D.K.M.COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1.

SOLID GEOMETRY

PLANE - UNIT I (2 marks)

- 1.Define Plane?
- 2. Find the direction cosines of the normal to the plane (a) 2x-3y+6z=7 (b) x+2y+2z-1=0
- 3. Find the equation of a plane which passes through the point (2,3,4)?
- 4. Find the intercept which the plane makes with a coordinate axis 4x-3y+2z-7=0?
- 5. Find the angle between the planes 2x+4y-6z=11, 3x+6y+5z+4=0?
- 6. Find the equation of the plane which passes through the point (2,-4,5) and parallel to the plane 4x+2y-7z+6=0?
- 7. Find the equation of the plane in which (12,-4,-3) are the coordinates of the foot of the perpendicular?
- 8. Find the equation of the plane passing through (3,-3,1) and its normal to the line joining points (3,2,-1) and (2,-1,5)?
- 9. Find the equation of the plane through the origin and the line of intersection of the planes 3x-y+2z=4, x+y+z=1?
- 10. Find the length of the perpendicular drawn from the point (0,1,-1) to the plane 2x-y+2z-3=0?
- 11. Find he distance between parallel planes 12x+3y-4z+15=0, and 12x+3y-4z+2=0?

SECTION-B 5 MARKS

- 1. Find the equation of the plane passing through the points P(2,2,-1), Q(3,4,2), R(7,0,6)?
- 2. Find equation of the plane passing through the points (2,2,1) and (9,3,6) and perpendicular to the plane 2x+6y+6z=9?
- 3. Find the equation of the plane passing through the points (-1,1,1) (-1,3,2) and perpendicular to the x+2y+2z=5?
- 4. Find the equation of the plane (1,1,2) and perpendicular to the planes 2x-2y-4z=3, and 3x+y+6z=4?
- 5. Show that the given points are coplanar (0,2,-4) (-1,1,-2), (-2,3,3), and (-3,-2,1)?
- 6. Plane makes the coordinate axes A,B,C such that the centroid of the triangle ABC is (1,½,½) find the equation of the plane?
- 7. A plane meets the coordinate axis at A,B,C. The centroid of the triangle is α,β,r . Find the equation of the plane?
- 8. A variable plane passes through a fixed point a,b,c and meets the coordinate axis in A,B,C Show that the locus of the point common on the plane through A,B,C parallel to the coordinate plane is a/x+b/y+c/z=1?
- 9. Find the equation of the plane through the line of intersection of the two planes x+y+z-1=0 and 2x+y-3y+2=0 and through the point (1,1,1)?
- 10. Find the equation of the plane passing through the line of intersection of the planes 2x+y+3z-4=0, and 4x-y+5z-7=0 and is perpendicular to the plane x+3y-4z+6=0?
- 11. Find bisector plane between 3x-6y+2z+5=0 and 4x-12y+3z-3=0?

SECTION-C 10 MARKS

- 1. Find the equation of the plane making intercepts a,b,c and axis ox,oy,oz.
- 2. To find equation of the plane in term of p, the length of the perpendicular from the origin to it and l,m,n are the direction cosines of the perpendicular?
- 3. Find the equation of the plane passing through the points (2,2,1), (1,-2,3) and also parallel to the line joining points (2,1,-3) and (-1,5,-8)?
- 4. Find the equation of the plane passing through the points (2,2,1), and (1,-2,3) and also parallel to x-axis?
- 5. A variable plane which remains at a constant distance 3p from the origin and cut the coordinate axis at A,B,C . Show that the centroid of the triangle is $x^{-2} + y^{-2} + z^{-2} = p^{-2}$?
- 6. Find the ratio in which the plane ax+by+cz+d=0 divides the line joining the points x_1 ,
- 7. Find the equation of plane passing through the line of intersection of two planes 2x-5y+z=3 and x+y+4z-5=0 and parallel to the plane x+3y+6z=0
- 8. Find the equation of plane passing through the lines of intersection of the two planes x+2y+3z+2=0, and 2x+3y-z+3=0 and parallel to the lines whose direction ratios are (1,1,1)?
- 9. Show that the plane 11x+19y+31z-18=0 bisects the acute angle between the planes x+2y+2z-3=0 and 3x+4y+12+1=0?
- 10. Obtain the equation of planes which bisects the angles between the planes 2x+2y-z+1=0 and 3x+4y+12z-2=0 and check which plane bisects the acute angle in two planes?
- 11. Show that origin lies in the acute angle between the planes x+2y+2z=9, and 4x-3y+12z+13=0 find the planes bisecting the angle between them and point out which plane bisects the obtuse angle?

