# D.K.M COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1

DEPARTMENT OF MATHEMATICS

CLASS: I M.SC (MATHEMATICS) SUBJECT: REAL ANALYSIS-I

UNIT-I SECTION-A 6 MARKS

- 1. If 'f' is monotonic on [a,b], then the set of discontinuous of f is countable.
- 2. If 'f' is monotonic on [a,b], then f is of bounded variation on [a,b].
- 3. If 'f' is continuous on [a,b] and, if f exists and is bounded in the interior, say A for all x in [a,b], then f is of bounded variation on [a,b].
- 4. Let f be bounded variation on [a,b], and assume that c (a,b), Then f is of bounded variation on [a,c] and on [c,b] and we have
- 5. Let f be bounded variation on [a,b],Let U be defined on [a,b] as follows: if then i)V is an increasing function on [a,b]. ii)V-f is an increasing function on [a,b].
- 6. Let f be defined on [a,b]. then f is bounded variation on [a,b] iff,f can be expressed as the the difference of two increasing functions.
- 7. To construct a continuous function which is not of bounded variation. Let  $f(x) = x \cos (\pi/2x)$  If  $x \neq 0$ , f(0) = 0. Then f is continuous on [0,1].
- 8. If f is of bounded variation on [a,b], say  $\Sigma$  for all partition of [a,b],then f is bounded on [a,b].

# **UNIT-II**

- 9. If and if on [a,b] then on [a,b] ( for any two constants and ) and we have  $\int (C_1 f + C_2 g) d\alpha = C_1 \int_a^b f d\alpha + C_2 \int_a^b g d\alpha.$
- 10. If  $f \in R(\alpha)$  and if  $f \in R(\beta)$  on [a,b] then  $f \in R(C1\alpha + C2\beta)$  On [a,b] (for any two constants and ) and we have  $\int_a^b f d(c1\alpha + c2\beta) = C_1 \int_a^b f d\alpha + C_2 \int_a^b g d\alpha$ .
- 11. If  $f \in R(\alpha)$  on [a,b], then  $\alpha \in R(f)$  on [a,b] and we have  $\int_a^b f(x) d\alpha(x) + \int_a^b \alpha(x) df(x) = f(b) \alpha(b) f(a) \alpha(a).$
- 12. Every finite sum can be written as a Riemmann-stielties intergral, given a sum  $\Sigma$ , define f on [0,n] as follows:  $f(x) = a_k$  if  $k-1 < x \le k(k=1,2,...)$ , f(0)=0. Then  $\sum_{k=1}^n a_k = \sum_{k=1}^n f(k) = \int_0^n f(x) d[x]$ , where [x] is the greatest integer.
- 13. .Euler's summation formula: If f has a continuous derivative 'f' n [a,b], then we have

 $\sum_{a < n \le b} f(n) = \int_a^b f(x) dx + \sum_a^b f'(x)((x)) dx + f(a)((a)) - f(b)((b)), \text{ where } ((x)) = x - [x], \text{ when a and b are integers this becomes } \int_{n=1}^b f(n) = \int_a^b f(x) dx + \sum_a^b f'(x)(x - [x] - 1/2) dx + f(a) + f(b)/2.$ 

14. Assume that on [a,b] then : i) If p' is finer than p, we have  $U(p',f,\alpha) \le U(p,f,\alpha)$  and  $L(p',f,\alpha) \ge L(p,f,\alpha)$ 

- ii) For any two partitions  $p_1$  and  $p_2$ , we have  $L(p_1, f, \alpha) \le U(p_2, f, \alpha)$ .
- 15. Assume that  $\alpha$  on [a,b]. Then  $\tau(f,\alpha) \leq \tau(f,\alpha)$
- 16. Assume that  $\alpha$  on [a,b]. If  $f(\alpha)$  and  $g(\alpha)$  on [a,b] if  $f(x) \le g(x)$  for all x in [a,b],then we have

$$\int_a^b f(x) d\alpha(x) \le \int_a^b f(x) d\alpha.$$

- 17. Assume that  $\alpha$  on [a,b]. If  $f(\alpha)$  on [a,b]. Then  $f^2 \in R(\alpha)$  on [a,b].
- 18. Assume that  $\alpha$  on [a,b]. If f R( $\alpha$ ) and g R( $\alpha$ ) on [a,b].then the product f.g R( $\alpha$ ) on [a,b].

