D.K.M.COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1.

I M.Sc MATHEMATICS

UNIT-I ORDINARY DIFFERENTIAL EQUATION

- 1. Write about linear equation with constant co-efficient.
- 2. Write about homogenous and non-homogenous equation.
- 3. Define differential operator.
- 4. Define second order homogenous equation.
- 5. Define characteristic polynomial and its different cases.
- 6. If ϕ_1 , ϕ_2 be any two solution of L(y)=0 and c₁,c₂are two constants then the function $\phi = c_1 \phi_1 + c_2 \phi_2$ is also a solution of L(y)=0.
- 7. Find the solution of the differential equation $y^{11}+y^{1-}2y=0$.
- 8. Define initial value problem for second order equation.
- 9. Define the solution of the initial value problem $y^{11}-2y^1-3y=0$, y(0)=0, y'(0)=1.
- 10. Define linear dependent and linear independent.
- 11. Prove that the function defined by $\phi_1 = e^{r_1 x}$, $\phi_2 = e^{r_2 x}$ are linearly independent on any interval I.
- 12. Prove that the function defined by $\phi_1 = e^{r_1 x}$, $\phi_2 = x e^{r_2 x}$ are linearly independent on any interval I.
- 13. Prove that the function $\phi_1(x) = e^{\alpha x}$, $\phi_2(x) = e^{\alpha(1+x)}$ where $-\alpha < x < \infty$ and α is a constant.
- 14. Define wronskian of order two.
- 15. If the determinant Δ of the coefficient in the system of equations.

 $a_{11}z_1 + a_{12}z_2 + \dots + a_{1n}z_n = c_1$ $a_{n1}z_1 + a_{n2}z_2 + \dots + a_{nn}z_n = c_n$ where a_{ij} , c_j are complex constant.

I) if $\Delta \neq 0$, there is a unique solution of the system for z_1, z_2, \dots, z_n it

is given by $z_k = \frac{\Delta_k}{\Delta}$ (k=1,2,.....n) where Δ_k is the determinant obtained from Δ by replacing its kth column ie.,) $a_{1k}, a_{2k}, \dots, a_{nk}$ by c_1, c_2, \dots, c_n .

(A)

 $a_{21}z_1 + a_{22}z_2 + \dots + a_{2n}z_n = c_2$

ii) $c_1=c_2=\ldots=c_n=0$ in (A) and the determinant of the coefficient $\Delta=0$ there is a solution of(A) such that not all z_k are zero.

16.
obtain two solution ϕ_1,ϕ_2 of L(y)=0 are the linearly independent

On an interval I if and only if $W(\phi_1, \phi_2) \neq 0$ for all x in I. 17. Let ϕ_1, ϕ_2 be two solution of L(y)=0 on an interval I and let x_0 be

any point I then ϕ_1, ϕ_2 are linearly independent on I iff

 $W(\phi_{1}, \phi_{2})(x_{0}) \neq 0.$

- 18. Let ϕ_1, ϕ_2 be two linearly independent solution of L(y)=0 on an Interval I.Every solution ϕ of L(y)=0 can be written uniquely as $\phi_{=c_1}\phi_{1}+c_2\phi_2$ where c_1,c_2 are constant.
- 19. If ϕ_1, ϕ_2 are the solution of L(y)=0 on any interval I containing a point \mathbf{x}_0 then W(ϕ_1, ϕ_2)(\mathbf{x}_0)= $e^{-a(x-\chi_0)}$ W(ϕ_1, ϕ_2)(\mathbf{x}_0).
- 20. Is the function $\phi_1(x) = \sin x$, $\phi_2(x) = e^{ix}$ linearly independent?

