D.K.M. COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1

DEPARTMENT OF MATHEMATICS

REAL ANALYSIS II

I M.Sc. MATHEMATICS EVEN SEMESTER-II

UNIT I SECTION-A

6 Marks

1. (a) assume that $f \in U(I)$ and $g \in U(I)$

Theni) $(f+g) \in u(I)$ and $\int_I (f+g) = \int_I f + \int_I g$

 $ii)cf \in U(I)$ for every constant $c \ge 0$ $\int_I cf = c \int_I f$ if $f(x) \le g(x)a$. e on I then $\int_I f \le \int_I g$.

- 2. State and prove levi theorem for upper function.
- 3. State and prove levi theorem for series of lebesgue integrable function.

SECTION-B

15 Marks

1. State and prove lebesgue dominated convergent theorem.

UNIT II SECTION-A

6 marks

- 1. If $f \in M(I)$ and if $|f(x)| \le g(x)a$ e on I for some non-negative $g \in L(I)$ then $f \in L(I)$.
- 2. Let f be defined on I.Assume that $\{f_n\}$ is sequence of measurable functions on I.Show that $f_n(x) \to f(x)a$. e on I then f is measurable on I.

SECTION-B

15 marks

- 1. State and prove differentiation under the integral sign theorem.
- 2. i) If A and B are disjoint measurable sets then $\mu(AUB) = \mu(A) + \mu(B)$

ii) If $\{A_1, A_2, \dots, A_n\}$ is countable disjoint collection of measurable sets, then

$$\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$$

UNIT III SECTION-A 6 marks

1. State and prove the Riesz fisher theorem.

- 2. State and prove chain rule.
- 3. State and prove mean value theorem.
- 4. State and prove weierstrass approximation theorem.

5. State and prove Fejer theorem.

SECTION-B

15 marks

- 1. .State and prove taylor's theorem.
- 2. State and prove Reimann lebegue lemma.
- 3. State and prove the matrix of a linear function.

UNIT IV

SECTION-A

6 Marks

- 1. Stat and prove Dirichlet's kernel theorem.
- 2. If $f \in (-\infty, \infty)$ we have

 $\lim_{n\to\infty}\int_{-\infty}^{\infty}f(t)\frac{(1-\cos\alpha t)}{t}dt=\int_{0}^{\infty}\frac{f(t)-f(-t)}{t}dt$ whenever thr lebesgue integral on the right side.

- 3. State and prove a sufficient condition for differentiablity
- 4. State and prove mean value theorem.
- 5. State and [rove chain rule theorem.

SECTION-B

15 Marks

- 1. State and prove Jordan theorem.
- 2. State and prove Riemann's localization theorem
- 3. State and prove the matrix of a linear function.

UNIT V SECTION-A 6 Marks

- 1. State and prove function with non-zero jacobian determinant.
- 2. State and prove implicit function theorem.

SECTION-B

15 Marks

- 1. State and prove inverse function theorem.
- 2. State and prove second derivative test for extreme theorem.