
E RESOURCES

1

D.K.M.COLLEGE FOR WOMEN

(AUTONOMOUS), VELLORE

E CONTENT TITLE: BSCS 65/

 BSCA 65 ASP .NET

DEPARTMENT : (B.Sc CS / BCA)

DESIGNED BY : 1. Mrs.B. Arulmozhi, M. Phil.,

 2. Mrs. K.Ayesha, M. Phil.,

 3. Mrs. S.Shanthi, M.Phil.,

 4. Mrs. V. Lakshmi Pratha, M.Phil.,

 5. Mrs. P.Ramya, M.Phil.,

eRESOURCES
 Digital Learning

E RESOURCES

2

UNIT - I

Skilled Based Subject IV

ASP .NET

 UNIT I : ASP.NET Basics

 Introduction to ASP.NET: .NET Framework (CLR, CLI, BCL), ASP.NET

Basics, ASP.NET Page Structure, Page Life Cycle. Controls: HTML Server

Controls, Web Server Controls, Web User Controls, Validation Controls,

Custom Web Controls.

UNIT II: Form

 Form validation: Client side validation, Server side validation, Validation

Controls: Required Field Comparison Range, Calendar Control, Ad rotator

Control, Internet Explorer Control. State Management: View State, Control

State, Hidden Fields, Cookies, Query Strings, Application State, Session

State.

UNIT III: ADO.NET

Architecture of ADO .NET, Connected and Disconnected Database, Create

Database, Create connection Using ADO.NET Object model, Connection

Class, Command Class, Data Adapter Class, Dataset Class, Display data on

data bound controls and Data Grid.

UNIT IV: Database accessing

Database accessing on Web Applications: Data Binding Concept with web,

Creating Data Grid, Binding standard web server controls, Display data on

web form using Data Bound Controls.

UNIT V: XML

Writing Datasets to XML, Reading datasets with XML. WEB services: Remote

method call using XML, SOAP, Web service description language, Building

and Consuming a web service, Web Application deployment.

E RESOURCES

3

Textbook:

Professional ASP.NET 1.1 Bill Evjen , Devin Rader , Farhan Muhammad,

Scott Hanselman , Srivakumar

REFERENCE BOOKS:

1. Introducing Microsoft ASP .NET 2.0 Esposito PHI

2. Professional ADO.NET BipinJoshi,Donny Mack, Doug Seven , Fabio

Claudio Ferracchiati, Jan D NarkiewiezWrox

3. Special Edition Using ASP.NET Richard Leineker Person Education

 4. The Complete Reference ASP.NET Matthew MacDonald TMH

 5. ASP.NET Black Book Dream Tech

UNIT – I

ASP.NET BASICS

1.1. INTRODUCTION TO ASP.NET

 ASP.NET is a web application framework designed and developed by

Microsoft. ASP.NET is open source and a subset of the .NET

Framework and successor of the classic ASP (Active Server Pages).

 With version 1.0 of the .NET Framework, it was first released in

January 2002. The technology used before the year 2002 for

developing web applications and services is Classic ASP. So before

.NET and ASP.NET there was Classic ASP.

 ASP.NET is built on the CLR(Common Language Runtime) which

allows the programmers to execute its code using any .NET

language(C#, VB etc.). It is specially designed to work with HTTP and

for web developers to create dynamic web pages, web applications,

web sites, and web services as it provides a good integration of HTML,

CSS, and JavaScript.

https://www.geeksforgeeks.org/introduction-to-net-framework/
https://www.geeksforgeeks.org/introduction-to-net-framework/
https://www.geeksforgeeks.org/common-language-runtime-clr-in-c-sharp/

E RESOURCES

4

 .NET Framework is used to create a variety of applications and

services like Console, Web, and Windows, etc. ASP.NET is only used to

create web applications and web services. That’s why we termed

ASP.NET as a subset of the .NET Framework.

 Below table illustrates the ASP.Net Version History:

YEAR VERSION

2002 1.0

2003 1.1

2005 2.0

2006 3.0

2007 3.5

2008 3.5 SP 1

2010 4.0

2012 4.5

2013 4.5.1

2014 4.5.2

2015 4.6

2015 4.6.1

2016 4.6.2

2017 4.7

2017 4.7.1

E RESOURCES

5

 What is Web Application?

