D.K.M.COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1. VECTOR ANALYSIS

CLASS: II-B.Sc. MATHEMATICS

SUB. CODE:15CMA4B

UNIT - I
 DIFFERENTIAL VECTOR CALCULUS

SECTION-A (2 MARKS)

1. Prove $\vec{F}=\operatorname{sint} \vec{i}+\operatorname{cost} \vec{j}$ (a) $\frac{d \vec{F}}{d t} \quad$ (b) $\frac{d^{2} \vec{F}}{d t^{2}}$.
2. Find $\frac{d}{d t}(\bar{A} . \bar{B})$ and $\frac{d}{d t}(\bar{A} \cdot X \bar{B})$
3. Define a vector point function.
4. If \bar{A} has a constant magnitude, show that \bar{A} and $\frac{d \bar{A}}{d t}$ are perpendicular.
5. Define a vector point function with an example.
6. Find the values of $\varphi(x, y, z)=4 y z^{2}+3 x y z-z^{2}+2$ at the points $(1,-1,2)$ and $(0,-3,1)$.

SECTION-B 5 Marks

1. If $\vec{r}=\vec{a} \cos \omega t+\vec{b} \sin \omega t$ prove that (a) $\vec{r} \times \frac{d \vec{r}}{d t}=\omega \vec{a} \times \vec{b} \quad$ (b) $\frac{d^{2} \vec{r}}{d t^{2}}+\omega^{2} \vec{r}=0$.
2. Find the unit tangent vector at the point $t=2$ given $x=1+t^{2} ; y=4 t-3, z=2 t^{2}-6 t$.
3. If $\vec{F}=e^{-t \vec{i}}+\log \left(1+t^{2}\right) \vec{j}-\operatorname{tant} \vec{k}$. Find(i) $\frac{d \vec{F}}{d t}$ (ii) $\frac{d^{2} \vec{F}}{d t^{2}}$ (iii) $\left|\frac{d^{2} \vec{F}}{d t^{2}}\right|$ at $t=0$.
4. Find the velocity \& acceleration of a partial which moves along that curve $x=2 \sin 3 t, y=2$ $\cos 3 t, z=8 t$ at any time t. Find the also the magnitudes of the velocity and acceleration.
5. Find the velocity $\&$ acceleration of a partial which moves along that curve $x=e^{-t}, y=2 \cos 3 t$, $z=2 \sin 3 t$ at any time $t=0$. Find the also the magnitudes of the velocity and acceleration.
6. Find (i) $\frac{d \vec{F}}{d t}$ (ii) $\frac{d^{2} \vec{F}}{d t^{2}}$ (ii) $\left|\frac{d \vec{F}}{d t}\right|$ (iii) $\left|\frac{d^{2} \vec{F}}{d t^{2}}\right|$. Given that $\vec{F}=\sin t \vec{i}+\operatorname{cost} \vec{j}$.
7. A partial moves along the curve $x=t^{3}+1, y=t^{2}, z=2 t+5$ where t is the time. Find the components of its velocity and acceleration at $t=1$ in the direction $\overrightarrow{\mathrm{i}}+\overrightarrow{\mathrm{j}}+3 \overrightarrow{\mathrm{k}}$.
8. Find the acceleration $x=2 \sin 3 t, y=2 \cos 3 t, z=3 t$ at $t=\frac{\pi}{2}$.
9. If $\bar{F}=\operatorname{sint} \bar{\imath}+\operatorname{cost} \bar{\jmath}+\mathrm{t} \bar{k}$, find i) $\frac{d \bar{F}}{d t} \quad$ ii) $\left.\frac{d^{2} \bar{F}}{d t^{2}} \mathrm{iii}\right)\left|\frac{d \bar{F}}{d t}\right| \quad$ iv) $\left|\frac{d^{2} \bar{F}}{d t^{2}}\right|$.
10. Find the velocity and acceleration of a moving particle $\bar{r}(t)=2 \sin 3 \mathrm{t} \bar{\imath}+2 \cos 3 \mathrm{t} \bar{j}+8 \mathrm{t} \bar{k}$.
11.If $\bar{A}=3 \mathrm{t}^{2} \bar{\imath}-(\mathrm{t}+4) \bar{\jmath}^{+}\left(\mathrm{t}^{2}-2 \mathrm{t}\right) \bar{k}$ and $\bar{B}=\operatorname{sint} \bar{\imath}+3 \mathrm{e} t \bar{\jmath}-3 \operatorname{cost} \bar{k}$. Find $\left.\frac{d^{2}}{d t^{2}} \bar{A} X \bar{B}\right)$ at $\mathrm{t}=0$.
12.If $\bar{r}=\mathrm{e}-\mathrm{t}(\bar{A} \cos 2 \mathrm{t}+\bar{B} \sin 2 \mathrm{t})$ where \bar{A} and \bar{B} are constant vectors,

Prove that $\frac{d^{2} \bar{r}}{d t^{2}}+2 \frac{d \bar{r}}{d t}+5 r=0$.
13. Find the unit tangent vector at any point on the curve $\bar{r}=\left(1+t^{2}\right) \vec{\imath}+(4 t-3) \bar{j}^{+}\left(2 \mathrm{t}^{2}-6 \mathrm{t}\right) \bar{k}$. Also find the unit tangent vector at the point $\mathrm{t}=2$.

