D.K.M COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1

DEPARTMENT OF MATHEMATICS

CLASS : II M.SC(MATHEMATICS)

SUBJECT : TOPOLOGY

SUB.CODE :15CPMA3C

UNIT – I SECTION-A 6 MARKS

- 1. Let X be a set; Let \mathfrak{B} be a basis for a topology J on X. Then J equals the collection of all unions of elements of \mathfrak{B} .
- Let X be a topological space, Suppose that e is a collection of open sets of X such that for each open set U of X and each x in U, there is an element C of e. Such that x ∈ c ⊂ U. Then e is a basis for the topology of X
- 3. The topologies of \Re_{ℓ} and \Re_k are strickly finer than the standard topology on \Re , but are not comparable with one another.
- 4. Let X be a topological space; let A be a subset of X. Suppose that for each $x \in A$ there is an open set U containing x such that $U \subset A$. Show that A is open in x.
- 5. If \mathfrak{B} is a basis for the topology of X and e is a basis for the topology of Y, then the collection D = { B x C / B $\epsilon \mathfrak{B}$ and C ϵe } is a basis for the topology of X x Y.
- 6. The collection $\delta = \{ \pi_1^{-1} (u) / U \text{ open in } X \} \cup \{ \pi_2^{-1} (u) / \text{ open in } X \}$ is a subbasis for the product topology on X x Y.
- 7. If \mathfrak{B} is a basis for the topology of X then the collection $\mathfrak{B}_y = \{ B \cap y / B \in \mathfrak{B} \}$ is a basis for the subspace topology on X.
- 8. Let Y be a subspace of X. If U is open in Y and y is open in X, then U is open in X.
- 9. Let Y be a subspace of X. If A is closed in Y and y is closed in X, then A is closed in X.
- 10.Let Y be a subspace of x, let A be a subset of Y; Let \overline{A} denote the closure of A in X. Then the closure of A in Y equals $\overline{A} \cap Y$.
- 11.Let A be a subset of the topological space X; Let A¹ be the set of all limit points of A. Then $\overline{A} = A \cup A^1$.
- 12.A subset of a topological space is closed if and only if it contains all its limit points.

- 13. Every finite point set in a Hausdroff space X is closed.
- 14.Let X be a space satisfying the T_1 axiom; Let A be a subset of X. Then the point x is a limit point of A^1 if and only if every neighbourhood of x contains infinitely many points of A.
- 15.If X is a Hausdroff space, then a sequence of points of X converges to atmost one point of X.

UNIT-II

- 1. State and prove the posting lemma.
- 2. Let f: A → X x Y be given by the equation.
 f (a) = (f₁(a), f₂(a)). Then f is continuous if and only if the functions f₁: A → X and f₂: A → Y are continuous. The maps f₁ and f₂ are called the coordinate functions of f.
- 3. State and Prove maps into products.
- 4. State and prove comparison of the box and product topologies.
- 5. Suppose the topology on each space X_{α} is given by a basis \mathfrak{P}_{α} . The collection of all sets of the form $\pi_{\alpha \in J} \mathfrak{B}_{\alpha}$ where $B_{\alpha} \in \mathfrak{B}_{\alpha}$ for each α , will serve as a basis for the box topology on $\pi_{\alpha \in J} X_{\alpha}$.
- 6. Let A_{α} be a subspace of X_{α} , for each $\alpha \in J$. Then πX_{α} is a subspace of πX_{α} if both products are given the box topology, or if both products are given the product topology.
- 7. If each space X_{α} is a hausdroff space, then πX_{α} is a Housdroff space in both the box and product topologies.
- 8. Let $\{X_{\alpha}\}$ be an indexed family of spaces, Let $A_{\alpha} \subset X_{\alpha}$ for each α . If is πX_{α} is given either the product or the box topology, then $\pi A_{\alpha = \overline{\pi A_{\alpha}}}$
- 9. Let X be a matric space with metric d, define d *d*(x, y) = min { d(x, y), 1 }. Then d

 is a metric that induces the same topology as d.
- 10.Let d^* and d^1 be two metrices on the set X; Let J and J^1 be the topologies they induces respectively. Then J^1 is finer then J if and only if for each x in X and each $\Sigma > 0$, there exists a $\delta > 0$ such that B $d^1(x, \delta) \subset B d(x, \varepsilon)$.

- 11. The uniform topology on \Re^J is finer than the product topology and coarser than the box topology; these three topologies are all different if J is finite.
- 12. State and prove the sequence lemma.
- 13. If X is a topological space, and if f, g : $X \rightarrow R$ are continuous functions, then f + g, f g, and fog are continuous. If $g(x) \neq 0$ for all x, then f / g is continuous.

