D.K.M.COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1.

COMPLEX ANALYSIS

Unit-I SECTION-A 2 Marks

- 1. Define Triangle inequality.
- 2. Prove that |z-1|=|z+i| represents the line through the origin Origin whose slope is -1
- 3. The limit of a function is unique.
- 4. Define entire function.
- 5. Define harmonic function.
- 6. Prove that $u=y^3-3x^2y$ is harmonic
- 7. If f'(z) = 0 in a domain D. then f(z) must be a constant throughout D
- 8. Define analytic function.

SECTION-B 5 Marks

- $$\begin{split} \text{1.Supposethatf(z)=u(x,y)+iv(x,y),} z_0 = & x_0 + i y_0, w_0 = u_0 + i v_0 \text{then} \\ & \lim_{z \to z_0} f(z) = & w_0 \text{ if } \lim_{(x,y) \to (x_0,y_0)} u(x,y) = u_0, \ \lim_{(x,y) \to (x_0,y_0)} u(x,y) = v_0 \end{split}$$
- 2. Explain stereographic projection.
- 3. If the derivatives are f and F exists at a points Z then
 - i. $(f \pm F)'(z)=f'(z) \pm F'(z)$
 - ii. $(f \cdot F)'(z)=f(z)F'(z)+f'(z)F(z)$

iii.
$$\left(\frac{f}{F}\right)'(z) = \frac{F(z)f'(z) - F'(z)f(z)}{(F(z))^2}$$

Provided $F(z)\neq 0$

- 4. Necessary condition for a function f to be differentiate at z_0 .suppose that f(z)=u(x,y)+iv(x,y) and f'(z) exist at $z_0=x_0+iy_0$ then the first order partial derivatives of u and v must exists at(x_0,y_0) and they satisfy Cauchy-Riemann equations. $u_x=v_y$, $u_y=-v_x$ and f'(z) can be written as $f'(z_0)=u_x+iv_x$. Where this partial derivatives are to be evaluated at(x_0,y_0).
- 5. For any function of $\phi \frac{\partial^2 \emptyset}{\partial x^2} + \frac{\partial^2 \emptyset}{\partial y^2} = \frac{4 \partial^2 \emptyset}{\partial z \partial \overline{z}}$
- 6. An analytic function with constant modulus is constant.
- 7. If f(z)=u+iv is an analytic form of z and $u-v=\frac{\cos x+\sin x-e^{-y}}{2\cos x-e^y-e^{-y}}$ find f(z) subject to the condition $f(\frac{\pi}{2})=0$

SECTION-C 10 MARKS

- 1. If f is differentiable at z_0 , then f is continuous at z_0
- 2. Sufficient condition for a function f(z) to be differentiable at z_0 .
- 3. Let the function $f(z)=u(r,v)+iv(r,\theta)$. We define throughout some ε -neighbourhood of a non-zero point $z_0=r_0\exp(iv_0)$
- 4. If f(z) is analytic function of z

Prove that
$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) = 4\left(\frac{\partial^2 z}{\partial z \partial \bar{z}}\right)$$

Prove that
$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4 |f'(z)|^2$$

- 5. Necessary condition for a function f to be differentiable at z_0 .
- 6. If $\lim_{z \to z_0} f(z) = w_0$, $\lim_{z \to z_0} f(z) = W_0$

Then

i.
$$\lim_{z \to z_0} f(z) \pm F(z) = w_0 \pm W_0$$

- ii. $\lim_{z \to z_0} f(z) \cdot F(z) = w_0 W_0$
- iii. $\lim_{z\to z_0} f(z)/f(z) = \frac{w_0}{W_0}$, where $w_0\neq 0$

UNIT -II SECTION-A

2 MARKS

- 1. ω =b+Az where A&B are complex constant.
- 2. Find the image strip 0<x<1 under the transformation w=iz
- 3. Define isogonal and conformal transformation
- 4. Define critical point .with example
- 5. Define $w=z^2$

SECTION-B 5 MARKS

- 1. Every bilinear transformation preserves the cross ratio
- 2. Find the bilinear transformation with maps $z_1=-1, z_2=0, z_3=1$ to $w_1=-1, w_2=1, w_3=i$
- 3. Every bilinear transformation which has only one fixed point acan be put in the form $\frac{1}{w-\alpha} = \frac{1}{z-\alpha} + \lambda$
- 4. Find the fixed point and bring it to the normal form of following bi-linear transformation. $\omega = \frac{(z+i)z-2}{z+i}$
- 5. Find the bi-linear transformation which transformation the half plane $R(z) \ge 0$ into the circle $|\omega| \le 1$
- 6. Find the mobius transformation which transformation the circle |z| = 1 and $|\omega| = 1$ and makes the points z=1,-1 correspondence to $\omega = 1,-1$