SECTION-C
10 Marks

1. If $\vec{A}=t^{2} \vec{i}-t \vec{j}+(2 t+1) \vec{k}, \vec{B}=(2 t-3) \vec{i}+\vec{j}-t \vec{k}$
(i) $\frac{\mathrm{d}}{\mathrm{dt}}(\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}})$
(ii) $\frac{d}{d t}(\overrightarrow{\mathrm{~A}} \cdot \overrightarrow{\mathrm{~B}})$
(iii) $\frac{d}{d t}(\vec{A} \times$
$\overrightarrow{\mathrm{B}})$ at the point $\mathrm{t}=1$.
2. A particle moves along the curve $\bar{r}=2 \mathrm{t}^{2} \bar{\imath}+\left(\mathrm{t}^{2}-4 \mathrm{t}\right) \vec{J}+(3 t-5) \bar{k}$ where t is the time. Find the component of velocity and acceleration at time $t=1$ in the direction of $\vec{\imath}-3 \bar{j}+2 \bar{k}$.
3. If $\bar{r}=\bar{a} \cos w t+\bar{b} \sin w t$ where \bar{a}, \bar{b} and w are constants prove that, i) $\bar{r} \mathrm{x} \frac{d \bar{r}}{d t}=w \bar{a} \mathrm{x} \bar{b} \quad$ ii) $\frac{d^{2} \bar{r}}{d t^{2}}+\mathrm{w}^{2} \bar{r}=0$.