A Web Application is an application installed only on the web server

which is accessed by the users using a web browser like Microsoft

Internet Explorer, Google Chrome, Mozilla firefox, Apple Safari etc.

There are also some other technology like Java, PHP, Perl, Ruby on

Rails, etc. This can be used to develop web applications. Web

applications provide the cross-platform feature. The user needs only a

web browser to access a web application. The web applications which

are developed using the .Net Framework or its subsets required to

execute under the Microsoft Internet Information Services (IIS) on the

server side. The work of IIS is to provide the web application’s

generated HTML code result to the client browser which initiated the

request as shown in the below diagram

Figure 1.1 Working of IIS

1.2. NET FRAMEWORK ARCHITECTURE

 The .Net framework is a software development platform developed by

Microsoft.

 The framework was meant to create applications, which would run on

the Windows Platform.

 The first version of the .Net framework was released in the year 2002.

 The version was called .Net framework 1.0.

E RESOURCES

6

 The .Net framework has come a long way since then, and the current

version is 4.7.1.

 The .Net framework can be used to create both Form-based and Web-

based applications.

 Web services can also be developed using the .Net framework.

 The framework also supports various programming languages such as

Visual Basic and C#. So developers can choose and select the

language to develop the required application.

 The basic architecture of the .Net framework is as shown below.

Figure 1.2 .Net Framework Architecture

.NET COMPONENTS

The architecture of the .Net framework is based on the following key

components;

E RESOURCES

7

1.2.1. COMMON LANGUAGE RUNTIME (CLR)

 The .NET Framework provides a run-time environment called the

common language runtime, which runs the code and provides

services that make the development process easier.

 Compilers and tools expose the common language runtime's

functionality and enable to write code that benefits from this

managed execution environment.

 Code that has to develop with a language compiler that targets the

runtime is called managed code; it benefits from features such as

cross-language integration, cross-language exception handling,

enhanced security, versioning and deployment support, a simplified

model for component interaction, and debugging and profiling

services.

 To enable the runtime to provide services to managed code, language

compilers must emit metadata that describes the types, members,

and references in the code.

 Metadata is stored with the code; every loadable common language

runtime portable executable (PE) file contains metadata. The runtime

uses metadata to locate and load classes, lay out instances in

memory, resolve method invocations, generate native code, enforce

security, and set run-time context boundaries.

 The runtime automatically handles object layout and manages

references to objects, releasing them when they are no longer being

used. Objects whose lifetimes are managed in this way are called

managed data.

 Garbage collection eliminates memory leaks as well as some other

common programming errors. If your code is managed, you can use

managed data, unmanaged data, or both managed and unmanaged

data in your .NET Framework application. Because language

compilers supply their own types, such as primitive types, you might

not always know (or need to know) whether your data is being

managed.

E RESOURCES

8

 The common language runtime makes it easy to design components

and applications whose objects interact across languages. Objects

written in different languages can communicate with each other, and

their behaviours can be tightly integrated. For example, you can

define a class and then use a different language to derive a class from

your original class or call a method on the original class. You can also

pass an instance of a class to a method of a class written in a different

language.

 This cross-language integration is possible because language

compilers and tools that target the runtime use a common type

system defined by the runtime, and they follow the runtime's rules for

defining new types, as well as for creating, using, persisting, and

binding to types.

 As part of their metadata, all managed components carry information

about the components and resources they were built against. The

runtime uses this information to ensure that your component or

application has the specified versions of everything it needs, which

makes your code less likely to break because of some unmet

dependency.

 Registration information and state data are no longer stored in the

registry where they can be difficult to establish and maintain. Instead,

information about the types you define (and their dependencies) is

stored with the code as metadata, making the tasks of component

replication and removal much less complicated.

 Language compilers and tools expose the runtime's functionality in

ways that are intended to be useful and intuitive to developers. This

means that some features of the runtime might be more noticeable in

one environment than in another.

 The runtime provides the following benefits:

o Performance improvements.

o The ability to easily use components developed in other

languages.

o Extensible types provided by a class library.

E RESOURCES

9

o Language features such as inheritance, interfaces, and

overloading for object-oriented programming.

o Support for explicit free threading that allows creation of

multithreaded, scalable applications.

o Support for structured exception handling.

o Support for custom attributes.

o Garbage collection.

o Use of delegates instead of function pointers for increased type

safety and security.