UNIT-II

- 21. Define homogenous equation of order n.
- 22. Let r₁,r₂,.....r_n be the distinct root of the characteristic polynomial P and Suppose r_i as multiplicity m_i thus (m₁+m₂+.....m_s=n) then the n function

23. prove that the n-solution given by

24. Define initial value problem for nth order equation.

- 25. Define wronskian of n derivatives.
- 26. If $\phi_1, \phi_2, \dots, \phi_n$ are n solution of L(y)=0 on any interval I they are linearly Independent if and only if w($\phi_1, \phi_2, \dots, \phi_n$)(x) $\neq 0$.
- 27. State and prove existence theorem for order n.
- 28. let $\phi_1, \phi_2, \dots, \phi_n$ be n solution of L(y)=0 on any interval I containing a point χ_0 then

$$w(\phi_{1},\phi_{2},\ldots,\phi_{n})(x) = e^{-a(x-\chi_{0})} w(\phi_{1},\phi_{2},\ldots,\phi_{n})(x_{0}).$$

- 29. Define non-homogenous equation of order n.
- 30. write about annihilator method.
- 31. Using annihilator method find a particular solution of the equation $y^{11}-3y^{1}+2y=x^2$.
- 32. write the characteristic polynomial of an annihilator method of function

(i)
$$e^{ax}$$
 (ii) $x^{k} e^{ax}$ (iii) sinax ,cosax (real)

(iv) χ^{k} sinax, χ^{k} cosax (a real).

- 33. Define operators and its different types.
- 34. The correspondence which associates with each

 $L=a_0D^{n}+a_1D^{n-1}+....+a_n$ Its characteristic polynomial p is given by $p(r)=a_0r^{n}+a_1r^{n-1}+...+a_n$ is one to one correspondence between all linear differential with constanst coefficient and all polynomials if L,M are associated with p+q, ML i associated pq& αL is associated with αp (α is a constant).

35. consider the equation with constants coefficient L(y)=p(x) *e* where p is a polynomial given by p(x)= b₀r^m+b₁r^{m-1}+.....+b_m
(b₀≠0) suppose a is a root of the characteristic polynomial P of L of multiplicity j then there is a unique solution x of equation of the form X(x)=x^j (c₀x^m+c₁x^{m-1}+.....+c_m)e^{ax} where c₀,c₁,....,c_m are constants determinant by the annihilator method.

UNIT-III

- 36. Define linear equation with variable coefficient .
- 37. Obtain there exist x linear independent solution L(y)=0 on I.
- 38. Let $\phi_1, \phi_2, \dots, \phi_n$ be a solution of L(y)=0 on I satisfying $\phi_{i^{(i-1)}(x_0)=1}, \phi_{j^{(i-1)}(x_0)=0}, i \neq j$ if ϕ is any solution of L(y)=0 on I

there are n constant c_1, \ldots, c_n such that

 $\phi = c_1 \phi_1 + c_2 \phi_2 + \dots + c_n \phi_n.$

39. Define linear space.

40. Define basis.

41. Let ϕ_1 be a solution of L(y)=0 on any interval I and suppose $\phi_1(x)\neq 0$ on I if v_1, v_2, \dots, v_n is any basis on I for the solution of linear equation

$$\phi_{1}v^{(n-1)}$$
 +....... $[n\phi_{1}^{(n-1)}+(n-1)\phi_{(n-2)}+....+a_{n-1}\phi_{1}]v=0$ of order
(n-1) & if $v_{k}=v_{k}(k=1,2,....n)$ then $\phi_{1}, u_{2}\phi_{1},u_{n}\phi_{1}$ is a basis for the solution $L(y)=0$ on I.

42. If ϕ_1 is a solution of L(y)=y¹¹+a₁(x)y¹+a₂(x)=0 on an interval I

and $\phi_1 \neq 0$ on I. A second solution ϕ_2 of equation on I is given by

$$\phi_{2}, \phi_{1}(\mathbf{x}) = \int_{x_{0}}^{x} \frac{1}{[\phi_{1}(x)]^{2}} \exp[-\int_{x_{0}}^{x} a_{1}(t)dt] dx$$
 the function ϕ_{1}, ϕ_{2} form a

basis for a solution of equation on I.