UNIT - II GRADIENT, DIVERGENCE AND CURL

SECTION-A 2 Marks

1. Define scalar point function.
2. Define vector point function.
3. Gradient of a scalar point function.
4. Define Divergence of a vector point function.
5. Define Curl of a vector point function.
6. Find the maximum value of the direction derivate of the function $\emptyset=2 x^{2}+3 y^{2}+5 z^{2}$ at $(1,1,-4)$.
7. If $\vec{r}=x \overrightarrow{1}+y \vec{j}+z \vec{k} \&|\vec{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$ prove that (i) $\Delta r=\frac{\vec{r}}{r}$ (ii) $\Delta \log r=\frac{\vec{r}}{r^{2}}$.
8. Show that (i) $\operatorname{grad}(\vec{r} \cdot \vec{a})=\vec{a}$.
9. Show that (i) $\operatorname{grad}[\vec{r}, \vec{a}, \vec{b}]=\vec{a} \times \vec{b}$.
10. Show that $\vec{F}=3 y^{4} z^{2} \vec{i}+4 x^{3} z^{2} \vec{j}-3 x^{2} y^{2} \vec{k}$. \vec{F} is a solenoidal.
11. Show that $\overrightarrow{\mathrm{F}}=(\sin y+z) \vec{i}+(x \cos y-z) \vec{j}+(x-y) \vec{k}$ is irrotational.
12. Define $\nabla \varphi$ and $\nabla^{2} \varphi$.
13.If $\bar{r}=\mathrm{x} \bar{l}+\mathrm{y} \bar{\jmath}+\mathrm{z} \bar{k}$, find $\operatorname{div} \bar{r}$ and $\operatorname{curl} \bar{r}$.
14.If \bar{A} and \bar{B} are irrotational, Prove that $\bar{A} X \bar{B}$ is solenoidal.
15.If $\varphi=x^{2} y^{3}$ find $\nabla \varphi$ at $(1,1,1)$.
13. Find the unit vector normal to the surface $x^{2}+3 y^{2}+2 z^{3}=6$ at the pint $(2,0,1)$.
14. Show that $\bar{F}=3 x^{2} y \vec{\imath}-4 x^{2} \vec{\jmath}+2 \mathrm{xyz} \bar{k}$ is solenoidal.
15. Find a so that $\bar{F}=\left(a x y-z^{2}\right) \vec{\imath}+\left(\mathrm{x}^{2}+2 \mathrm{yz}\right) \bar{J}^{+}\left(\mathrm{y}^{2}-\mathrm{axz}\right) \bar{k}$ is irrotational.
16. Prove that $\operatorname{grad}(\bar{r} . \bar{a})=\bar{a}$ when \bar{a} is a constant vector.
17. If $\emptyset(x, y, z)=x^{2} y+y^{2} x+z^{2}$ find $\Delta \emptyset$ at the point $(1,1,1)$.
18. If $\vec{F}=x y^{2} \vec{i}+2 x^{2} y z \vec{j}-3 y z \vec{k}$ find divergence \vec{F} and curl of \vec{F} at $(1,-1,1)$.
19. Find the directional derivates of $\varnothing(x, y, z)=x y z-x^{2} z^{3}$. The point $(1,2,-1)$ in the directional of $\overrightarrow{\mathrm{i}} \mathrm{j} \overrightarrow{\mathrm{j}}-\overrightarrow{\mathrm{k}}$.
20. Find the unit normal vector to the surface $\emptyset(x, y, z)=x^{2}+3 y^{2}+2 z 2=6$ at the point $(2,0,1)$.
21. If $\nabla \emptyset=\left(6 x y+z^{3}\right) \vec{i}+\left(3 x^{2}-z\right) \vec{j}+\left(3 x z^{2}-y\right) \vec{k}$. Find scalar potential.
22. Find \emptyset if $\nabla \emptyset=x(2 y z+1) \vec{i}+x^{2} z \vec{j}+x^{2} y \vec{k}$.
23. Find the equation of the tangent plane and normal line to the surface $x y z=4$ at the point $(1,2,2)$.
24. Find the directional derivate of $\emptyset(x, y, z)=x^{2} y z+4 x z^{2}$ at the point $(1,2,-1)$ in the direction of $2 \vec{i}_{-j} \vec{j}^{-}$ $2 \vec{k}$.
25. Find the directional derivative of $\emptyset(x, y, z)=x^{2}-2 y^{2}+4 z^{2}$ at the point $(1,1,-1)$ in the direction at $2 \vec{i}-\mathrm{j} \overrightarrow{\mathrm{j}}-\overrightarrow{\mathrm{k}}$.
26. If \vec{a} is a constant vector and $\vec{r}=x \vec{i}+y \vec{j}+z \vec{k}$ prove that $\nabla x(\vec{a} \times \vec{r})=2 \vec{a}$.
27. Show that (i) $\operatorname{grad}(\vec{r} \cdot \vec{a})=\vec{a}$ (ii) $\operatorname{grad}[\vec{r}, \vec{a}, \vec{b}]=\vec{a} \times \vec{b}$ where $\vec{a} \& \vec{b}$ are constant vectors.
28. Show that the surface $5 x^{2}-2 y z-9 x=0$ and $4 x^{2} y+z^{3}-4=0$ are orthogonal at $(1,-1,2)$.
29. Find $\mathrm{a} \& \mathrm{~b}$ so that $\mathrm{ax}^{2}-\mathrm{byz}=(\mathrm{a}+2) \mathrm{x}$ will be orthogonal to the surface $4 \mathrm{x}^{2} \mathrm{y}+\mathrm{z}^{3}=4$ at the point $(1,-1,2)$.
30. .Prove that $\nabla .\left(\frac{\phi}{\Psi}\right)=\frac{\Psi \nabla \phi-\varnothing \nabla \Psi}{\Psi^{2}}$.
31. If $\vec{F}=\left(x^{2}-y^{2}+2 x z\right) \vec{i}+(x z-x y+y z) \vec{j}+\left(z^{2}+x^{2}\right) \vec{k}$. Find the (i) $\nabla \cdot \vec{F}$, (ii) $\nabla(\nabla \cdot \vec{F})$, (iii) $\nabla \times \vec{F}$, (iv) $\nabla \cdot(\nabla \times \vec{F})$ $\&_{(}(\mathrm{v}) \nabla \times[\nabla \times \vec{F}]$ at the point $(1,1,1)$.
32. Find $\nabla\left(\frac{1}{\mathrm{r}} \cdot \overrightarrow{\mathrm{r}}\right)$ prove $\frac{2}{\mathrm{r}}$.
33. If $u=x+y+z, v=x^{2}+y^{2}+z^{2}$ and $w=x y+y z+z x$ prove that grad u. (grad $\left.v \times \operatorname{grad} w\right)=0$.
34. Let $\vec{F}(x, y, z)=3 x y \vec{i}+4 y x \vec{j}+3 z \vec{k}$. Find $\nabla \times \vec{F}$ at the point $(1,1,1)$.
35. Find a, b and c so that $\bar{F}=(\mathrm{x}+2 \mathrm{y}+\mathrm{az}) \vec{\imath}+(\mathrm{bx}-3 \mathrm{y}-\mathrm{z}) \vec{\jmath}+(4 \mathrm{x}+\mathrm{cy}+2 \mathrm{z}) \bar{k}$ is irrotational.
36. P.T $\nabla \mathrm{x}\left(\mathrm{r}^{\mathrm{n}} \bar{r}\right)=0$.
37. Find the directional derivative of $\varphi=x y+y z+z x$ is the direction of vector $2 \vec{\imath}+3 \vec{\jmath}+6 \bar{k}$ at the point $(3,1,2)$.
38. Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at the point $(2,-1,2)$.
39. Show that surfaces $5 x^{2}-2 y z-9 x=0$ and $4 x^{2} y+z^{3}-4=0$ are orthogonal at the point $(1,-1,2)$.
40. Find the angle between in normal to the surface $\emptyset(x, y, z)=x y-z^{2}$ at the points $(1,4,-2) \&(-3,-$ $3,3)$.
41. If $\vec{r}=x \overrightarrow{1}+y \vec{j}+z \vec{k} \&|\vec{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$ prove that
a. (i) $\nabla \mathrm{r}=\frac{\mathrm{r}}{\mathrm{r}}$
(ii) $\nabla\left(\frac{1}{x}\right)=\frac{\overrightarrow{-r}}{r^{3}}$
b. (iii) $\nabla r^{n}=n r^{n-2} \vec{r}$
(iv) $\nabla \mathrm{f}(\mathrm{r})=f^{\prime}(\mathrm{r}) \frac{\overrightarrow{\mathrm{r}}}{\mathrm{r}}$
c. (v) $\nabla \log r=\frac{\vec{r}}{\mathrm{r}^{2}}$
(vi) $\nabla \mathrm{f}(\mathrm{x}) \times \overrightarrow{\mathrm{r}}=0$.
42. Find the equation of the tangent plane and normal line to the surface $x^{2}+y^{2}+z^{2}=25$ at $(4,0,3)$.
43. If $\bar{v}=\bar{w} X \bar{r}$, Prove that $\bar{w}=1 / 2$ curl \bar{v} where \bar{w} is the constant vector and \bar{r} is the position vector.
44. If $\bar{r}=\mathrm{x} \vec{\imath}+\mathrm{y} \vec{\jmath}+\mathrm{z} \bar{k}$, prove that
i) $\quad \nabla \mathrm{x}[\mathrm{f}(\mathrm{r}) \bar{r}]=0$
ii) $\quad \nabla .\left(\mathrm{r}^{\mathrm{n}} \bar{r}\right)=(\mathrm{n}+3) \mathrm{r} \cdot$ deduce that $\mathrm{n}=-3$ when $\mathrm{r}^{\mathrm{n}} \bar{r}$ is solenoidal.