1.2.2. COMMON LANGUAGE INFRASTRUCTURE (CLI)

The "Common Language Infrastructure" or CLI is a platform on which the

.Net programs are executed.

The CLI has the following key features:

 Exception Handling - Exceptions are errors which occur when the

application is executed.

Examples of exceptions are:

o If an application tries to open a file on the local machine, but

the file is not present.

o If the application tries to fetch some records from a database,

but the connection to the database is not valid.

 Garbage Collection - Garbage collection is the process of removing

unwanted resources when they are no longer required.

Examples of garbage collection are

o A File handler which is no longer required. If the application has

finished all operations on a file, then the file handle may no

longer be required.

E RESOURCES

10

o The database connection is no longer required. If the application

has finished all operations on a database, then the database

connection may no longer be required.

 Working with Various programming languages –

As noted in an earlier section, a developer can develop an application in a

variety of .Net programming languages.

1. Language - The first level is the programming language itself, the most

common ones are VB.Net and C#.

2. Compiler – There is a compiler which will be separate for each

programming language. So underlying the VB.Net language, there will

be a separate VB.Net compiler. Similarly, for C#, you will have another

compiler.

3. Common Language Interpreter – This is the final layer in .Net which

would be used to run a .net program developed in any programming

language. So the subsequent compiler will send the program to the

CLI layer to run the .Net application.

E RESOURCES

11

Figure 1.2.2 Working of CLI

1.2.3. BASIC CLASS LIBRARY (BCL)

The .NET Framework includes a set of standard class libraries. A class

library is a collection of methods and functions that can be used for the core

purpose.

For example, there is a class library with methods to handle all file-level

operations. So there is a method which can be used to read the text from a

file. Similarly, there is a method to write text to a file.

Most of the methods are split into either the System.* or Microsoft.*

namespaces. (The asterisk * just means a reference to all of the methods

that fall under the System or Microsoft namespace). A namespace is a

logical separation of methods.

E RESOURCES

12

1.2.4. LANGUAGES

The types of applications that can be built in the .Net framework is classified

broadly into the following categories.

 WinForms – This is used for developing Forms-based applications,

which would run on an end user machine. Notepad is an example of a

client-based application.

 ASP.Net – This is used for developing web-based applications, which

are made to run on any browser such as Internet Explorer, Chrome or

Firefox.

o The Web application would be processed on a server, which

would have Internet Information Services Installed.

o Internet Information Services or IIS is a Microsoft component

which is used to execute an ASP.Net application.

o The result of the execution is then sent to the client machines,

and the output is shown in the browser.

 ADO.Net – This technology is used to develop applications to interact

with Databases such as Oracle or Microsoft SQL Server.

Microsoft always ensures that .Net frameworks are in compliance with all

the supported Windows operating systems.

1.2.4. .NET FRAMEWORK DESIGN PRINCIPLE

The following design principle of the .Net framework is what makes it very

relevant to create .Net based applications.

1. Interoperability - The .Net framework provides a lot of backward

support. Suppose if you had an application built on an older version

of the .Net framework, say 2.0. And if you tried to run the same

application on a machine which had the higher version of the .Net

framework, say 3.5. The application would still work. This is because

with every release, Microsoft ensures that older framework versions

gel well with the latest version.

E RESOURCES

13

2. Portability- Applications built on the .Net framework can be made to

work on any Windows platform. And now in recent times, Microsoft is

also envisioning to make Microsoft products work on other platforms,

such as iOS and Linux.

3. Security - The .NET Framework has a good security mechanism. The

inbuilt security mechanism helps in both validation and verification of

applications. Every application can explicitly define their security

mechanism. Each security mechanism is used to grant the user

access to the code or to the running program.

4. Memory management - The Common Language runtime does all the

work or memory management. The .Net framework has all the

capability to see those resources, which are not used by a running

program. It would then release those resources accordingly. This is

done via a program called the "Garbage Collector" which runs as part

of the .Net framework.

The garbage collector runs at regular intervals and keeps on checking

which system resources are not utilized, and frees them accordingly.

5. Simplified deployment - The .Net framework also have tools, which

can be used to package applications built on the .Net framework.

These packages can then be distributed to client machines. The

packages would then automatically install the application.

