)+C_{2} \Phi_{2}(x)+\ldots$ $\qquad$ $+C_{n} \Phi_{n}(x)$ is a solution and every solution may be represented in this form.
11.Let If $\Phi_{1} \Phi_{2} \Phi_{3} \ldots \ldots . . . . \Phi_{n}$ are n soutions of $\mathrm{L}(\mathrm{Y})=0$ on an interval I containing a point $\mathrm{x}_{0}$ then $\mathrm{W}\left(\Phi_{1} \Phi_{2} \Phi_{3} \ldots \ldots . . . \Phi_{n}\right)(\mathrm{x})=e^{-a\left(x-x_{0}\right)} \mathrm{W}\left(\Phi_{1} \Phi_{2} \Phi_{3} \ldots \ldots . . . \Phi_{n}\right)\left(\mathrm{x}_{0}\right)$

## UNIT-III

12. Let b be continuous on an interval $Z$ and let $\Phi_{1} \Phi_{2} \Phi_{3} \ldots \ldots . . . \Phi_{n}$ be n linearly independent solution of $\mathrm{L}(\mathrm{y})=0$ on I then every solution $\Psi[L(y)]=b(x)$ can be written as $\Psi=\Psi_{p}+C_{1} \Phi_{1}+C_{2} \Phi_{2}+\ldots \ldots \ldots \ldots C_{n} \Phi_{n}$ where $\Psi_{p}$ is a particular solution of $[L(y)]=b(x)$ and $C_{1}, C_{2} \ldots \ldots . . . . . . . . . C_{n}$ are constant every such $\Psi$ is a solution of $[L(y)]=b(x)$.

A particular solution $\Psi_{p}$ is given by $\Psi_{p}(x)=\sum_{K=1}^{n} \Phi_{k}(x) \int_{x_{0}}^{x} \frac{\left[W_{K}(t) b(t)\right]}{W\left(\Phi_{1} \Phi_{2} \Phi_{3} \ldots \ldots . . . \Phi_{n}\right)(t)} d t$.
13.Consider the equation $y^{\prime \prime \prime}+y^{\prime \prime}+y^{\prime}+y=1$ which satisfies
$\Psi(0)=0, \Psi^{\prime}(0)=1, \Psi^{\prime \prime}(0)=0$
14.Consider the equation with constant coefficient $\mathrm{L}(\mathrm{y})=\mathrm{p}(\mathrm{x}) e^{a x} \ldots \ldots \ldots \ldots .1$. Where p is a polynomial given by $p(x)=b_{0} x^{n}+b_{1} x^{n-1}+\ldots$ $\qquad$ .$+b_{m}\left(b_{0} \neq 0\right)$. Suppose a is a root of the characteristics polynomial $p$ of $L$ of multiplicity $j$ then there is a unique solution $\Psi$ of equation of the form
$\Psi(x)=x^{j}\left(C_{0} x^{m}+C_{1} x^{m-1}+\ldots \ldots \ldots \ldots \ldots . . . . .\right.$. constant determine by the annihilator method.
15.State and prove Existence theorem for analytic co efficient.
16.Obtain the solution of Lebseque Equation.
17.Find the Legendre polynomial If $\mathrm{p}_{n}(x)$ is the legendre polynomial of the legendre equation $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0$ then $p_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$

## UNIT-IV

18.State and prove Euler equation.
19.Consider the second order euler equation $x^{2} y^{\prime \prime}+a x y^{\prime}+b y=0(a, b$ constant $)$ and the polynomial q given by $\mathrm{q}(\mathrm{r})=\mathrm{r}(\mathrm{r}-1)+\mathrm{ar}+\mathrm{b}$. A basis for the solution of the euler equation on any interval not containing $\mathrm{x}=0$ given by $\Phi_{1}(x)=|x|^{\mu_{1}}, \Phi_{2}(x)=|x|^{1 / 2}$ incase $r_{1} r_{2}$ are distinct roots of q and by $\Phi_{1}(x)=|x|^{\gamma_{1}}, \Phi_{2}(x)=|x|^{r_{2}} \log |x|$ if $r_{1}$ is a root of $q$ of multiplying two.
20.Let $r_{1}, r_{2}$ $\qquad$ $r_{n}$ be the distinct root of the indicial polynominal q for
$L(y)=x^{n} y^{n}+a_{1} x^{n-1}+$ $\qquad$ $+a_{n} y=0$. $\qquad$ 1 and suppose $\mathrm{r}_{i}$ has multiplicity $m_{i}$ then the function.
$|x|^{\gamma_{i}},|x|^{\gamma_{i}} \log |x|$ $\qquad$ $|x|^{r_{1}} \log ^{m_{1}-1}|x|:$
$|x|^{r_{1}},|x|^{r_{2}} \log |x|$ $\qquad$ $|x|^{2} \log ^{m_{2}-1}|x|:$
24.State and prove Existence Theorem.
25. Derive the Bessel function f of zero order of the first kind and second kind.
26. Obtain the solution for the Bessel equation of order $\alpha$ where $\alpha \neq 0$

## UNIT-V

27. Write the necessary and sufficient for an equation to be exact.
28. Prove that,
(i) $j^{\prime}=-j_{1}$ (ii) $j_{2}-j_{0}=2 j_{0}^{\prime \prime}$ (iii) $j_{2}=j_{0}^{\prime \prime}-\left(\frac{1}{x}\right) j_{0}^{\prime}$
(iv) $j_{2}+3 j_{0}^{\prime}+4 j_{0}^{\prime \prime \prime}=0$
29.Explain S-machine for successive approximation.
29. State and prove the Existence Theorem for Convergence of the successive approximation and properties of the limit $\Phi$.
30. Let $\mathrm{f}, \mathrm{g}, \mathrm{be}$ continuous on R and suppose f satisfies a Lipchitz Condition there with Lipchitcz Constant K. Let $\Phi, \Psi$ be solutions of $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{1}$, $y^{\prime}=g(x, y), y\left(x_{0}\right)=y_{2}$

Respectively and show that $[f(x, y)-g(x, y)] \leq t$ and ( $\mathrm{x}, \mathrm{y}$ ) in R and $\left|y_{1}-y_{2}\right| \leq \delta$ and valid then $\left|\Phi(x)-\Phi(y) \leq \delta e^{k\left|x-x_{0}\right|}\right|+\left|e^{k\left|x-x_{0}\right|}\right|$ for all x in I.
32.Compute the first four approximation $\Phi_{1}, \Phi_{2}, \Phi_{3}, \Phi_{4}$ of $y^{\prime}=1+x y, y(0)=1$.
33. Compute the wronskian of 4 linearly independent solution of $y^{(4)}+16 y=0$