UNIT - III VECTOR IDENTITIES
 2 Marks

1. Define vector identities.
2. Prove that $\nabla \cdot(\vec{u}+\vec{v})=\nabla \cdot \vec{u}+\nabla \cdot \vec{v}$.
3. Prove that $\nabla \times(\vec{u}+\vec{v})=(\nabla \times \vec{u})+(\nabla \times \vec{v})$
4. Prove that $. \nabla(\varnothing \vec{u})=(\nabla . \emptyset) \vec{u}+\varnothing(\nabla \cdot \vec{u})$.
5. Prove that $\nabla(\varnothing \vec{u})=\nabla(\varnothing \times \vec{u})+\emptyset(\nabla \times \vec{u})$.
6. Prove that. $\nabla \emptyset=\nabla^{2} \emptyset$.
7. Prove that $\nabla \times \nabla \varnothing=0$.
8. If \vec{A} and \vec{B} are irrotational prove that $\vec{A} \times \vec{B}$ is a solenoidal.
9. Prove that if \vec{F} is a solenoidal curl curl curl $(\operatorname{curl} \vec{F})=\nabla^{4} \vec{F}$.
10.If \vec{a} is a constant vector prove that $\operatorname{div}\left[r^{n}[\vec{a} \times \vec{r}]\right]=0$.
10. Prove that $\nabla \times\left(\nabla r^{n}\right)=0$.
11. Prove that $\nabla[(\vec{r} \times \vec{a}) \times \vec{b}]=-2(\vec{b} \cdot \vec{a})$.
12. Prove that $\nabla .(\nabla x \bar{F})=0$.
13. Prove that $\nabla \cdot(\nabla \phi)=\nabla^{2} \boldsymbol{\phi}$