1.2.5. ASP.NET BASICS

ASP.NET provides an abstraction layer on top of HTTP on which the

web applications are built. It provides high-level entities such as classes

and components within an object-oriented paradigm. The key development

tool for building ASP.NET applications and front ends is Visual Studio. In

this tutorial, we work with Visual Studio 2008.

Visual Studio is an integrated development environment for writing,

compiling, and debugging the code. It provides a complete set of

E RESOURCES

14

development tools for building ASP.NET web applications, web services,

desktop applications, and mobile applications.

Installation

Microsoft provides a free version of visual studio which also contains SQL

Server and it can be downloaded from www.visualstudio.com.

Step 1 − Once downloading is complete, run the installer. The following

dialog will be displayed.

Step 2 − Click on the Install button and it will start the installation

process.

https://www.visualstudio.com/downloads/download-visual-studio-vs/

E RESOURCES

15

Step 3 − Once the installation process is completed successfully, you will

see the following dialog. Close this dialog and restart your computer if

required.

Step 4 − Open Visual Studio from start Menu which will open the following

dialog. It will be a while for the first time for preparation.

E RESOURCES

16

Step 5 − Once all is done you will see the main window of Visual studio.

Let’s create a new project from File → New → Project

E RESOURCES

17

The Visual Studio IDE

The new project window allows choosing an application template from the

available templates.

E RESOURCES

18

When you start a new web site, ASP.NET provides the starting folders

and files for the site, including two files for the first web form of the site.

The file named Default.aspx contains the HTML and asp code that defines

the form, and the file named Default.aspx.cs (for C# coding) or the file

named Default.aspx.vb (for VB coding) contains the code in the language

you have chosen and this code is responsible for the actions performed on a

form.

The primary window in the Visual Studio IDE is the Web Forms

Designer window. Other supporting windows are the Toolbox, the Solution

Explorer, and the Properties window. You use the designer to design a web

form, to add code to the control on the form so that the form works

according to your need, you use the code editor.

Working with Views and Windows

You can work with windows in the following ways:

 To change the Web Forms Designer from one view to another, click on

the Design or source button.

 To close a window, click on the close button on the upper right corner

and to redisplay, select it from the View menu.

 To hide a window, click on its Auto Hide button. The window then

changes into a tab. To display again, click the Auto Hide button

again.

 To change the size of a window, just drag it.

E RESOURCES

19

Adding Folders and Files to your Website

When a new web form is created, Visual Studio automatically generates

the starting HTML for the form and displays it in Source view of the web

forms designer. The Solution Explorer is used to add any other files, folders

or any existing item on the web site.

 To add a standard folder, right-click on the project or folder under

which you are going to add the folder in the Solution Explorer and

choose New Folder.

 To add an ASP.NET folder, right-click on the project in the Solution

Explorer and select the folder from the list.

 To add an existing item to the site, right-click on the project or folder

under which you are going to add the item in the Solution Explorer

and select from the dialog box.

Projects and Solutions

A typical ASP.NET application consists of many items: the web

content files (.aspx), source files (.cs files), assemblies (.dll and .exe files),

data source files (.mdb files), references, icons, user controls and

miscellaneous other files and folders. All these files that make up the

website are contained in a Solution. When a new website is created.

E RESOURCES

20

VB2008 automatically creates the solution and displays it in the solution

explorer.

Solutions may contain one or more projects. A project contains

content files, source files, and other files like data sources and image files.

Generally, the contents of a project are compiled into an assembly as an

executable file (.exe) or a dynamic link library (.dll) file.

Typically a project contains the following content files:

 Page file (.aspx)

 User control (.ascx)

 Web service (.asmx)

 Master page (.master)

 Site map (.sitemap)

 Website configuration file (.config)

Building and Running a Project

You can execute an application by:

 Selecting Start

 Selecting Start Without Debugging from the Debug menu,

 pressing F5

 Ctrl-F5

The program is built meaning, the .exe or the .dll files are generated by

selecting a command from the Build menu.

ASP.NET - FIRST EXAMPLE

An ASP.NET page is made up of a number of server controls along

with HTML controls, text, and images. Sensitive data from the page and the

states of different controls on the page are stored in hidden fields that form

the context of that page request.

ASP.NET runtime controls the association between a page instance

and its state. An ASP.NET page is an object of the Page or inherited from it.

All the controls on the pages are also objects of the related control

class inherited from a parent Control class. When a page is run, an

instance of the object page is created along with all its content controls.

