D.K.M. COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1 PHYSICAL CHEMISTRY-I

UNIT-I Thermodynamics – I Section-A (6 Marks)

- Derive an expression for variation on chemical potential with respect to pressure and temperature.
- 2. Define fugacity in term of Lewis Randell method.
- 3. Explain the approximation method of chemical potential.
- 4. Derive an expression for the Gibbs Duhem equation.
- 5. Derive an expression for Gibbs Duhem Mergules equation.
- 6. Deduce the Partial molar volume and Partial molar heat content.
- 7. Explain the compressibility data for fugacity.

Section-B (15 Marks)

- 8. Explain in detail about the thermodynamics of ideal and non ideal binary solutions.
- 9. Derive an expression for method of intercepts and graphical method of fugacity.
- 10. How will you determine the fugacity using Vander Waals equation of state.
- 11. Explain the variation of fugacity with temperature and pressure.
- 12. Explain the partial molar properties for free energy and enthalpy and entrophy.

UNIT -II THEMODYNAMICS-II

Section-A (6 Marks)

- 1. Write a short note on excess functions for non-ideal solutions.
- 2. Give an account for choice of standard states.
- 3. Explain in detail for determination of activity and activity co-efficient for electrolytes by emf and vapour measurements.

- 4. Explain in detail for determination of activity and activity co-efficient for electrolytes by Gibbs –Duhem equation and solubility product method Derive Gibbs-Margulas equation.
- 6. Discuss briefly on the thermodynamics of ideal binary solutions.
- 7. Explain the concept of activity and activity co-efficients.
- 8. Distinguish between ideal and non-ideal solutions.

Section-B (15 Marks)

- 9. Explain the terms activity and activity coefficient. How will you determine the activity of a non-electrolyte?
- 10.Apply solubility product method and emf measurements methods for determining activity and activity co-efficient of electrolytes.

UNIT -III

CHEMICAL KINETICS-I

Section-A (6 Marks)

- 1. Write a short note on effect of temperature on reaction rates.
- 2. Write a short note on Lewis rigid sphere theory.
- 3. Give an account for the estimation of free-energy ad enthalpy.
- 4. Write a short note on entropy of activation and their significance.

Section-B (15 Marks)

- 5 Derive Eyring equation.
- 6. Write a short notes on reactions in solution.
- 7. Write a short notes on Bronsted catalysis law.
- 8. Explain in detail about the collision theory on reaction rate.
- 9. Explain in detail about the Molecular beam method in determination of rate constant.

- 10. Discuss briefly about the ARRT.
- 11. Discuss in detail about the acid-base catalysis and explain its mechanism

UNIT-IV

Fast reactions and Group theory

Section-A (6 Marks)

- 1. What are reducible and irreducible representations? Explain.
- 2. Write the direct product representations.
- 3. Discuss in detail about the symmetry elements and symmetry operations using suitable examples?
- 4. Define the term symmetry, symmetry elements and symmetry operations.
- 5. Explain in detail about flash photolysis and stopped flow method.
- 6. A group has the following irreducible representations A₁,A₂,B₁,B₂,E₁,E₂
 - i. What is the order of the group?
 - ii. How many classes are in the group?
- 7. D₅ has four classes and the order of the group is 10.
 - i. How many irreducible representations are possible.
 - ii.What is the dimension of each.
- 8. Write a short on Luminescence and energy transfer process.
- 9. Determine the symmetry point groups of the following molecules.
 - i.C6H6
 - ii. Staggered ferrocene.
 - iii. Pyridine
- 10. Discuss the T-jump method of fast reactions
- 11.Discuss in detail about the symmetry elements and symmetry operations using suitable examples?
- 12. Write a short note on direct product representation

- 13. List the symmetry elements in the following molecules: Staggered ferrocene, Pyridine, trans-dichloro ethylene
- 14. Identify the point groups for
- (a) trans-PtCl₂(NH₃)₂ (square planar Pt; ignore the H's)
- (b) cis-[CrCl₂(H₂O)₄]⁺ (octahedral Cr; ignore the H's)
- (c) XeF₂

(d) XeF₄

- 1. How will you systematically identify point group of a molecule?
- 2. Explain direct product and irreducible representations.

Section-B (15 Marks)

- 1.a. Give an brief account on flash photolysis.
- b. Predict the point group and write the symmetry operations for SF_6 and $\mbox{\sc XeF}_6$
 - c.Explain Abelian and sub group.
- 2. Discuss in detail about the following methods in detail

UNIT-V APPLICATIONS OF GROUP THEORY Section-A (6 Marks)

- 1. State and explain orthogonality theorem
- 2. Group theorectically deduce the hybridization scheme in CH₄ molecule.
- 3. Discuss the symmetric selection rules of IR spectra
- 4. Construct the character table for C₂V point group.
- 5. Discuss in detail about the vibrational modes in water molecule.
- 6. .Discuss the symmetric selection rules of IR and Raman spectra.
- 7. Apply group theory to find the allowed and forbidden electronic transitions in formaldehyde.
- 8. Systematically determine the symmetry types of nomal modes in ammonia

Section-B (15 Marks)

- 1. Obtain the character table for C₃V point group and arrive at the type of hybridization scheme in CH₄ molecule.
- 2. Predict the electronic transition in formaldehyde and prove vib=2A₁+B₂ for water molecule.
- 3. a. Discuss about orthogonality theorem and its consequences. (8)
 - b. Determine the vibrational modes for PCl₅ molecule. (7)
- 4. Reduce the following representations to their corresponding irreducible representations.

C _{6v}	E	2C ₆	2C ₃	C ₂	3 σ _v	$3\sigma_{d}$
Γ	7	1	1	1	-1	-3
D_{2d}	E	2S ₄	C ₂	2C2'	$2\sigma_{d}$	
Γ	5	1	-3	-1	-1	
			·			
T _d	E	8C ₃	3C ₂	6S ₄	$6\sigma_{d}$	
Γ	8	-1	0	-2	2	

5. State and explain the mutual exclusion principle. Construct the C2h character table and show how this point group confirms the mutual exclusion principle.

- 6. Explain how will you deduce group theoretically the vibration modes in CH4.
- 7. A. Obtain the symmetries of normal modes of vibration in tetrahedral BH₄-. Discuss the differences in IR and Raman spectra of the vibrational modes in the ion.
 - b. obtain the symmetries of the vibrational modes in water and ammonia.
- 8. What are the elements of symmetry present in trans-1,3- butadiene? Obtain the reducible representation for the four carbon pi orbitals.