Reg No:

\square

D.K.M.COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1 SEMESTER EXAMINATIONS

Time: 3 Hrs

Max.Marks : 75

SECTION-A (5x $6=30$)

Answer ALL the questions.

1. (a)If G is a tree then prove that $\varepsilon=v-1$.
(Or)
(b)In any graph, the number of vertices of odd degree is even.
2. (a)Prove that a nonempty connected graph is Eulerian if and only if it has no vertices of odd degree. (Or)
(b) Show that if G is simple and 3-regular, then $K=K^{\prime}$.
3. (a) Show that a tree has at most one perfect matching.
(Or)
(b) If G is bipartite, then $\chi^{\prime}=\Delta$.
4. (a) A subset S of V is an independent set of G if and only if $\backslash S$ is a covering of G.
(Or)
(b) If G is k-critical, then $\delta \geq k-1$.
5. (a)If G is a simple planar graph, with $\gamma \geq 3$, then $\in \leq 3 v-6$.
(Or)
(b) Without using Euler's formula, prove that complete graph K_{5} is non-planar.

SECTION-B (3x15 =45)

Answer any THREE of the following questions.

6. (i) Prove that a graph is bipartite if and only if it contains no odd cycle.
(10)
(ii) Prove that every non-trivial tree has at least two vertices of degree one.
7. (i) If G is a simple graph with $\gamma \geq 3$ and $\delta \geq \gamma / 2$ then prove that G is Hamiltonian.
(ii)With usual notations prove that $k \leq k^{\prime} \leq \delta$.
8. Let G be a bipartite graph with bipartition (X, Y). Then prove that G contains a matching that saturates every vertex of X if and only if $N(S) \geq|S|$ for all $S \subseteq X$. Hence prove that a regular bipartite graph has a perfect matching.
9. In usual notations, prove that if $\delta>0$ then prove that $\alpha^{\prime}+\beta^{\prime}=v$.
10. (i) State and prove Euler's formula for plane graphs.
(ii) Prove that every planar graph is five vertex colourable.