E RESOURCES

21

An ASP.NET page is also a server side file saved with the .aspx

extension. The following code snippet provides a sample ASP.NET page

explaining Page directives, code section and page layout written in C#:

<!-- directives -->

<% @Page Language="C#" %>

<!-- code section -->

<script runat="server">

 private void convertoupper(object sender, EventArgs e)

 {

 string str = mytext.Value;

 changed_text.InnerHtml = str.ToUpper();

 }

</script>

<!-- Layout -->

<html>

 <head>

 <title> Change to Upper Case </title>

 </head>

 <body>

 <h3> Conversion to Upper Case </h3>

 <form runat="server">

 <input runat="server" id="mytext" type="text" />

 <input runat="server" id="button1" type="submit" value="Enter..."

OnServerClick="convertoupper"/>

 <hr />

 <h3> Results: </h3>

E RESOURCES

22

 </form>

 </body>

</html>

Copy this file to the web server root directory. Generally it is

c:\iNETput\wwwroot. Open the file from the browser to execute it and it

generates following result:

Using Visual Studio IDE

Let us develop the same example using Visual Studio IDE. Instead of typing

the code, you can just drag the controls into the design view:

The content file is automatically developed. All you need to add is the

Button1_Click routine, which is as follows:

protected void Button1_Click(object sender, EventArgs e)

{

 string buf = TextBox1.Text;

E RESOURCES

23

 changed_text.InnerHtml = buf.ToUpper();

}

The content file code is as given:

<%@ Page Language="C#" AutoEventWireup="true"

CodeBehind="Default.aspx.cs"

 Inherits="firstexample._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

 <head runat="server">

 <title>

 Untitled Page

 </title>

 </head>

 <body>

 <form id="form1" runat="server">

 <div>

 <asp:TextBox ID="TextBox1" runat="server" style="width:224px">

 </asp:TextBox>

 <asp:Button ID="Button1" runat="server" Text="Enter..."

style="width:85px" onclick="Button1_Click" />

 <hr />

E RESOURCES

24

 <h3> Results: </h3>

 </div>

 </form>

 </body>

</html>

Execute the example by right clicking on the design view and choosing

'View in Browser' from the popup menu. This generates the following result:

1.3. ASP.NET PAGE STRUCTURE

The following is a list of the important elements of an ASP.NET page:

1. Directives

2. Code declaration blocks

3. ASP.NET controls

4. Code render blocks

5. Server-side comments

6. Server-side include directives

7. Literal text and HTML tags

Each element is discussed in the following sections.

E RESOURCES

25

1.3.5. Directives

A directive controls how an ASP.NET page is compiled. The beginning of a

directive is marked with the characters <%@ and the end of a directive is

marked with the characters %>. A directive can appear anywhere within a

page. By convention, however, a directive typically appears at the top of an

ASP.NET page.

There are several types of directives that you can add to an ASP.NET page.

Two of the most useful types are page and import directives.

i) Page Directives

 Page directives used to specify the default programming language for a

page. Page directives can also be used to enable tracing and debugging for a

page. To change the default programming language of an ASP.NET page

from Visual Basic to C#, for example, you would use the following page

directive:

<%@ Page Language="C#" %>

The keyword Page in a page directive is optional. The following two directives

are equivalent:

<%@ Page Language="C#" %>

<%@ Language="C#" %>

Another extremely useful page directive is the Trace directive. If you enable

tracing for a page, additional information about the execution of the page is

displayed along with the content of the page. To enable runtime error

messages to be displayed on a page, use the Debug directive. To display

errors in your ASP.NET page, include the following directive:

<%@ Page Debug="True" %>

When this directive is included, if an error is encountered when processing

the page, the error is displayed. In most cases, the source code for the exact

statement can be viewed that generated the error. To enable both tracing

E RESOURCES

26

and debugging for a page, combine the directives like this (the order

of Debug and Trace is not important):

<%@ Page Debug="True" Trace="True" %>

ii. Import Directives

By default, only certain name spaces are automatically imported into

an ASP.NET page. If you want to refer to a class that isn't a member of one

of the default namespaces, then you must explicitly import the namespace

of the class or you must use the fully qualified name of the class.

For example, suppose that you want to send an email from an

ASP.NET page by using the Send method of

the SmtpMail class.The SmtpMail class is contained in

the System.Web.Mail namespace. This is not one of the default namespaces

imported into an ASP.NET page.