UNIT-II STRAIGHT LINE 2 Marks

- 1. Define straight line?
- 2. Write down formula for straight line in symmetric form?
- 3. Find the equation of the line joining the points (1,-1,2) and (4,2,3)?
- 4. Find the Angle between the lines $\frac{x+1}{2} = \frac{y+3}{2} = \frac{z-4}{-1}$ and $\frac{x-4}{1} = \frac{y+4}{2} = \frac{z+1}{2}$
- 5. Find the equation of the line passing through the point (3,2,-8) and perpendicular to the plane -3x+y+2z-2=0?
- 6. Write down formula for angle between a line and a plane?
- 7. Find the angle between the line $\frac{x+1}{2} = \frac{y-2}{3} = \frac{z-1}{6}$ and the plane $3x+y=\frac{x}{2}=\frac{y}{1}=\frac{z}{3}$
- 8. state the condition that two straight lines are coplanar.

SECTION-B 5 MARKS

- 1. Find the symmetrical form of the equation of line x+y+z-1=0=2x-y+3z+1?
- 2. Show that the line $\frac{x}{2} = \frac{y}{1} = \frac{z}{3}$ and 3x+2y+z-5=0=x+y-2z-3 are perpendicular?
- 3. Find the length of the perpendicular P(5,4,-1) and to the line $\frac{x-1}{2} = \frac{y}{9} = \frac{z}{5}$?
- 4. Find a point in between the line joining points (11,0-1) and (-9,4,5) is met by the perpendicular drawn through the origin?
- 5. Find perpendicular distance from A(-1,3,9) to the line $\frac{x-13}{5} = \frac{y+8}{-8} = \frac{z-31}{1}$?
- 6. Find the point where the line $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ meets the plane x+y+z=15?
- 7. Find the direction cosine of the straight line $\frac{2x-1}{7} = \frac{3y+2}{6} = \frac{7z+1}{10}$?
- 8. Find the equation of line which can be drawn from the point (2,-1,3) to intersect lines

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$
 and $\frac{x-4}{4} = \frac{y}{5} = \frac{z+3}{3}$ at right angles?

- 9. Find the equation of the projection of the line 3x+4y+3=0=x+2y+2z-1 on the plane x+2y+3z+1=0?
- 10. Find the distance of the point (1,2,-4) from the line $\frac{x-3}{2} = \frac{y-1}{-5} = \frac{z+2}{3}$?
- 11. Find the equation of the line with direction ratios (6,-3,2) and passing through the point (2,-1,-1). What are the co-ordinates of the two points on this line distance 7 units from the given points?

SECTION-C 10 MARKS

- 1. Show that the lines $\frac{x+1}{7} = \frac{y-4}{1} = \frac{z+3}{-4}$ and $\frac{x+10}{8} = \frac{y-1}{2} = \frac{z+1}{-3}$ are coplanar and find the equation of plane containing them?
- 2. Show that the following lines are coplanar and find the point of intersection and equation of plane of coplanarity by 3x-y-z+2=0=x-2y+3z-6 and 3x-4y+3z-4=0=2x-2y+z-1?
- 3. Find the shortest distance between the two lines $\frac{x-3}{-1} = \frac{y-4}{2} = \frac{z+2}{1}$ and $\frac{x-1}{1} = \frac{y+7}{3} = \frac{z+2}{2}$. also

find the equation of the shortest distance?