UNIT-III

- 1. If Y is a subspace of X, a separation of Y is a pair of disjoint nonempty set A and B whose union is Y, neither of which contains a limit point of the other, the space Y is connected if there exists no separation of Y.
- 2. If the sets C and D form a separation of X, and if Y is a connected subspace of X, then Y lies entirely within either C or D.
- 3. The union of a collection of connected subspaces of X that have a point in common is connected.
- 4. Let A be a connected subspaces of X. If $A \subset B \in \overline{A}$, then B is also connected.
- 5. The components of x are connected disjoint subspaces of X whoses union is X, such that each nonempty connected subspace of x intersects only one of them.
- 6. A space X is locally connected if and only if for every open set U of x, each component of U is open in X.
- 7. A space X is locally path connected if and only if for every open set U of x, each path component of U is open in X.
- 8. If A is connected and if B is a set obtained from A by adjoining (or) all limits points of A. Then B is connected.
- 9. A space X is connected if and only if the only subsets of X that are both open and closed in X are the empty set and X itself.

UNIT-IV

- 1. Let Y be a subspace of X. Then Y is compact if and only if every covering of Y by sets open in X contains a finite subcollection covering Y.
- 2. Every closed subspace of a compact space is compact.

- 3. Every compact subspace of a housdroff space is closed.
- 4. Let $f : X \rightarrow Y$ be a bijective continuous function. If X is compact and Y is Housdroff, then f is a homomorphism.
- 5. Every closed interval in \Re is compact.
- 6. A subspace A of \Re^n is compact if and only if it is closed and is bounded in the Euclidean metric d or the square metric ρ .
- 7. State abd Prove : Extreme value theorem.
- 8. Let $f: X \to Y$ be continuous, where Y is an ordered set in the order topology. If X is compact, then there exists points C and d in X such that $f(c) \le f(x) \le f(d)$ for every $x \in X$.
- 9. State and prove uniform continuity theorem.
- 10.Let X be a nonempty compact Housdroff space. If X has no isolated points, then X is uncountable.
- 11.Let $f:X\to Y$ be a continuous map of the compact metric space ($X,\,dx$) to the metric space ($y,\,d_y\,$). Then f is uniformly continuous.
- 12.Let X be locally compact Housdroff; Let A be a subspace of X. If A is closed in X or open in X, then A is locally compact.
- 13.Let X be a Housdroff Space. Then X is locally compact if and only if given x in X, and given a neighbourhood U of x, there is a neighbourhood v of x such that \bar{v} is compact and $\bar{v} \subset U$.
- 14.A space X is homeomorphic to an open subspace of a compact Housdroff space if and only if X is locally compact Housdroff.

UNIT-V

- 1. Let X be a topological space.
 - (a) Let A be a subset of X. If there is a sequence of points of A converng to x, then $x \in \overline{A}$; the converse holds if X is first-countable.
 - (b) Let $f: X \to Y$. If f is continous, then for every converget sequence $X_n \to x$ in x, the sequence $f(x_n)$ converges to f (x). The converse holds if X is first countable.

- 2. Suppose that X has a countable basis. Then
 - (a) Every open covering on X contains a countable subcollection covering X.
 - (b) There exists a countable subset of X that is dense in X.
- 3. Let X be a topological space, Let one-point sets in X be closed.
 - (a) X be regular if and only if given a point x of X and a neighbourhood U of x, there is a neighbourhood v of x such that $\overline{v} \subset c$.
 - (b) X is normal if and only if given a closed set A and an open set U containing A, there is an open set v containing A such that $\bar{v} \subset c$.
- 4. Every regular space with a countable basis is normal.
- 5. Every metrizable space is normal.
- 6. Every compact Housdroft space is normal.
- 7. Every well-ordered set X is normal in the order topology.
- 8. A subspace of a completely regular space is completely regular. A product of completely regular spaces is completely regular.

UNIT-I SECTION-B 15 MARKS

- 1. Let B and B^1 be bases for the topology J and J^1 respectively, on X. Then the following are equivalent,
 - (1) \mathfrak{I}^1 is finer than J.
 - (2) For each $x \in X$ and each basis element $B \in \mathfrak{B}$ containing x, there is a basis element $B \in \mathfrak{B}$ such that $x \in B^1 \subset B$.
- 2. If A is a subspace of x and B is a subspace of Y, then the product topology on A x B is the same as the topology A x B inherits as a subspace of X x Y.
- 3. Let X be an ordered set in the order topology; Let Y be a subset of X that is convex in X, Then the order topology on Y is the same as the topology Y inherits as a subspace of x.
- 4. Let Y be a subspace of X. Then a set A is closed in Y if and only if it equals the intersection of a closed set of X with Y.
- 5. Let A be a subset of the topological space X.
 (a) Then x ∈ Ā if and only if every open set U containing x intersects A.

(b) Suppose the topology of x is given by a basis, then $x \in \overline{A}$ if and only if every basis element B containing x intersects A.