43. Define legendre equation.

44. Obtain the legendre polynomial of the legendre equation.

45. If $p_n(x)$ is a legendre polynomial of the legendre polynomial then

$$\int_{-1}^{1} p_{n}^{2}(x) dx = \frac{2}{2n+1}$$

46. Show that $\int_{-1}^{1} p_n(x) p_m(x) dx = 0$ for m≠n where p_n,p_m are legendre

polynomial.

UNIT-IV

- 47. Prove that a basis for the solution of the Euler equation on any interval not containing x=0 is given by $\phi_1 = |x|^{r_1}$, $\phi_2 = |x|^{r_2}$ In case r_1, r_2 are distinct roots of q and by $\phi_1 = |x|^{r_1}$, $\phi_2 = |x|^{r_1} \log |x|$ if r_1 is a root of multiplicity 2.
- 48. Find the solution of $x^2y^{11}+xy^1+y=0$ for $x\neq 0$.
- 49. Let r₁,r₂,....r_s be the distinct roots of the indicial polynomial q for L(y)= xⁿy⁽ⁿ⁾+a 1xⁿ⁻¹yn⁻¹+.....+a y=0→(1) and suppose r_i has multiplicity m_i then the function,

$$|x|^{r_1}$$
, $|x|^{r_1} \log^{|x|} \dots |x|^{r_1} \log^{m_1^{-1}} |x|;$
 $|x|^{r_2}$, $|x|^{r_2} \log^{|x|} \dots |x|^{r_2} \log^{m_2^{-1}} |x|;$

.

•••••

 $|x|^{r_s}$, $|x|^{r_s} \log^{|x|}$ $|x|^{r_s} \log^{m_s^{-1}} |x|;$

form a basis for the solution of the n^{th} order Euler equation any

interval not containing x=0.

50. Obtain the second order equation with regular singular point.

UNIT-V

- 1. Write the general method of successive approximation.
- 2. State and prove the existence theorem for successive approximation.
- 3. Find the solution of the equation

i)
$$x^2 y'' + 2xy' - 6y = 0$$

ii)
$$2x^2y'' + xy' - y = 0$$

4. Obtain the exact equation M(x, y) + N(x, y)y' = 0 in rectangle R and F is a real valued function such that $\frac{\partial F}{\partial x} = M$, $\frac{\partial F}{\partial y} = N$ in R every differential functions ϕ define implicit by a relation F(x, y) = c where C is a constant is

the solution of the equation.

5. Write the necessary and sufficient condition for an equation to be exact.

6. Find the solution of the equation
$$y' = \frac{3x^2 - 2xy}{x^2 - 2y}$$

- 7. Solve the equation $\frac{dy}{dx} = x^2 + y^2$, y(0) = 1 by the method of successive approximation.
- 8. Solve the equation y' = xy, y(0) = 1 by the method of successive approximation.
- 9. The successive approximation ϕ_k defined by $\phi_0(x) = y_0$, exist as

$$\phi_{k+1}(x) = y_0 + \int_{x_0}^x [f(t)\phi_k(t)]dt \text{ continuous function on}$$

$$I: |x - x_0| \le \alpha = \min \operatorname{imum}\{a, b/m\} \text{ and } (x, \phi_k(x)) \text{ is in } \mathbb{R} \text{ for } x \text{ in } \mathbb{I} \text{ indeed the } \phi_k \text{ satisfy } |\phi_k(x) - y_0| \le M |x - x_0| \forall x \in \mathbb{I}$$

10. Find first four approximation $\phi_0, \phi_1, \phi_2, \phi_3$ to the equation y' = 3y + 1, y(0) = 2

11. Show that i)
$$x^{1/2} J_{1/2}(x) \frac{\sqrt{2}}{\Gamma\left(\frac{1}{2}\right)} \sin x$$
 ii) $x^{1/2} J_{-1/2}(x) \frac{\sqrt{2}}{\Gamma\left(\frac{1}{2}\right)} \cos x$

12.Let F be a real valued continuous function on the strip $S:|x-x_0| \le a; |y| < \infty$ (a>0) and suppose that f satisfies on S a lipschitz condition with constant k>0.