#### UNIT-III

- 19.Let a be of bounded variation on [a,b] and assume that f R(a) on [a,b]. Then f on every sub-interval [c,d] of [a,b].
- 20. If f is continuous on [a,b] and if  $\alpha$  is of bounded variation on [a,b] and assume that f R( $\alpha$ ) on [a,b].
- 21. First mean value Theorem for Riemann-Stieltjes Integrals:
- 22. Second mean value Theorem for Riemann-Stieltjes Integrals:
- 23. Assume that f R on [a,b] . let  $\alpha$  be a function which is continuous on [a,b]. and whose derivative  $\alpha'$  is Riemann integrable on [a,b]. Then the following integrals exist and are equal  $\int_a^b f(x) d\alpha(x) = \int_a^b f(x) \, \alpha'(x) dx$ .
- 24. If f R and g R on [a,b],Let  $F(x) = \int_a^b f(t) dt$ ,  $G(x) = \int_a^b g(t) dt$ , if  $x \in [a,b]$ . Then F and G are continuous function of bounded variation on [a,b] .Also , f R(G) and g R(F) on [a,b] , and we have  $\int_a^b f(x)g(x)dx = \int_a^b f(x)dG(x) = \int_a^b g(x)dF(x)$ .
- 25. State and prove: Second fundamental theorem of integral calculus.
- 26. Assume that f R on [a,b] . let  $\alpha$  be a function which is continuous on [a,b]. and whose derivative  $\alpha'$  is Riemann integrable on [a,b]. Then the following integrals exist and are equal

$$\int_a^b f(x) d\alpha(x) = \int_a^b f(x) \alpha'(x) dx.$$

- 27. Let g be continuous Assume that f on [a,b]. Let A and B be two real number satisfying the inequalities  $A \le f(a+)$  and  $B \ge f(b-)$ . Then there exists a point  $x_0$  in [a,b] such that
- (i)  $\int_a^b f(x)g(x)dx = A \int_a^x g(x)dx + B \int_x^b g(x)dx$ . In particular ,if  $f(x) \ge 0$  for all in [a,b] .we have
- (ii)  $\int_a^b f(x)g(x)dx = \int_a^b g(x)dx$ .
- 28. State and prove: Bonnet's T heorem.
- 29.If f is continuous on the rectangle [a,b] x [c,d], and if g R on [a,b], Then the function f defined by the equation  $F(Y) = \int_a^b g(x)f(x,y)dx = \int_a^b g(x)f(x,y)dx$ .
- 30. If f is continuous on the rectangle [a,b] x [c,d], and if g R on [a,b] and if h R on [c,d], Then we have  $\int_a^b \left[ \int_c^d g(x)h(y)f(x,y)dy \right] dx = \int_c^d \left[ \int_a^b g(x)h(y)f(x,y)dx \right] dy$ . 31. Let  $Q = \{(x,y); a \le x \le b, c \le y \le d\}$ . Assume that  $\alpha$  of bounded variation on [a,b]
- 31. Let  $Q = \{(x,y); a \le x \le b, c \le y \le d\}$ . Assume that  $\alpha$  of bounded variation on [a,b] and, for each fixed y in [c,d], assume that the integral  $\int_a^b f(x,y) g(x) dx$  exists. If the partial derivative f is continuous on Q, the derivative F'(y) exist for each y in (c,d) and is given by  $F'(x) = \int_a^b D_2 f(x,y) d\alpha(x)$ .

- 32. Absolute convergence of  $\Sigma$  implies convergence.
- 33. Let  $\Sigma$  be a given series with rea-valued term and define
- $p_n = |a_n| + a_n / 2$ ,  $Q_n = |a_n| a_n / 2$  then, (i).
- If  $\Sigma$  is conditionally convergent,both  $\Sigma$  and  $\Sigma$  diverge.
- ii) If  $\Sigma$  converges, both  $\Sigma P_n$  and  $\Sigma$  Qnconverges and we have  $\sum_{n=1}^{\infty} p_n \sum_{n=1}^{\infty} q_n$ .
- 34. If  $\{a_n\}$  and  $\{b_n\}$  are two sequences of complex number, define  $A_n = a_1 + a_2 + \dots$
- +a<sub>n</sub> then we have the identity  $\sum_{k=1}^{n} a_k b_k = A_n b_{n+1} \sum_{k=1}^{n} A_k (b_{k-1} b_k)$ . the series
- $\sum_{k=1}^{n} akbk$  converges if both the series  $\sum_{k=1}^{n} A_{K}$  ( $b_{k-1}$ - $b_{k}$ ) and the sequence  $\{A_{n}b_{n+1}\}$ .
- 35. The series  $\Sigma a_n$   $b_n$  converges if  $\Sigma a_n$  converges and if  $\{b_n\}$  is a monotonic convergent series
- 36. State and prove : Dirclet's test
- 37. Let  $\Sigma a_n$  be a series of complex term whose partial sums from a bounded sequence . Let  $\{\,b_n\,\}$  be a decreasing sequence which converges to 0. Then  $\Sigma a_n b_n$  converges.

