Dog No						
Reg.No.						
U						

D.K.M.COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1 SEMESTER EXAMINATIONS

APRIL - 2017

15CCA4A

RESOURCE MANAGEMENT TECHNIQUES

Time: 3 Hrs Max. Marks: 75

SECTION-A $(10 \times 2 = 20)$

Answer ALL questions.

- 1. Define Operations Research.
- 2. Define Modeling.
- 3. Define Slack Variable.
- 4. Define Surplus Variable.
- 5. What is Assignment Problem?
- 6. What is Duality?
- 7. Write the mathematical formulation of transportation problem.
- 8. Explain Transportation Problem.
- 9. What is Saddle Point?
- 10. What is two person zero sum game?

SECTION-B $(5 \times 5 = 25)$

Answer any FIVE of the following questions.

- 11. Write the characteristics of operation research.
- 12. Solve graphically

Maximize
$$Z = 4x_1 + 3x_2.$$
Subject to constraints
$$2x_1 + x_2 \le 100,$$

$$x_1 + x_2 \le 800,$$

$$0 \le x_1 \le 400,$$

$$0 \le x_2 \le 700.$$

13. Construct the dual of the problem,

Maximize
$$Z = 3x_1 + 17x_2 + 19x_3$$
.
Subject to constraints $x_1 - x_2 + x_3 \ge 3$,
 $-3x_1 + 2x_3 \le 1$,
 $2x_1 + x_2 - 5x_3 \le 1$,
where $x_1, x_2, x_3 \ge 0$.

14. Solve by using simplex method,

Maximize
$$Z = 5x_1 + 3x_2.$$
Subject to constraints
$$x_1 + x_2 \le 2,$$

$$5x_1 + 2x_2 \le 10,$$

$$3x_1 + 8x_2 \le 12,$$
where $x_1, x_2 \ge 0.$

15. Find the minimum value of the following assignment problem.

	I	II	III	IV	V
I	11	17	8	16	20
II	9	7	12	6	15
III	13	16	15	12	16
IV	21	24	17	28	26
V	14	10	12	11	15

16. Solve by using dominance property.

17. Solve by using north west corner method.

Demand

18. Find the optimal assignment schedule.

SECTION-C $(3 \times 10 = 30)$

Answer ALL questions.

19. (a) Solve by using big – M method.

Max
$$Z = 3x_1 - x_2$$
.
Subject to $2x_1 + x_2 \le 2$,
 $x_1 + 3x_2 \ge 3$,
 $x_2 \le 4$.

(Or)

- (b) Write the scope of operations research.
- 20. (a) Solve the following problem by using
 - (i) Least cost method,
 - (ii) Vogels approximation method.

(b) Solve the following game using graphical method,

$$\begin{array}{c|cccc}
 & B1 & B2 \\
 & A1 & -6 & 7 \\
 & A2 & 4 & -5 \\
 & A3 & -1 & -2 \\
 & A4 & -2 & 5 \\
 & A5 & 7 & -6
\end{array}$$

21. (a) Solve the following game
$$\begin{bmatrix} 3 & -2 \\ -2 & 5 \end{bmatrix}$$
.

(Or)

(b) Solve the L.P.P by using simplex method

Max
$$Z = 3x_1 + 4x_2$$
.
Subject to $x_1 + x_2 \le 450$,
 $2x_1 + x_2 \le 600$,
Where $x_1, x_2 \ge 0$.

* * * * * * *