UNIT-II

- 1. Let X and Y be topological spaces; Let $f : X \rightarrow Y$ Then the following are equivalent;
 - (1) f is continuous
 - (2) for every subset A of x, on has $f(\overline{A}) \subset \overline{f(A)}$.
 - (3) For every closed set B of Y, the set f^{-1} (B) is closed in X.
 - (4) For each x ∈ X and each neighbourhood v of f(x), there is a neighbourhood U of x such that f(U) ⊂ v.
 If the contion in (4) holds for the points x of X, we say that f is continuous at the point x.
- 2. State and Prove Rules for constructing continuous mapping.
- 3. Let X, Y and Z be topological spaces,
 - (a) Constant function : If $f: X \to Y$ maps all of X into the single point of Y, then f is continuous.
 - (b) Inclusion : If A is a subspace of X, the inclsion function $j : A \to X$ is continuous.
 - (c) Composites : If $f: X \to Y$ and $g: Y \to Z$ are continuous, then the map g o $f: X \to Y$ is continuous.
 - (d) Restricting the domain: If $f : X \to Y$ is continuous, and if A is a subspace of x, then the restricted function $f / A : A \to Y$ is continuous.
 - (e) Local formulation of continunity: The map $f: X \to Y$ is continuous if x can be written as the union of opensets U_{α} such that f / U_{α} is continuous U_{α} each α .
- 4. Let $f: A \to \pi_{\alpha \epsilon J} X_{\alpha}$ be given by the equation $f(a) = (f_a(\alpha))_{\alpha \epsilon J}$, where $f_{\alpha}: A \to X_{\alpha}$ for each α . Let πX_{α} have the product topology, then the function f is continuous if and only of each function ρ_0 is continuous.
- 5. The topologies on \Re^n induced by the Euclidean matrix d and the square matrix S are the same as the product topology on \Re^n .
- 6. Let $\overline{d}(a,b) = \min\{|a-b|n\}$ be the standard bounded metrix on \Re . If X and Y are two points of \Re^m , define $D(x, y) = \sup\{\frac{\overline{d}(xi,yi)}{i}\}$. Then D is a metric that induces the product topology on \Re^w .

- 7. Let $f: X \to Y$. Let X and Y be metrizable with metrices dx and dy, respectively. Then continunity of f is equivalent to the requirement that given $x \in X$ and given $\varepsilon < 0$ there exists $\delta > 0$ such that $d_x(x, y) < \delta \Longrightarrow d_y(f(x), f(y)) < \varepsilon$.
- 8. Let $f: X \to Y$. If the function f is continuous, then for every convergent sequence $x_n \to x$ in X, the sequence f (x_n) converges to f(x). The converse holds if x is metrizable.

UNIT-III

- 1. A finite Cartesian prodruct of connected space is connected.
- 2. If L is a linear continum in the order topology, then L is connected, and so are intervals and rays in L.
- 3. State and Prove: "Intermediate value theorem".
- 4. Let f: X → Y be a continuous map, where x is a connected space and y is an ordered set in the order topology. If a and b are two points of x and if r is a point of y lying between f(a) and f(b), then there exists a point C of x such that f(c) = r.
- 5. If path components of X are path-connected disjoint subspaces of X whose union is X, such that each nonempty path connected subspaces of X intersects only one of them.

UNIT-IV

- If x is a topological space, each path component of x lies in a component of x. If x is locally path connected, then the components and the path components of x are the same.
- 2. Every compact subspace of a housdraff space is closed
- 3. The image of a compact space under a continuous map is compact.
- 4. The product of finitely many compact space is compact.
- 5. Consider the product space $X \ge Y$, where Y is compact. If N is an open set of $X \ge Y$ containing the slice $x_0 \ge y$, W is a neighbourhood of x_0 in x.
- 6. State and Prove: "The tube lemma"

- 7. Let X be a topological space, Then x is compact if and only if for every collection e of closed sets in X having the finite intersection property, the intersection $\bigcap_{c} \in c^{e}$ of all the elements of e is nonempty.
- 8. Let X be a simply ordered set having the least upper bounded property. In the order topology, each closed interval in x is compact
- 9. Let A be an open covering of the matric space (x, d). If X is compact, there is a $\delta > 0$ such that for each subset of X having diameter less than δ , there esists an element of A containing it. The number δ is called a lebesque number for the covering A.
- 10.Let $f: X \rightarrow Y$ be a continuous map of the compact metric space (x, d_x) to the metric space (y, d_y). Then f is uniformly continuous.
- 11. Compactness implies limit point compactness, but nor conversely.
- 12.Let X be a metrizable space, then the following are equivalent;
 - (1) X is compact
 - (2) X is limit point compact
 - (3) X is sequentially compact

UNIT-V

- 1. State and prove "Urysohn lemma"
- 2. Let X be a normal space; Let A and B be disjoint closed subsets of X. Let [a, b] be a closed interval in the real line. Then there exists a continuous map f: X → [a, b] such that f(x) = b for every x in B.
- 3. State and Prove : Urysohn metrization Theorem.
- 4. Every regular space X with a countable basis is metrizable.
- 5. State and Prove: Imbedding Theorem
- 6. State and Prove: Tietze Extension Theorem
- 7. Let X be a normal space; Let A be a closed subspace of X.
 - (a) Any continuous map of A into the closed interval [a, b] of \Re may be extended to a continuous map of all of x into [a, b].
 - (b) Any continuous map of A into \Re may be extended to a continuous map of all of x into \Re .