- ⁴· Find the point where the line x-2y+z=1, x+2y-2z=5 intersects the plane 2x+2y+z+6=0.
- 5 . Find the equation of plane passing through the line of intersection of 2x+y-z=3 and

5x-3y+4z+9=0 and parallel to the line $\frac{x-1}{2} = \frac{y-3}{4} = \frac{z-5}{5}$?

6. Show that the lines $\frac{x+4}{3} = \frac{y+6}{5} = \frac{z-1}{-2}$ and 3x-2y+z+5=0=2x+3y+4z-4 are coplanar. Find their point of intersection and the plane in which they lie?

- 7. Find the equation of the line which is the projection of the line $\frac{x-2}{0} = \frac{y+3}{-2} = \frac{z-3}{1}$ on the plane x-2y-z+1=0.
- 8. Show that the shortest distance between the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5}$

is
$$\frac{1}{\sqrt{6}}$$
?

- 9. Find the feet get the common perpendicular drawn to the following lines and find the length of the common perpendicular $\frac{x+2}{2} = \frac{y+6}{3} = \frac{z-34}{-10}$ and $\frac{x+6}{4} = \frac{y-7}{-3} = \frac{z-7}{-2}$?
- 10. Find the shortest distance between the lines $\frac{x-5}{3} = \frac{y-6}{-4} = \frac{z-9}{1}$ and 2x-2y+z-3=0=2x-y+2z-9?
- 11. Find the shortest distance between the lines 3x-9y+5z=0=x+y-z, 6x+8y+3z-10=0=x+2y=z-3?

 SPHERE Unit III SECTION-A 2 Marks
- 1. Define sphere?
- 2. To find the equation of the sphere whose center is (a,b,c)and radius r.
- 3. Find the equation of the sphere whose center is (-6,1,3) and radius 4.
- 4. Find the equation of the sphere on the line joining the points (2,7,5) and (8,-5,1) as diameter.
- 5. To find its radius and center. $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$ this equation of sphere?
- 6. Define coaxial system of sphere
- 7. Write the condition for two spheres cut orthogonally.
- 8. Find the equation of the tangent plane at (1,2,3) to the sphere $x^2+y^2+z^2+x+y+z=20$
- 9. Find the equation of sphere through (a,0,0), (0,b,0), (0,0,c) and (0,0,0)

SECTION-B 5 MARKS

- 1. Find the co-ordinates of the center and radius of sphere $2x^2 + 2y^2 + 2z^2 2x + 4y + 2z + 3 = 0$
- 2. Find the equation of the sphere which as its center (6,-1,2) and it touches the plane 2x-y+2z-2=0?
- 3. If $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$ this equation always represent a sphere and to find its radius and center?
- 4. Find the equation of the sphere through (0,0,0), (a,0,0), (o,b,0), (0,0,c)

Find the co-ordinates of central of the circle $x^2 + y^2 + z^2 = 30$, x + 2y + 3z = 14?

- 4. Find the equation of the sphere which passes through the point (1,-2,3) and through the circle z=0, $x^2+y^2+z^2=9$?
- 5. Find the equation of the sphere through out a circle $x^2 + y^2 + z^2 + 4x 2y + 4z 10 = 0$, $x^2 + y^2 + z^2 4 = 0$ and through out the point (2,1,1)?
- 6. Obtain the radius axis for the sphere $(x-2)^2 + y^2 + z^2 = 1, x^2 + (y-3)^2 + z^2 = 0$ and $(x+2)^2 + (y+1)^2 + (z-2)^2 = 6?$
- 7. Obtain the equation of sphere passes through (1,0,0), (0,1,0), (0,0,1) and has its center on the plane x+y+z=6?
- 8. Prove that the equation of the sphere described on the line joining the points (2,-1,4) and (-2,2,-2) as diameter is $x^2 + y^2 + z^2 y 2z 14 = 0$?