## **UNIT-IV**

- 38. Assume that For each fixe p, assume that the limit exist. Then the limit also exist and the value a.
- 39. Let  $\Sigma a_m$  and  $\Sigma b_n$  be two a ly convergent series with sums A and B respectively. Let f be the double sequence define by the equation if  $(m,n) = a_m b_n$ , if  $(m,n) \in z^+ x$   $z^+$ , then  $\Sigma_{m,n}$  f(m,n) converges absolutely and has the sum AB.
- 40. The infinite product  $\pi u_n$  converges iff  $\in >0$  there exist an N such that n>N implies  $|u_{n+1},u_{n+2},...,u_{n+k-1}| < \in$ , for k=1,2,3...
- 41. Assume that each  $\,a_n \!\!>\!\! 0$  . Then the product  $\pi(1 \!\!+\!\! a_n)$  converges iff the series  $\Sigma an$  converges
- 42. Absolutely converges of  $\pi(1+a_n)$  implies converges.
- 43. Given a power series  $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ , Let  $\lambda = \lim_{n\to\infty} \sup \sqrt{|a_n|}$ ,  $r=1/\lambda$  Then the series Absolutely converges, if and diverges if  $|z-z_0| > r$ , Furthermore, the series converges uniformly on every compact subset interior to the disk of convergence.
- 45. Assume that we have  $f(x) = \sum_{n=0}^{\infty} a_n x^n$  if -r < x < r. If the series and we have  $\lim_{x \to r^-} f(x) = \sum_{n=0}^{\infty} a_n r^n$ .
- 49. Let  $\sum_{n=0}^{\infty} a_n$  and  $\sum_{n=0}^{\infty} b_n$  be two convergent series and let  $\sum_{n=0}^{\infty} c_n$  denote their Cauchy product. If  $\sum_{n=0}^{\infty} c_n$  converges, we have  $\sum_{n=0}^{\infty} c_n = (\sum_{n=0}^{\infty} a_n) \sum_{n=0}^{\infty} b_n$ )

#### **UNIT-V**

- 51. Assume that  $f_n \rightarrow f$  uniformly on s. If each  $f_n$  is continuous at a point c of s, then the limit function f is also continuous at c.
- 52. State and prove Cauchy Condition for Uniform Convergence of Series.
- 53. State and prove Weierstrass M-test.
- 54. Assume that  $\sum f_n(x) = f(x)$  (uniformly on s). If each f is continuous at a point  $x_0$  of s, then f is also continuous at  $x_0$ .

55. The infinite series  $\sum f_n(x)$  converges uniformly on s, iff for every  $\varepsilon > 0$  there is an N such that n > N implies  $|\sum_{k=n+1}^{n+p} f_k(x)| < \varepsilon$  for each p=1,2,... and every x in s.

56.Let  $\{M_n\}$  be a sequence of non negative numbers such that  $0 \le |f_n(x)| \le M_n$  for n=1,2,... and for every x in s. Then  $\sum f_n(x)$  converges uniformly on s, if  $\sum M_n$ 

# Converges.

57.Let f be a double sequence and Let  $z^+$  denote the set of positive integers. For each n=1,2,..., define a function gn on  $z^+$  as follows.  $G_n(m)=f(m,n)$ , if  $m \in z^+$ . Assume that  $g_n \to g$  uniformly on z, where  $g(m)=\lim_{n\to\infty} f(m,n)$ . If the iterated limit  $\lim_{m\to\infty} f(m,n)$  exists, then the double limit  $\lim_{n,m\to\infty} f(m,n)$  also exists and has the same value.