Find the solution of the equation $x^3y'' - 3x^2y'' + 6xy' - 6y = 0$ for x>0 and $\phi_1(x) = 0$.

UNIT-I Section-B

1. State and prove Existence theorem.

2. State and prove uniqueness theorem.

3. Let Φ be any solution of L(y)=y["]+a₁y'+a₂y=0 on an interval I counting a point x₀ then for all x in I.

4.Let b be continuous on an interval I every solution $\Psi[L(y)] = b(x)$ on I can be written as $\Psi = \Psi_p + C_1 \Phi_1 + C_2 \Phi_2$ Where Ψ_p is a particular solution $\Phi_1 and \Phi_2$ are two linearly independent solution of L(y)=0 and $C_1 and c_2$ are constants.

A particular Solution Ψ_p is given by $\Psi_p(x) = \int_{x_0}^x \frac{\left[\Phi_1(t)\Phi_2(x) - \Phi_1(x)\Phi_2(t)\right]}{W(\Phi_1,\Phi_2)(T)} dt$

Conversely every such Ψ is a solution of L(y)=b(x).

5.Solve L(y)=b(x) in the case $p(r)=r^2 + a_1r + a_2$ as the two distinct root $\Phi_1(x) = e^{r_1x}$ and $\Phi_2(x) = e^{-r_2x}$

UNIT-II

6. obtain the homogenous equation of order n.

7.obtain the n function $\Phi_1 \Phi_2 \Phi_3 \dots \Phi_n$ on an interval I are said to be linearly dependent on I if there are constant C_1, C_2, \dots, C_n not all zero such that C_1 $C_1 \Phi_1(x) + C_2 \Phi_2(x) + \dots + C_n \Phi_n(x) = 0 \lor x \in I$. 8.Let Φ be any solution of L(y)=y^{*n*} +a₁y*n*-1+a₂y*n*-2+.....+a_{*n*}y=0 on an interval Z Containing $a \neq x_0$ then for all $\|\Phi(x_0)\| e^{-k|x-x_0|} \leq \|\Phi(x)\| \leq \|\Phi(x_0)\| e^{k|x-x_0|}$

Where K=1+
$$|a_1|$$
+ $|a_2|$ $|a_n|$

9.If $\Phi_1 \Phi_2 \Phi_3 \dots \Phi_n$ are n soutions of L(Y)=0 on an interval I they are linearly independent if and only if W($\Phi_1 \Phi_2 \Phi_3 \dots \Phi_n$)(x) $\neq 0$.

10.Let $\Phi_1 \Phi_2 \Phi_3 \dots \Phi_n$ are linearly independent solution of L(Y)=0 on an interval I if C_1, C_2, \dots, C_n are any constant $\Phi = C_1 \Phi_1(x) + C_2 \Phi_2(x) + \dots + C_n \Phi_n(x)$ is a solution and every solution may be represented in this form.

11.Let If $\Phi_1 \Phi_2 \Phi_3 \dots \Phi_n$ are n soutions of L(Y)=0 on an interval I containing a

point \mathbf{x}_0 then $W(\Phi_1 \Phi_2 \Phi_3 \dots \Phi_n)(\mathbf{x}) = \boldsymbol{\ell}^{-a(x-x_0)} W(\Phi_1 \Phi_2 \Phi_3 \dots \Phi_n)(\mathbf{x}_0)$

UNIT-III

12. Let b be continuous on an interval Z and let $\Phi_1 \Phi_2 \Phi_3 \dots \Phi_n$ be n linearly independent solution of L(y) =0 on I then every solution $\Psi[L(y)] = b(x)$ can be written as $\Psi = \Psi_p + C_1 \Phi_1 + C_2 \Phi_2 + \dots + C_n \Phi_n$ where Ψ_p is a particular solution of [L(y)] = b(x) and C_1, C_2, \dots, C_n are constant every such Ψ is a solution of [L(y)] = b(x).