The easiest way to use the SmtpMail class is to add an Import

directive to your ASP.NET page to import the necessary namespace. The

page in Listing 12 illustrates how to import the System.Web.Mail namespace

and send an email message.

ImportNamespace.aspx

<%@ Import Namespace="System.Web.Mail" %>

<Script Runat="Server">

Sub Page_Load

 Dim mailMessage As SmtpMail

 mailMessage.Send(_

 "bob@somewhere.com", _

 "alice@somewhere.com", _

 "Sending Mail!", _

 "Hello!")

End Sub

E RESOURCES

27

</Script>

<html>

<head><title>ImportNamespace.aspx</title></head>

<body>

<h2>Email Sent!</h2>

</body>

</html>

The first line in Listing 12 contains an import directive. Without the

import directive, the page would generate an error because it would not be

able to resolve the SmtpMail class.

Instead of importing the System.Web.Mail namespace with the import

directive, you could alternatively use its fully qualified name. In that case,

you would declare an instance of the class like this:

Dim mailMessage As System.Web.Mail.SmtpMail

1.3.2 Code Declaration Blocks

A code declaration block contains all the application logic for your

ASP.NET page and all the global variable declarations, subroutines, and

functions. It must appear within a <Script Runat="Server"> tag. Subroutines

and functions can be declared only within a code declaration block. An error

if an attempt to define a function or subroutine in any other section of an

ASP.NET page is made.

<Script runat="Server">

Sub mySub

 ...subroutine code

End Sub

</Script>

E RESOURCES

28

The <Script Runat="Server"> tag accepts two optional attributes. To Specify

the programming language within the <Script> tag by including a language

attribute like this:

<Script Language="C#" Runat="Server">

If no language is specified in a page, the language defaults to Visual Basic.

1.3.3. ASP.NET Controls

ASP.NET controls can be freely interspersed with the text and HTML

content of a page. The only requirement is that the controls should appear

within a <form Runat="Server"> tag. And, for certain tags such as <span

Runat="Server"> and <ASP:Label Runat="Server"/>, this requirement can be

ignored without any dire consequences.

One significant limitation of ASP.NET pages is that they can contain only

one <form Runat="Server"> tag.

1.3.4. Code Render Blocks

If there is a need to execute code within the HTML or text content of

ASP.NET page, it can be done so within code render blocks. The two types of

code render blocks are inline code and inline expressions. Inline code

executes a statement or series of statements. This type of code begins with

the characters <% and ends with the characters %>.

Inline expressions, on the other hand, display the value of a variable

or method (this type of code is shorthand for Response.Write). Inline

expressions begin with the characters <%= and end with the characters %>.

The ASP.NET page in Listing 15 illustrates how to use both inline code and

inline expressions in an ASP.NET page.

CodeRender.aspx

<Script Runat="Server">

 Dim strSomeText As String

 Sub Page_Load

E RESOURCES

29

 strSomeText = "Hello!"

 End Sub

</Script>

<html>

<head><title>CodeRender.aspx</title></head>

<body>

<form Runat="Server">

The value of strSomeText is:

<%=strSomeText%>

<p>

<% strSomeText = "Goodbye!" %>

The value of strSomeText is:

<%=strSomeText%>

</form>

</body>

</html>

Notice that you can use variables declared in the code declaration block

within the code render block. However, the variable has to be declared with

page scope. The variable could not, for example, be declared within

the Page_Load subroutine.

1.3.5. Server-side Comments

 Comments can be added to the ASP.NET pages by using server-side

comment blocks. The beginning of a server-side comment is marked with the

characters <%-- and the end of the comment is marked with the characters -

-%>. Server-side comments can be added to a page for the purposes of

documentation.

E RESOURCES

30

ServerComments.aspx

<Script Runat="Server">

 Dim strSomeText As String

 Sub Page_Load

 strSomeText = "Hello!"