58. Assume that  $\lim_{n\to\infty} f_n = f$  on [a,b]. If  $g \in \mathbb{R}$  on [a,b] define  $h(x) = \int_a^x f(t)(t) dt$ ,  $h_n(x) = \int_a^x f_n(t)(t)$ , if  $x \in [a,b]$ . Then  $h_n \to h$  uniformly o [a,b].

59. Assume that  $\lim_{n\to\infty} f_n$  = f and  $\lim_{n\to\infty} g_n$  = g on [a,b]. Define h(x)= $\int_a^x f(t)g(t)dt$ ,  $h_n(x)=\int_a^x f_n(t)g_n(t)dt$  if xe[a,b]. Then  $h_n\to h$  uniformly on [a,b].

#### UNIT-I SECTION-B 15 MARKS

- 1. Assume that f and g are each of bounded variation on [a,b]. Then so are their sum, difference and product. Also we have  $vf\pm g \le vf+vg$  and  $v_{f,g} \le Av_f+Bvg$ , where  $A=Sup\{|g(x)|:xe[a,b]\}$ ,  $B=Sup\{|f(x)|:xe[a,b]\}$ .
- 2. Let f be a bounded variation on [a,b]. If xe[a,b]. Let v(x)=vf(a,x) and put v(a)=0. Then every point of continuity of f is also a point of continuity of f. The converse is also true.

## **UNIT-II**

- 3. Assume that ce(a,b). If two of the three intergals in exists, then the third also exists and we have  $\int_a^c f dx + \int_c^b f dx = \int_a^b f dx$ .
- 4. State and prove Change of variable in a Riemann Stieltjes integral.
- 5. State and prove Reduction to a Riemann integral.
- 6. Let feR(x) on [a,b] and let g be a strictly monotonic continuous function defined on an interval s having end points c and d. Assume that a=g(c), b=g(d). Let f and f be the composite functions defined as follows f(x)=f[g(x)], f(x)=x[g(x)], if f(x)=x[g(x)], if f(x)=x[g(x)] for f(x)=x[g(x)].
- 7. Assume  $feR(\propto)$  on [a,b] and assume that  $\propto$  has a continuous derivative  $\propto'$  on [a,b]. Then the Riemann integral  $\int_a^b f(x) \propto'(x) dx$  exists and we have  $\int_a^b f(x) dx \propto (x) = \int_a^b f(x) \propto'(x) dx$ .
- 8. Assume that  $\propto \uparrow$  on [a,b]. Then the following three statements are equivalent (i)  $feR(\propto)$  on [a,b].

- *f* satisfies Riemann condition with respect to  $\propto$  on [a,b].
- (iii)  $\underline{I}(f, \propto) = \overline{I}(f, \propto).$
- 9. Assume that  $\propto \uparrow$  on [a,b]. If  $feR(\propto)$  and  $geR(\propto)$  on [a,b] and if  $f(x) \leq g(x)$  for all x in [a,b], then we have  $\int_a^b f(x) \propto (x) \le \int_a^b g(x) d \propto (x)$ .