SECTION-C 10 MARKS

- 1. Find the equation of the sphere having the circle $x^2 + y^2 + z^2 2x + 4y 6z + 7 = 0$, 2x y + 2z = 5 for a great circle?
- 2. Find the limiting point of the axial system of spheres determined by the sphere $x^2 + y^2 + z^2 + 3x 3y + 6 = 0$, $x^2 + y^2 + z^2 6y 6z + 6 = 0$?
- 3. Find the equation of the sphere through the origin and coaxial with the sphere $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 + x + 2y + 3z 5 = 0$?
- 4. Find the equation of the sphere having radius 3 and passing through circle $x^2 + y^2 + z^2 + 2x + 2z 9 = 0$, 2x + 2y + 2z 3 = 0
- 5. Show that the intersection of the sphere $x^2 + y^2 + z^2 2x 4y 6z 2 = 0$ and plane x+2y+2z-20=0 is the circle of the radius $\sqrt{7}$ with the center at the point (2,4,5)?
- 6. Find the equation of the sphere passes through $x^2 + y^2 + z^2 2x 4y = 0$, x+2y+3z=8 and touches the plane 4x+3y=25?
- 7. Find the equation of sphere passes through (-4,0,-2), (-1,2,-1) and having the center on the line 5z+2x=0=2y-3z?
- 8. Find the equation of the sphere which has its center on the plane 5x+y-4z+3=0 and passing through the circle $x^2 + y^2 + z^2 3x + 4y 2z + 8 = 0$ and 4x-5y+3z-3=0?

CONE – Unit IV SECTION-A 2 Marks

- 1. Define cone?
- 2. Define Quadric cone?
- 3. Define Right circular cone?
- 4. To prove that the equation of a Quadric cone whose vertex is at the origin is homogeneous.
- 5. To show that the equation of a quadric cone passing through the x,y,z axes is of the form fyz+gzx+hxy=0?

6. Prove that the equation of the cone whose vertex is the origin and base curve z=k, f(x,y)=0 is

$$f\left(\frac{xk}{z}, \frac{yk}{z}\right) = 0$$
?

7. Equation of a right circular cone with its vertex (α, β, γ) its axis is at the line $\frac{x-\alpha}{l} = \frac{y-\beta}{m} = \frac{z-\gamma}{n}$

and semi-vericle angle is θ and its value is equal to $[l(x-\alpha)+m(y-\beta)+n(z-\gamma)]^2=$

$$[(l^2 + m^2 + n^2)(x - \alpha)^2 + (y - \beta)^2 + (z - \gamma)^2]\cos^2\theta?$$

8. Find the equation of the cone whose vertex is the origin and the guiding curve is

$$\frac{x^2}{4} + \frac{y^2}{9} + z^2 = 1, x + y + z = 1$$
?

- 9. Define enveloping cone?
- 10. To obtain the equation of the cone whose vertex is at A(x,y,z) and which envelops the sphere?
- 11. Define Reciprocal cone?
- 12. Find the enveloping cone of the sphere $x^2 + y^2 + z^2 2x + 4z = 1$ with its vertex (1,1,1)?
- 13. The condition that the plane lx + my + nz = P is a tangent plane to the coincoid $ax^2 + by^2 + cz^2 = 1$?

