D.K.M. COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1 SEMESTER EXAMINATIONS
 APRIL - 2018
 DIFFERENCE EQUATIONS

Time : 3 Hours
Max. Marks: 75

SECTION - A (5 x $6=30$)

Answer ALL the questions.

1. (a) State and prove Abel's theorem.
(Or)
(b) Show that the operators Δ and E are linear.
2. (a) State and prove variation of constant formula.
(b) Let B be a $K \times K$ non singular matrix. Let m be any positive integer then there exist some $K \times K$ matrix C such that $C^{m}=B$.
3. (a) Obtain the inverse Z transformation of $\bar{x}(z)=\frac{z(z-1)}{(z-2)^{2}(z+3)}$
(Or)
(b) The zero solution of $x(n+1)=A x(n)+\sum_{j=0}^{n} B(n-j) x(j)$ is uniformly stable, if and only if
(i) $z-A-\bar{B}(z) \neq 0 \forall|z|>1$
(ii) If z_{r} is a zero of $g(z)$ with $\left|z_{r}\right|=1$ then the residue of $z^{n} g^{-1}(z)$ at z_{r} is bounded as $n \rightarrow \infty$.
4. (a) Find the Asymptotic estimates of a fundamental set of solutions of

$$
\begin{array}{r}
y(n+1)=[A+B(n)] y(n) \\
\text { Where } A=\left[\begin{array}{lll}
2 & 2 & 1 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{array}\right] \quad B(n)=\left[\begin{array}{ccc}
\frac{1}{n^{2}+1} & 0 & (0.5)^{n} \\
0 & (0.2)^{n} & 0 \\
e^{-n} & 0 & \frac{\log n}{n^{2}}
\end{array}\right] . \\
(\text { Or })
\end{array}
$$

(b) Verify whether the difference system $x(n+1)=D(n) x(n)$ with

$$
D(n)=\left[\begin{array}{cccc}
1+\frac{1}{n+1} & 0 & 0 & 0 \\
0 & 0.5 & 0 & 0 \\
0 & 0 & n+1 & 0 \\
0 & 0 & 0 & \frac{1}{n+2}
\end{array}\right] \text { possess an ordinary dichotomy. }
$$

5. (a) If $c(n) \geq a(n)>0$ for all $n>0$ and $z(n)>0$ is a solution of $c(n) z(n)+\frac{1}{z(n-1)}=1$ then the equation

$$
\begin{equation*}
a(n) y(n)+\frac{1}{y(n-1)}=1 \text { has a solution } y(n) \geq z(n)>1 \forall n \in z^{+} . \tag{Or}
\end{equation*}
$$

(b) Determine the oscillatory behaviour of all solutions of $\Delta[n \Delta x(n-1)]-\frac{1}{n} x(n)=0$.

SECTION - B ($3 \times 15=45$)

Answer any THREE of the following questions.

6. If $1+P_{1}+P_{2}>0,1-P_{1}+P_{2}>0,1-P_{2}>0$ are necessary and sufficient condition for the equilibrium point of the equation $y(n+2)+P_{1} y(n+1)+P_{2} y(n)=0$.
7. Solve the system $x(n+1)=A x(n)$ where $x(0)=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and $A=\left(\begin{array}{ccc}3 / 2 & 1 / 2 & 1 / 2 \\ 1 / 2 & 5 / 2 & -1 / 2 \\ 0 & 1 & 2\end{array}\right)$
8. Solve the difference equation $x(n+4)+9 x(n+3)+30 x(n+2)+24 x(n)+44 x(n+1)=0$, $x(0)=0, x(1)=0, x(2)=1, x(3)=-10$
9. State and prove POINCARE theorem.
10. State and prove STRUM SEPERATION theorem.