## **UNIT-III**

- 10. Assume that  $\propto$  is of bounded variation on [a,b]. Let v(x) denote the total variation of  $\propto$  on [a,x] if  $a < x \le b$ , and let v(a) = 0. Let f be defined and bounded on [a,b]. If  $f \in R(\infty)$  on [a,b] then  $f \in R(v)$  on [a,b].
- 11. Assume  $feR(\propto)$  and  $geR(\propto)$  on [a,b], where  $\propto\uparrow$  on [a,b]. Define  $F(x)=\int_a^x f(t)d\propto(t)$ and  $G(X)=\int_a^x g(t)d \propto (t), if xe[a,b]$  Then feR(G), geR(F) and the product  $f.geR(\propto)$  on [a,b] and we have  $\int_a^b f(x)g(x)d \propto (x) = \int_a^b f(x)dG(x) = \int_a^b g(x)dF(x)$ .
- 12. Let  $\propto$  be of bounded variation on [a,b] and assume that fcR( $\propto$ ) on [a,b]. Define f by the equation  $F(x)=\int_a^x f dx$ , if xe[a,b]. Then we have
  - *F* is of bounded variation on [a,b].
  - Every point of continuity of  $\propto$  is also a point of continuity of F. (ii)
  - (iii) If  $\propto \uparrow$  on [a,b], the derivative F'(x) exists at each point x in (a,b) where  $\propto$ '(x) exists and where f is continuous. For such x, we have  $F'(x)=f(x)\propto f(x)$ .
- 13. Assume that g has a continuous derivative g' on an interval [c,d]. Let f be continuous on g([c,d]) and define F by the equation  $F(x) = \int_{g(c)}^{x} f(t)dt$  if xeg([c,d]). Then, for each x in [c,d] the intergal  $\int_{c}^{x} f[g(t)]g'(t)dt$  exists and has the value F[g(x)]. In particular, we have  $\int_{g(c)}^{g(d)} f(x) dx = \int_{c}^{d} f[g(t)]g'(t) dt$ .
- 14. State and prove Riemann Stieltjes integrals depend in y on a parameter.
- 15. Let f be continuous at each point (x.y) of a rectangle  $Q = \{(x,y); a \le x \le b, c \le y \le d\}$ . Assume that  $\propto$  is of bounded variation on [a,b] and let F be the function defined on [c,d] by the equation  $F(Y)=\int_a^b f(x,y)d\propto(x)$ . Then F is continuous on [c,d]. In otherwords, if  $y_0 \in [c,d]$ , we have

 $\lim_{y\to y_0} \int_a^b f(x,y) d\propto(x) = \int_a^b \lim_{y\to y_0} f(x,y) d\propto(x) = \int_a^b f(x,y_0) d\propto(x).$ 16. State and prove Interchanging the order of Integration.

- 17. Let  $Q = \{(x,y); a \le x \le b, c \le y \le d\}$ . Assume that  $\alpha$  is of bounded variation on [a,b],  $\beta$ is of bounded variation on [c,d], and f is continuous on Q. If  $(x,y) \in Q$  define  $F(y) = \int_a^b f(x,y) dx(x)$ ,  $G(x) = \int_c^d f(x,y) d\beta(y)$ . Then  $F \in R(\beta)$  on [c,d],  $G \in R(x)$  on [a,b], and we have  $\int_c^d F(y)d\beta(y) = \int_a^b G(x)d\propto(x)$ . In otherwords, we may interchange the order of interation as follows;

 $\int_a^b \left[ \int_c^d f(x,y) d\beta(y) \right] d\infty(x) = \int_c^d \left[ \int_a^b f(x,y) d\infty(x) \right] d\beta(y).$ 

- 18. Let f be defined and bounded on [a,b] and let D denote the set of discontinuities of f in [a,b]. Then  $f \in \mathbb{R}$  on [a,b] iff D has measure zero.
- 19. State and prove Lebesgue's Criterion for Riemann Integrability.

## **UNIT-IV**

20. Let  $\sum f(m,n)$  be a given double series and let g be an arrangement of the double sequence f into a sequence G. Then