SECTION-B

5 Marks

1. Prove that $(i) \nabla \cdot(\varnothing \vec{u})=(\nabla . \emptyset) \vec{u}+\varnothing(\nabla \cdot \vec{u})$
(ii) $\nabla(\emptyset \vec{u})=\nabla(\varnothing \times \vec{u})+\varnothing(\nabla \times \vec{u})$.
2. Prove that $\nabla .(\vec{u} \times \vec{v})=\vec{v} . \nabla \times \vec{u}-\vec{u} . \nabla \times \vec{v}=\vec{v} . \operatorname{curl} \vec{u}-\vec{u} . \operatorname{curl} \vec{v}$.
3. Prove that $(\vec{u} \cdot \vec{v})=(\vec{v} \cdot \nabla) \vec{u}-(\vec{u} \cdot \nabla) \vec{v}-[(\vec{u} \cdot \nabla) \cdot \vec{v}-(\nabla \cdot \vec{v}) \vec{u}]$.
4. Prove that $\nabla(\vec{u} \cdot \vec{v})=(\vec{v} \cdot \nabla) \vec{u}+(\vec{u} \cdot \nabla) \vec{v}+\vec{v} \times(\nabla \times \vec{u})+\vec{u} \times(\nabla \times \vec{v})$.
5. Prove that $\nabla .(\nabla \times \vec{F})=0$.
6. Prove that $(\vec{v} \times \nabla) \times \vec{r}=-2 \vec{v}$.
7. Prove that $\nabla\left[\frac{f(r)}{r} \vec{r}\right]=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} f\right)$.
8. If $\vec{u}=\frac{1}{r} \vec{r}$ find $\operatorname{div} \operatorname{grad}(\vec{u})=2 / r$.
9. Prove that. $\left[r \nabla\left(\frac{1}{r^{3}}\right)\right]=3 / r^{4}$.
10. Prove that. $\left(\nabla \cdot r^{n}\right)=n(n+1) r^{n-2}$.
11. Show that $\nabla^{2}\left(e^{r}\right)=e^{r}+{ }^{2} / r e^{r}$.
12. Using the result $\nabla^{2} f(r)=\frac{d^{2} r}{d r^{2}}+\frac{2}{r} \frac{d F}{d r}$ prove that $\nabla^{4}\left(e^{r}\right)=e^{r}+\frac{4}{r} e^{r}$.
13. Prove that $(\nabla \varnothing \Psi-\Psi \nabla \varnothing)=\emptyset \nabla^{2} \Psi-\Psi \nabla^{2} \emptyset$.
14. Prove that curl curlcurl $(\operatorname{curl} \bar{F})=\nabla^{4} \bar{F}$.
15. Prove that $\nabla \mathrm{x}[(\bar{r} X \bar{a}) \times \bar{b}]=\bar{b} \times \bar{a}$.
16.If $\bar{u}=\frac{\bar{r}}{r}$ find $\operatorname{div} \bar{u}$.
16. Prove that $\nabla X(\nabla \mathrm{rn})=0$.

SECTION-C

10 Marks

1. Prove that $\nabla \times(\nabla \times \vec{F})=\nabla(\nabla . \vec{F})-\nabla^{2} \vec{F}$.
2. If \vec{a} and \vec{b} are constant vector prove that (i) $\nabla[(\vec{r} \times \vec{a}) \times \vec{b}]=-2(\vec{b} \cdot \vec{a})$
(ii) $\nabla[(\vec{r} \vec{a}) \times \vec{b}]=\vec{b} \times \vec{a}$.
3. Prove that $\nabla \times(\nabla \times \vec{F})=\nabla(\nabla . \vec{F})-\nabla^{2} F^{2}$.
4. Prove that $\nabla .\left[\mathrm{f}(\mathrm{r})_{r}^{\bar{r}}\right]=\mathrm{f}^{\prime}(\mathrm{r})+(2 / \mathrm{r}) \mathrm{f}(\mathrm{r})$.
5. Prove that $\nabla^{2} \cdot[\mathrm{f}(\mathrm{r})]=\mathrm{f}^{\prime \prime}(\mathrm{r})+(2 / \mathrm{r}) \mathrm{f}^{\prime}(\mathrm{r})$.
6. Using the result, ∇^{2}. $[f(r)]=f^{\prime \prime}(r)+(2 / r) f^{\prime}(r)$, Prove that $\nabla^{4}\left(e^{r}\right)=e^{r}+(4 / r) e^{r}$.
7. Prove that $\nabla^{2}\left[\nabla\left(\frac{r}{r 2}\right)\right]=2 / \mathrm{r}^{4}$.
8. Define line integral.
9. Define conservative vectors field.
10. Find integral $\int_{2}^{3} f(\vec{t}) d t$ where $f(\vec{t})=\left(3 t^{2}-1\right) \vec{\imath}+(2-6 t) \vec{\jmath}-4 t \vec{k}$.
11. Show that $\int_{0}^{\frac{\pi}{2}}(3 \sin t \vec{\imath}+4 \cos t \vec{\jmath}) d t$.
12. Shoe that $\int_{0}^{1}\left(e^{t} \vec{\imath}+e^{-t} \vec{\jmath}+\vec{k}\right) \mathrm{dt}$.
13. Show that $\int_{1}^{2}\left(t-t^{2}\right) \vec{\imath}+2 t^{3} \vec{\jmath}-3 \vec{k} \mathrm{dt}$.
14. Define surface integral.
15. Statement Gauss divergence theorem.
16. Evaluate $\int_{\mathrm{s}}(\mathrm{ax} \vec{\imath}+\mathrm{by} \vec{\jmath}+c z \vec{k}) \cdot \vec{n}$ ds where s is the surface of the sphere $x^{2}+y^{2}+z^{2}=1$.
17. Find the $\int_{\mathrm{s}} \int \vec{F} \cdot \vec{n}$ ds for the vector $\vec{F}=x \vec{\imath}-y \vec{\jmath}+2 z \vec{k}$ over the sphere $x^{2}+y^{2}(z-1)^{2}=1$.
18. Find $\int_{0}^{\pi / 2}(3 \sin t \bar{\imath}+2 \cos t \bar{\jmath}) d t$.
12..
13.If $\overline{f(t)}=\left(\mathrm{t}-\mathrm{t}^{2}\right) \bar{\imath}+2 t^{3} \bar{\jmath}-3 \bar{k}$, find $\int_{1}^{2} \overline{f(t)} \mathrm{dt}$.
19. Prove $\int \bar{a} \cdot \frac{d \bar{r}}{d t} \mathrm{dt}=\bar{a} \cdot \bar{r}+\bar{c}$ where \bar{a} and \bar{c} are constants.