A particular solution
$$\Psi_p$$
 is given by $\Psi_p(x) = \sum_{K=1}^n \Phi_k(x) \int_{x_0}^x \frac{\left[W_K(t)b(t)\right]}{W(\Phi_1 \Phi_2 \Phi_3 \dots \Phi_n)(t)} dt$.

13.Consider the equation y'' + y' + y = 1 which satisfies $\Psi(0) = 0, \Psi'(0) = 1, \Psi''(0) = 0$

14.Consider the equation with constant coefficient $L(y)=p(x) e^{ax}$1. Where p is a polynomial given by $p(x) = b_0 x^n + b_1 x^{n-1} + \dots + b_m (b_0 \neq 0)$. Suppose a is a root of the characteristics polynomial p of L of multiplicity j then there is a unique solution Ψ of equation of the form

 $\Psi(x) = x^{j}(C_{0}x^{m} + C_{1}x^{m-1} + \dots + C_{m}(e^{ax}). \text{ where } C_{0}, C_{1}, C_{2}.\dots, C_{m} \text{ are constant determine by the annihilator method.}$

15.State and prove Existence theorem for analytic co efficient.

16.Obtain the solution of Lebseque Equation.

17. Find the Legendre polynomial If $p_n(x)$ is the legendre polynomial of the

legendre equation $(1-x^2)y'' - 2xy' + n(n+1)y = 0$ then $p_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$

UNIT-IV

18.State and prove Euler equation.

19. Consider the second order euler equation $x^2 y'' + axy' + by=0$ (a,b constant) and the polynomial q given by q(r)=r(r-1)+ar+b. A basis for the solution of the euler equation on any interval not containing x=0 given by $\Phi_1(x) = |x|^{r_1}$, $\Phi_2(x) = |x|^{r_2}$ incase r_1r_2 are distinct roots of q and by $\Phi_1(x) = |x|^{r_1}$, $\Phi_2(x) = |x|^{r_2} \log |x|$ if r_1 is a root of q of multiplying two.

20.Let r_1, r_2, \dots, r_n be the distinct root of the indicial polynomial q for

 $L(y) = x^n y^n + a_1 x^{n-1} + \dots + a_n y = 0$1 and suppose r_i has multiplicity m_i then the function.

 $|x|^{r_1}$, $|x|^{r_1} \log |x| \dots |x|^{r_1} \log^{m_1-1} |x|$:

 $|x|^{r_1}, |x|^{r_2} \log |x| \dots |x|^2 \log^{m_2-1} |x|$:

24.State and prove Existence Theorem.

25. Derive the Bessel function f of zero order of the first kind and second kind.

26. Obtain the solution for the Bessel equation of order α where $\alpha \neq 0$

UNIT-V

27. Write the necessary and sufficient for an equation to be exact.

28. Prove that,

(i)
$$j' = -j_1$$
 (ii) $j_2 - j_0 = 2j_0''$ (iii) $j_2 = j_0'' - (\frac{1}{x})j_0'$
(iv) $j_2 + 3j_0' + 4j_0''' = 0$

29.Explain S-machine for successive approximation.

30. State and prove the Existence Theorem for Convergence of the successive approximation and properties of the limit Φ .

31.Let f,g,be continuous on R and suppose f satisfies a Lipchitz Condition there with Lipchitcz Constant K. Let Φ, Ψ be solutions of $y' = f(x, y), y(x_0) = y_1$,

$$y' = g(x, y), y(x_0) = y_2$$

Respectively and show that $[f(x, y) - g(x, y)] \le t$ and (x, y) in R and $|y_1 - y_2| \le \delta$ and valid then $|\Phi(x) - \Phi(y) \le \delta e^{k|x-x_0|} + |e^{k|x-x_0|}|$ for all x in I.

32.Compute the first four approximation $\Phi_1, \Phi_2, \Phi_3, \Phi_4$ of y' = 1 + xy, y(0) = 1.

33.Compute the wronskian of 4 linearly independent solution of $y^{(4)} + 16y = 0$