- (a)  $\sum G(n)$  converges absolutely iff  $\sum f(m,n)$  converges absolutely. Assume that  $\sum f(m,n)$  does coverge absolutely, with sum s, we have further.
- (b)  $\sum_{n=1}^{\infty} G(n) = s$ .
- (c)  $\sum_{n=1}^{\infty} f(m,n)$  and  $\sum_{m=1}^{\infty} f(m,n)$  both converge absolutely.
- (d) If  $Am = \sum_{n=1}^{\infty} f(m,n)$  and  $B_n = \sum_{m=1}^{\infty} f(m,n)$ , both series  $\sum Am$  and  $\sum B_n$  coverge absolutely and both have sum s, That is  $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} f(m,n) = \sum_{m=1}^{\infty} \sum_{m=1}^{\infty} f(m,n) = s.$
- 21. State and prove mertens Theorem.
- 22. Assume that  $\sum_{n=0}^{\infty} a_n$  converges absolutely and has sum and suppose  $\sum_{n=0}^{\infty} b_n$  converges with sum B. Then the caucy product of these two series converges and has sum AB.
- 23. If a series is converges with sum s, then it is also (c,1) summabke with cesaro sum s.
- 24. Assume that  $\sum a_n(z-z_0)^n$  converges if  $z \in B(z_0;r)$ . suppose that the equation  $f(z) = \sum_{n=0}^{\infty} a_n(z-z_0)^n$ . Then for each point  $z_1$  in s, there exists a neighbourhood  $B(z_1;R) \subseteq s$  in which f as a power series expansion of the form  $f(z) = \sum_{k=0}^{\infty} b_k(z-z_1)^k$ , where  $b_k = \sum_{n=k}^{\infty} {n \choose k} a_n(z_1-z_0)^{n-k}$ , (k=0,1,2,....)
- 25. Assume that  $\sum a_n(z-z_0)^n$  converges for each z in  $B(z_0;r)$ . Then the function f defined by the equation  $f(z)=\sum_{n=0}^{\infty}a_n(z-z_0)^n$ , if  $z\in B(z_0;r)$  has a derivative  $f^1(z)$  for each z in  $B(z_0;r)$ , given by  $f'(z)=\sum_{n=1}^{\infty}na_n(z-z_0)^{n-1}$ .
- 26. Sate and prove Bernstein Teorem.
- 27. Assume f and all its derivative are non negative on a compact interval [b,b+r]. Then, if  $b \le x < b+r$ , the Taylor's series  $\sum_{k=0}^{\infty} \frac{f^k(b)}{k!} (x-b)^k$ , converges to f(x).
- 28. State and prove Tauber's Theorem.
- 29. Let  $f(x) = \sum_{n=0}^{\infty} a_n x^n$  for -1 < x < 1, and assume that  $\lim_{n \to \infty} n a_n = 0$ . If  $f(x) \to s$ , as  $x \to 1$ -, then  $\sum_{n=0}^{\infty} a_n$  converges and has sum s.

# UNIT-V

- 30. Let  $\{f_n\}$  be a sequence of function defined on a set s. There exists a function f such that  $f_n \rightarrow f$  uniformly on s, iff the following condition is satisfied: for every  $\varepsilon > 0$  there exists on N such that m > N and n > N implies  $|f_m(x) f_n(x)| < \varepsilon$ , for every x in s.
- 31. Let  $\propto$  be of bounded variation on [a,b]. Assume that each term of the sequence  $\{f_n\}$  is a real valued function such that  $f_n \in R(\propto)$  on [a,b] for each n=1,2,... Assume that  $f_n \rightarrow f$  uniformly on [a,b] and define  $g_n(x) = \int_a^x f_n(t) d\infty(t)$  if  $x \in [a,b]$ , n=1,2,3,... Then we have;
  - (a)  $f \in R(\propto)$  on [a,b].
  - (b)  $g_n \rightarrow g$  uniformly on [a,b], where  $(x) = \int_a^x f(t) dx(t)$ .
- 32. Let  $\{f_n\}$  be a boundedly convergent sequence on [a,b]. Assume that each  $f_n \in \mathbb{R}$  on [a,b], and that the limit function  $f \in \mathbb{R}$  on [a,b]. Assume also that there is a partition p of [a,b] say  $p=\{x_0,x_1,x_2,....\}$  such that, on every sub interval [c,d] not containing any of the points  $x_k$ , the sequence  $\{f_n\}$  converges uniformly to f, Then we have  $\lim_{n\to\infty}\int_a^b f_n(t) dt=\int_a^b \lim_{n\to\infty} f_n(t) dt=\int_a^b f(t) dt$ .
- 33. Assume that each term of  $\{f_n\}$  is a real valued function having a finite derivation at each point of  $a_n$  open interval (a,b). Assume that for at least one point  $x_0$  in (a,b)

the sequence  $\{f_n(x_0)\}$  converges. Assume further that there exists a function g such that  $f_n \to g$  uniformly on (a,b).

- (a) There exists a function f such that  $f_n \rightarrow f$  uniformly on (a,b).
- (b) For each x in (a,b) the derivative f'(x) exists and equals (x).
- 34. State and prove Dirichlet's test for uniform convergence.

Let  $F_n(x)$  denote the  $n^{th}$  partial sum of the series  $\sum f_n(x)$  where each  $f_n$  is a complex valued function defined on a set s. Assume that  $\{f_n\}$  is uniformly bounded on s. Let  $\{g_n\}$  be a sequence of real valued functions such that  $g_{n+1}(x) \leq g_n(x)$  for each x in s and for every n=1,2,... and assume that  $g_n \to 0$  uniformly on s. Then the series  $\sum f_n(x)g_n(x)$  c