SECTION-B

5 Marks

1. If $\vec{F}=\left(3 x^{2}+6 y\right) \vec{\imath}-14 y z \vec{\jmath}+20 x z^{2} \vec{k}$. Eveluate $\int_{C} \vec{F} d \vec{r}$ from $(0,0,0)$ to $(1,1,1)$ along the curve $\mathrm{x}=\mathrm{t}$, $\mathrm{y}=\mathrm{t}^{2}, \mathrm{z}=\mathrm{t}^{3}$.
2. Find the work done the moving a particle in the force field $\vec{F}=3 x \vec{\imath}+12 x z-y \vec{\jmath}-z \vec{k}$ from the $\mathrm{t}=0$ to $\mathrm{t}=1$ along the curve $\mathrm{x}=2 \mathrm{t}, \mathrm{y}=\mathrm{t}, \mathrm{z}=4 \mathrm{t}^{3}$.
3. If $\vec{F}=3 x^{2} \vec{i}+(2 x z-y) \vec{\jmath}+z \vec{k}$. Evaluate the $\int_{c} \vec{F}$. $d \vec{r}$ where c is the straight lint from $\mathrm{A}(0,0,0)$ to $\mathrm{B}(2,1,3)$ or find the work done in a moving particle in the force field $\vec{F}=3 x^{2} \vec{\imath}+(2 x z-y) \vec{\jmath}+z \vec{k}$ along the curve defined by $x^{2}=4 y, 3 x^{3}=8 z$ from $\mathrm{x}=0, \mathrm{x}=2$.
4. If $\vec{F}=\left[4 x y-3 x^{2} z^{2}\right] \vec{\imath}+2 x^{2} \vec{j}-2 x^{3} z \vec{k}$. Check wheather $\int_{c} . d \vec{r}$ is a independent of the path c .
5. Find $\int \vec{F}=3 x y \vec{\imath}-y^{2} \vec{j}$. C is the parabola $\mathrm{y}=2 \mathrm{x}^{2}$ from $(0,0)$ to $(1,2) \& \mathrm{x}=0$.
6. $\vec{F}=\left(x^{2}+y^{2}\right) \vec{\imath}-2 x y \vec{j}$. Rectangle $\mathrm{x}= \pm \mathrm{a}, \mathrm{y}=0, \mathrm{y}=\mathrm{b}$.
7. $\vec{F}=\left(x^{2}-y^{2}\right) \vec{\imath}+2 x y \vec{\jmath} \mathrm{c}$ is rectangle $\mathrm{m}=0, \mathrm{a}, \mathrm{y}=0, \mathrm{~b}$.
8. $\vec{F}=x^{2} \vec{\imath}+x y \vec{\jmath}$ (square $\mathrm{x}= \pm 1, \mathrm{y}= \pm 1$).
9. Find the work done by $\vec{F}=(2 x-y+2 z) \vec{\imath}+\left(x+y-z^{2}\right) \vec{\jmath}+(3 x-2 y-5 z) \vec{k} c$ is the circle xy plane $x^{2}+y^{2}=4, d z=0$.
10. $\vec{a}=e^{-t} \vec{\imath}-6(t+1) \vec{\jmath}+3 \sin \vec{k}$. Find \vec{v} and \vec{r} at $t=0$.
$11 . \vec{a}=18 \cos 3 t \vec{\imath}-8 \sin 2 t \vec{\jmath}+6 t^{2} \vec{k}$. Find \vec{v} and \vec{r} at $t=0$.
11. Find $\int_{c} \vec{F}$. $d \vec{r}$ where $\vec{F}=z \vec{\imath}+x \vec{\jmath}+y \vec{k}$ along c is $\vec{r}=\operatorname{cost} \vec{\imath}+\sin \vec{\jmath}+t \vec{k}$. $x=\cos \mathrm{t}, \mathrm{y}=\sin \mathrm{t}, \mathrm{z}=\mathrm{t}$ from $\mathrm{t}=\mathrm{o}$ to 2π.
12. Find the work done of $\vec{F}=(2 x-y+z) \vec{\imath}+\left(x+y-z^{2}\right) \vec{\jmath}+(3 x-2 y+4 z) \vec{k}$. c is the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$.
13. Evaluate $\iint_{S}\left(y^{2} z^{2} \vec{\imath}+z^{2} x^{2} \vec{j}+z^{2} y^{2} \vec{k}\right) \vec{n}$. $d s$ where s is the part of the sphere. $x^{2}+y^{2}+z^{2}=1$ above the xy plane boundered the surface s.
14. Evaluate $\int_{\mathrm{s}}(a x \vec{l}+\mathrm{by} \vec{j}+c z \vec{k}) . \vec{n}$ ds where s is the surface of the sphere $x^{2}+y^{2}+z^{2}=1$.
15. Show that $\iint_{\mathrm{s}} \vec{F} \cdot \vec{n} d s=\frac{12}{5} \pi R^{5}$ where s is the sphere, center and origin at R and $\vec{F}=x^{3} \vec{\imath}+y^{3} \vec{j}+$ $z^{3} \vec{k}$.
17.If \vec{n} is the Unit outward drawn normal to any closed surface area s show that $\iint_{S} \frac{\vec{r} \cdot \vec{n}}{r^{2}} d s=\iiint_{v} \frac{d v}{r^{2}}$.
16. Find the $\int_{s} \int \vec{F} \cdot \vec{n}$ ds for the vector $\vec{F}=x \vec{i}-y \vec{\jmath}+2 z \vec{k}$ over the sphere $x^{2}+y^{2}(z-1)^{2}=1$.
17. Shoe that $\int_{S} \vec{F} \cdot \vec{n} d s=12 / 5 \pi R^{5}$ where s is the sphere and radius R and $\vec{F}=x^{3} \vec{\imath}+y^{3} \vec{\jmath}+z^{3} \vec{k}$.