SECTION-B 5 MARKS

- 1. Find the equation of the cone whose vertex is at the point (α, β, γ) and whose generators intersects the conic $x^2 + y^2 + 2gx + 2fy + c = 0$, z = 0?
- 2. Find the equation of the cone whose vertex is at the point (1,1,0) and whose guiding curve is $x^2 + z^2 = 4$, y = 0?
- 3. Find the equation of the cone with the vertex is origin and passing through $x^2 + y^2 = 4$, z = 2?
- 4. Show that the equation of a right circular cone whose vertex is 0 axis oz and semi-vertical angle α is $x^2 + y^2 = z^2 \tan^2 \alpha$?
- 5. Find the equation of cone whose vertex 0 and base curve, the conic in which the surface $ax^2 + by^2 + cz^2 = 1$ is cut by the plane $l_1x + m_1y + n_1z = p$?
- 6. Fine the equation of the right circular cone whose vertex is at origin and axis is $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and semi-verticle angle is 30°?
- 7. Find the equation of the Right circular cone having the line x=y=z as it axis and 2x=-5y=3z the line as a generator?
- 8. Find the equation of a right circular cone whose vertex is (1,2,3) axis is the line x-1=y-2=z-3 and generator has directions (1,0,-2)?
- 9. Find the equation of the cone whose vertex is the origin and the base is the circle $y^2 + z^2 = b^2$, x = a further show that the section of the cone by a plane parallel to z=c, plane is a hyperbola?

10. Find the equation of the tangent plane which passes through the line x+9y-3z=0=3x-3y+6z-5, and touch the conicoid $2x^2-6y^2+3z^2=5$?

SECTION-C 10 MARKS

- 1. Find the equation of the cone with vertex at (1,1,1) and passing through the curve of intersection of $x^2 + y^2 + z^2 = 1$ and x + y + z = 1?
- 2. Find the equation of a cone whose vertex is the point (α,β,γ) and whose generating lines pass through the conic $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, z = 0$. If the section of this cone by the pane x=0 is a rectangular hyperbola, show that the locus of p is $\frac{x^2}{a^2} + \frac{y^2 + z^2}{b^2} = 1$.
- 3. The plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ meets the axis at A,B and C. Find the equation of the cone whose the guiding curve is the circle ABC?
- 4. Prove that the equation $4x^2 y^2 + 2z^2 + 2xy 3yz + 12x 11y + 6z + 4 = 0$ represents a cone whose vertex is (-1, -2, -3)?
- 5. Show that $x^2 2y^2 + z^2 + 4yz + 2zx + 6xy 12x 10y 10z + 21 = 0$ represents a cone find its vertex?
- 6. If $ax^2 + by^2 + cz^2 + 2fyz + 2gx + 2hxy = 0$ represents a right circular cone. Show that its axis is fx=gy=hz. Find the semi-vertical angle?
- 7. Determine the angle between the line of intersection of the plane x-3y+z=0 and the cone $x^2 5y^2 + z^2 = 0$?

UNIT- V CYLINDER SECTION-A 2 MARKS

- 1. Define cylinder?
- 2. Define Enveloping cylinder?
- 3. Find the equation of the right circular cylinder of radius 3 and axis $\frac{x-1}{2} = \frac{y-3}{2} = \frac{z-5}{-1}$

SECTION-B 5 MARKS

1. Find the equation of the cylinder whose generators are parallel to the line $\frac{x}{1} = \frac{y}{-2} = \frac{z}{3}$ and whose guiding curve is the ellipse $x^2 + 2y^2 = 1, z = 3$?

SECTION-C 10 Marks

- 1. Find the equation of the cylinder whose generators are parallel to z-axis and the guiding curve is $ax^2 + by^2 = cz$, lx + my + nz = P?
- 2. Find the equation of cylinder whose generator are parallel to y-axis and which passes through a curve of intersection of $x^2 + y^2 + z^2 = 3$ and x + y + z = 3

- 3. Find the equation of the right circular cylinder whose radius 3 with axis $\frac{x+2}{3} = \frac{y-4}{6} = \frac{z-1}{2}$?
- 4. Find the equation of the right circular cylinder described on the circle through the points (a,0,0), (0,a,0), (0,0,a) as a guiding curve?
- 5. Find the equation of enveloping cylinder of the sphere $x^2 + y^2 + z^2 2x 4y = 1$ having its generators parallel to the line x=y=z?