Time : 3 Hours

SECTION – A $(5 \times 6 = 30)$

Answer ALL the questions.

1. (a) Assume that both f and g are of bounded variation on [a, b]. Prove that f.g is of bounded variation and $V_{f,g} \leq AV_f + BV_g$. Can $\frac{1}{f}$ be of bounded variation? Give explanation.

(Or)

(b) Let $\sum a_n$ be an absolutely convergent series having sum s. Prove that every rearrangement of $\sum a_n$ also converges absolutely and has sum s.

(Or)

- 2. (a) Assume that $c \in (a, b)$. If the Riemann Stieltjes integrals $\int_a^c f \, d\alpha$ and $\int_c^b f \, d\alpha$ exist, prove that $\int_a^b f \, d\alpha$ also exist and $\int_a^b f \, d\alpha = \int_a^c f \, d\alpha + \int_c^b f \, d\alpha$.
 - (b) If $f \in R(\alpha)$ on [a, b], then prove that $\alpha \in R(f)$ on [a, b] and $\int_{a}^{b} f(x)d \alpha(x) + \int_{a}^{b} \alpha(x) d f(x) = f(b)\alpha(b) - f(a)\alpha(a).$
- 3. (a) If f is continuous on [a, b] and if α is of bounded variation on [a, b], then prove that $f \in R(\alpha)$ on [a, b].

(Or)

- (b) State and prove the second mean value theorem for Riemann integrals.
- 4. (a) State and prove Tauber's theorem.

(Or)

- (b) Prove that the infinite product πu_n converges if and only if for every $\varepsilon > 0$, there exists an N such that n > N implies $|u_{n+1}, u_{n+2} \dots u_{n+k} 1| < \varepsilon$ for $k = 1, 2, \dots$
- 5. (a) Let $\{f_n\}$ be a sequence of functions defined on a set S. Prove that there exists a function f such that $f_n \to f$ uniformly on S if and only if, the following condition is satisfied: For every $\varepsilon > 0$, there exists an N such that m > N and n > N implies $|f_m(x) - f_n(x)| < \varepsilon$, for every x in S.

(Or)

(b) Give an example of a sequence of functions f_n on [0, 1] such that $\{f_n\}$ converges in the mean but $\{f_n(x)\}$ does not converge at any point x in [0, 1].

Max. Marks : 75

SECTION -B (3 x 15 = 45)

Answer any THREE of the following questions.

- 6. Let f be continuous on [a, b]. Prove that f is of bounded variation on [a, b] if and only if f can be expressed as the difference of two increasing continuous functions.
- 7. If $\alpha \nearrow on [a, b]$, prove that the following statements are equivalent.
 - i. $f \in R(\alpha)$ on [a, b].
 - ii. f satisfies Riemann's condition with respect to α on [a, b].
 - *iii.* $I(f, \alpha) = \overline{I}(f, \alpha)$.
- 8. Let f be defined and bounded on [a, b] and let D devote the set of discontinuities of f in [a, b]. Prove that $f \in R$ on [a, b] if and only if D has measure zero.
- 9. a) State and prove Merten's theorem. (10Marks)
 b) If a series is convergent with sum S, prove that it is also (C, 1) summable with Cesaro sum S. (5Marks)
- 10. a) Assume that f_n → f uniformly on a set S. If each f_n is continuous at a point c of S, then prove that the limit function f is also continuous at c. (5Marks)
 b) State and prove the Dirichlet's test for uniform convergence of the series ∑ f_n(x). g_n(x). (10Marks)