SECTION-C

 10 Marks1. The acceleration of a moving partial at the time t is given by $\vec{a}=9 t \vec{\imath}-24 t^{2} \vec{j}+4 \sin t \vec{k}$. If $\vec{r}=2 \vec{\imath}+\vec{\jmath}, \vec{v}=\frac{d \vec{r}}{d t}=-\vec{\imath}-3 \vec{k}$ at the $t=0$. Find \vec{r}.
2. If $\vec{F}=\left(3 x^{2}+6 y\right) \vec{\imath}-14 y z \vec{\jmath} 20 x z^{2} \vec{k}$. Find $\int \vec{F}$. $d \vec{r}$ from $(0,0,, 0)$ to $(1,0,0)$ along the following path (i)The straight line from $(0,0,0)$ to $(1,0,0)$ then to $(1,1,0)$ and then to $(1,1,1)$ (ii) The straight line joining $(0,0,0)$ and ($1,1,1$).
3. Find $\int_{c} \vec{F}$. $d \vec{r}$. where $(i) \vec{F}=\left(x^{2}-y^{2}\right) \vec{\imath}+2 x y \vec{\jmath}$. in c:square bowoled by $\mathrm{x}=0, \mathrm{y}=0, \mathrm{x}=\mathrm{a}, \mathrm{y}=\mathrm{a}$.
4. If $\vec{F}=y z \vec{\imath}+z x \vec{\jmath}-x y \vec{k}$. Find the $\int_{c} \vec{F}$. $d \vec{r}$ wheren $\mathrm{x}=\mathrm{t}, \mathrm{y}=t^{2}, z=t^{3}$ from $\mathrm{P}(0,0,0)$ to $\mathrm{Q}(2,4,8)$.
5. Evaluate $\iint_{S} \vec{F} . \hat{n} d s$ where $\vec{F}=y z \vec{\imath}+z x \vec{\jmath}+x y \vec{k}$. s is the part of the surface of the sphere $x^{2}+y^{2}+$ $z^{2}=1$ which lies in the first octant.
6. Evaluate $\iint_{S} \vec{F} . \hat{n}$ ds where $\vec{F}=z \vec{\imath}+x \vec{\jmath}-y \vec{k}$ and s is the first optional between the planes $z=0$ \& $z=2$.
7. Verify Gauss theorem $\vec{F}=x \vec{\imath}+y \vec{\jmath}+z \vec{k}$ taken over the region boundered by the plane $\mathrm{x}=0, \mathrm{x}=\mathrm{a}$, $y=0, y=a, z=0, z=a$.
8. Verify the divergence theorem $\vec{F}=4 x \vec{i}-2 y^{2} \vec{j}+z^{2} \vec{k}$ taken over the region the boundered by $x^{2}+y^{2}+z^{2}=4, z=0, z=3$.
9. Evaluate $\iint_{S}\left(y^{2} z^{2} \vec{\imath}+z^{2} x^{2} \vec{j}+z^{2} y^{2} \vec{k}\right) \vec{n}$. $d s$ where s is the part of the sphere $x^{2}+y^{2}+z^{2}=1$ above the xy plane boundered the surface s.
10. Evaluate $\iint_{S}\left(x^{3} \vec{\imath}+y^{3} \vec{\jmath}+z^{3} \vec{k}\right) \vec{n} d s$ where s is the surface of the sphere $x^{2}+y^{2}+z^{2}=16$.
11. Evaluate $\iint_{S}\left(y^{2} z^{2} \vec{\imath}+z^{2} x^{2} \vec{\jmath}+x^{2} y^{2} \vec{k}\right) d \vec{s}$ where s is the upper part of the sphere $x^{2}+y^{2}+z^{2}=9$ above the xy plane.
12. Define stoke`s theorem.
13. Define green`s theorem.
14. Find the area of the ellipse $\mathrm{x}=\mathrm{a} \cos \theta, \mathrm{y}=\sin \theta$.
15. Find the area of the ellipse using Green's theorem.
16. Prove that area bounded by simple closed curve C is $\int_{C} x d y-y d x$
17. If $\boldsymbol{\phi}$ is the scalar function, using Stoke's theorem, Prove that $\operatorname{curl}(\operatorname{grad} \phi)=0$