SECTION-C 10 MARKS

- 1. Discuss the transformation $\boldsymbol{\omega} = \frac{1}{z}$
- 2. Necessary condition for conformality.
- 3. Sufficient condition for conformality.
- 4. Discuss the transformation $\omega = e^z$
- 5. Discuss the transformation $\omega = z^2$
- 6. Find the bilinear transformation which transforms the circle

 $|z| \le \rho$ to the circle of $|\omega| \le \rho$

UNIT III SECTION-A 2 MARKS

- 1. Define arc and simple arc.
- 2. Define simple closed curve and Jordan curve.
- 3. Find the value of integral $I=\int_{c}\overline{z}\,dz$ where c is the right hand half $z=2e^{i\theta}$ $\left(-\frac{\pi}{2}\leq\theta\leq\frac{\pi}{2}\right)$ of the circle |z|=2 from z=-2i to z=2i
- 4. Define multiple connected domain.
- 5. Define Cauchy-goursat for multiple connected domain.

SECTION-B 5 MARKS

- 1. C₁ denote the contour OAB find $\int_c f(z)dz$ where f(z)=y-x-i3x²,O(0,0),A(i),B(1+i)
- **2.** I= $\int_c z^{\frac{1}{2}} dz$ where c is the semicircle z= $3e^{i\theta}$ where $0 \le \theta \le \pi$ from the point z=3 to z=-3

SECTION-C 10 MARKS

- 1. State and prove cauchy's theorem.
- 2. If a function f is analytic at a point then its derivatives of all orders at that point and they are analytic.
- 3. State and prove maximum modulas theorem.
- 4. Suppose that f(z) is analytic throughout a neighbourhood $|z-z_0| < \epsilon$ of a point z_0 . If $|f(z)| \le |f(z_0)|$ for each point z in that neighbourhood then f(z) has a constant value $f(z_0)$ throughout the neighbourhood.
- 5. State and prove maximum Cauchy integral formula.

- 1. Define convergent and divergent series.
- 2. Define maclaurin series.
- 3. Define pole.
- 4. Define essential singular point and removable singular point
- 5. Define principal part of f at z_0 .

SECTION-B 5 MARKS

- 1. Suppose that $z_n = x_n + iy_n$, n = 1, 2, ..., z = x + iy then $\lim_{n \to \infty} z_n = z \iff \lim_{n \to \infty} x_n = x$; $\lim_{n \to \infty} y_n = y$.
- 2. Suppose that $z_n = x_n + iy_n$, n=1,2...,z=x+iy then $\sum_{n=1}^{\infty} x_n = X \text{and} \sum_{n=1}^{\infty} y_n = y$
- 3. $F(z) = \frac{1}{z(z^2 3z + 2)}$ for the region
 - i. 0 < |z| < 1
 - ii. 1 < |z| < 1
 - iii. |z| > 1

SECTION-C 10 MARKS

- 1. State and prove Taylor's series.
- 2. State and prove Laurent's series.

UNIT V SECTION-A 2 MARKS

- 1. Find the poles and residues $f(z) = \frac{1}{z+z^2}$
- 2. Find the poles and residues $f(z) = \frac{1}{z^2 + a^2}$

SECTION-B 5 MARKS

1. State and prove Cauchy residue theorem.

- 2. An isolated singular point z_0 of a function f is a pole of order m iff $f(z) = \frac{\phi(z)}{(z-z_0)^m}$ where $\phi(z)$ is analytic an non-zero at z_0 and if m=1 $res_{z=z_0} f(z) = \phi(z_0)$ and if $m \ge 2$ $res_{z=z_0} f(z) = \frac{\phi^{m+(z_0)}}{m!-1}$
- 3. $\int_c \frac{z+1}{z^2-2z} dz$ where c is the circle |z| = 3
- 4. find the pole and residue $f(z) = \left(\frac{z}{2z+1}\right)^3$
- 5. find the pole and residue $f(z) = \frac{1}{z^2 + a^2}$

SECTION-C 10 MARKS

- 1. Show that $\int_0^\infty \frac{x^2 dx}{(x^2+1)(x^2+4)} = \frac{\pi}{6}$
- 2. Show that $\int_{-\infty}^{\infty} \frac{\cos 3x \, dx}{(x^2+1)^2} = \frac{2\pi}{e^3}$