SECTION-B 5 Marks

1. Verify stoke`s stheorem for $\vec{F}=(2 x-y) \vec{\imath}-y z^{2} \vec{j}-y^{2} z \vec{k} s$ upper half sphere $x^{2}+y^{2}+z^{2}=1$ and c is the bbounded.
2. Show that $\int_{C} \vec{A} \times \vec{r} d \vec{r}=2 \iint_{S} \vec{n} \vec{A}$ dr where A is a constant vector.
3. Prove that $\int_{c} \vec{r} \cdot d \vec{r}=0$.
4. If \varnothing is a scalar point function use stoke`s theorem prove that curl $(\operatorname{grad} \emptyset)=0$
5. Use stoke`s theorem to evaluate $\iint_{S} \nabla \overrightarrow{\times F} \cdot \vec{n} d s$ where s is the upper half of the hemisphere of radius a center at the origin and $\vec{F}=2 y \vec{\imath}-x \vec{\jmath}+z \vec{k}$.
6. Find the area for the four leafed rose $r=3 \sin 2 \theta$.
7. Find the area of the curve $x^{2 / 3}+a^{2 / 3}$ using green`s theorem.
8. Find the area between the parabola $y^{2}=4 x$ and $x^{2}=4 y$.
9. Compute $\int_{c}\left(x y-x^{2}\right) d x+x^{2} y d y$ over the triangle boundered by the lines $\mathrm{y}=0, \mathrm{x}=1, \mathrm{y}=\mathrm{x}$, and verify the green`s theorem.
10. Find the area between the parabola, $y^{2}=4 x$ and $x^{2}=4 y$

SECTION-C

10 Marks

1. Verify the stokes theorem for $x^{2} \vec{\imath}+x y \vec{\jmath}$ taken round the square in the xy plane whose rides are $x=0, x=a, y=0, y=a$.
2. Verify the stoke's theorem when $\vec{F}=y \vec{\imath}+z \vec{\jmath}+x \vec{k}$ and surface s is the part of the sphere $x^{2}+y^{2}+z^{2}=1$.
3. Verify the st0ke`s theorem for $\vec{F}=(y-z+2) \vec{\imath}+(y z+4) \vec{\jmath}-x z \vec{k}$ over the surface of a cube $\mathrm{x}=0$, $\mathrm{y}=0, \mathrm{z}=0, \mathrm{x}=2, \mathrm{y}=2$, above xoy plane (open at the bottom).
4. Verify the stokes theorem for the function over the $\vec{F}=\left(x^{2}+y-4\right) \vec{\imath}+3 x y \vec{\jmath}+\left(2 x z+z^{2}\right) \vec{k}$ over the surface of the hemisphere $x^{2}+y^{2}+z^{2}=16$ above the xy plane.
5. Verify the stoke's theorem for the function $\vec{F}=(x+y) \vec{\imath}+(2 x-z) \vec{j}+(y+z) \vec{k}$ taken over the triangle ABC cut from the plane $3 \mathrm{x}+2 \mathrm{y}+\mathrm{z}=6$ by the co-ordinate plane.
6. Verify green`s theorem in the plane for $\oint\left(x y+y^{2}\right) d x+x^{2} d y$ where c is the chord curve of the region bounded by $\mathrm{y}=\mathrm{x}$ and $\mathrm{y}=x^{2}$.
7. Verify the green`s theorem in the plane for $\int_{c}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ where c is the bounded of the region defined by $y=\sqrt{x}$ and $y=x^{2}$.
8. Verify green's theorem in the plane $\int_{c}\left[\left(x^{2}-2 x y\right) d x+\left(x^{3} y+1\right) d y\right]$ where c is the boundary given by $\mathrm{y}^{2}=8 \mathrm{x}$ and $\mathrm{x}=2$.
9. Verify Stoke's theorem for $F=(y-z+2) \bar{\imath}-(y z+4) \bar{\jmath}-x z \bar{k}$ over the cube $x=0, y=0, z=0, x=2, y=2, z=2$.
10. Verify Green's theorem for $\int_{C}\left(x y-x^{2}\right) d x+x^{2} y d y$ over the triangle bounded by the lines $x=1, x=y$, $\mathrm{y}=0$.