 End Sub

</Script>

<html>

<head><title>ServerComments.aspx</title></head>

<body>

<form Runat="Server">

<%--

This is inside the comments

<asp:Label Text="hello!" Runat="Server" />

<%= strSomeText %>

--%>

This is outside the comments

</form>

</body>

</html>

1.3.6. Server-side Include Directives

Files can be included in an ASP.NET page by using one of the two forms of

the server-side include directive. If you want to include a file that is located

in the same directory or in a subdirectory of the page including the file, you

would use the following directive:

<!-- #INCLUDE file="includefile.aspx" -->

E RESOURCES

31

Alternatively, you can include a file by supplying the full virtual path. For

example, if you have a subdirectory named myDirectory under the wwwroot

directory, you can include a file from that directory like this:

<!-- #INCLUDE virtual="/myDirectory/includefile.aspx" -->

The include directive is executed before any of the code in a page. One

implication is that you cannot use variables to specify the path to the file

that you want to include. For example, the following directive would

generate an error:

<!-- #INCLUDE file="<%=myVar%>" -->

1.3.7. Literal Text and HTML Tags

The final type of element that you can include in an ASP.NET page is HTML

content. The static portion of your page is built with plain old HTML tags

and text. HTML content in a page is represented with

the LiteralControl class. You can use the Text property of

the LiteralControl class to manipulate the pure HTML portion of an ASP.NET

page.

1.4. ASP.NET PAGE LIFECYCLE

In ASP.NET, a web page has execution lifecycle that includes various

phases. These phases include initialization, instantiation, restoring and

maintaining state etc. it is required to understand the page lifecycle so that

we can put custom code at any stage to perform our business logic.

1.4.3. PAGE LIFECYCLE STAGES

The following table contains the lifecycle stages of ASP.NET web page.

E RESOURCES

32

Stage Description

Page request This stage occurs before the lifecycle begins. When a page

is requested by the user, ASP.NET parses and compiles

that page.

Start In this stage, page properties such as Request and

response are set. It also determines the Request type.

Initialization In this stage, each control's UniqueID property is set.

Master page is applied to the page.

Load During this phase, if page request is postback, control

properties are loaded with information.

Postback

event

handling

In this stage, event handler is called if page request is

postback. After that, the Validate method of all validator

controls is called.

Rendering Before rendering, view state is saved for the page and all

controls. During the rendering stage, the page calls the

Render method for each control, providing a text writer

that writes its output to the OutputStream object of the

page's Response property.

Unload At this stage the requested page has been fully rendered

and is ready to terminate.at this stage all properties are

unloaded and cleanup is performed.

A requested page first loaded into the server memory after that processes

and sent to the bowser. At last it is unloaded from the server memory.

ASP.NET provides methods and events at each stage of the page lifecycle

E RESOURCES

33

that we can use in our application. In the following table, we are tabled

events.

1.4.4. ASP.NET LIFE CYCLE EVENTS

Page Event Typical Use

PreInit This event is raised after the start stage is complete

and before the initialization stage.

Init This event occurs after all controls have been

initialized.

We can use this event to read or initialize control

properties.

InitComplete This event occurs at the end of the page's

initialization stage.

We can use this event to make changes to view state

that we want to make sure are persisted after the

next postback.

PreLoad This event is occurs before the post back data is

loaded in the controls.

Load This event is raised for the page first time and then

recursively for all child controls.

Control events This event is used to handle specific control events

such as Button control' Click event.

LoadComplete This event occurs at the end of the event-handling

stage.

E RESOURCES

34

We can use this event for tasks that require all other

controls on the page be loaded.

PreRender This event occurs after the page object has created

all controls that are required in order to render the

page.

PreRenderComplete This event occurs after each data bound control

whose DataSourceID property is set calls its

DataBind method.

SaveStateComplete It is raised after view state and control state have

been saved for the page and for all controls.

Render This is not an event; instead, at this stage of

processing, the Page object calls this method on

each control.

Unload This event raised for each control and then for the

page.

1.5. HTML SERVER CONTROLS

HTML server controls are HTML elements that contain attributes to

accessible at server side. By default, HTML elements on an ASP.NET Web

page are not available to the server. These components are treated as simple

text and pass through to the browser. We can convert an HTML element to

server control by adding a runat="server" and an id attribute to the

component.

Now, we can easily access it at code behind.

Example

<input id="UserName" type="text" size="50"runat="server" />

E RESOURCES

35

All the HTML Server controls can be accessed through the Request object.

HTML Components

The following table contains commonly used HTML components.

Controls

Name

Description

Button It is used to create HTML button.

Reset

Button

It is used to reset all HTML form elements.

Submit

Button

It is used to submit form data to the server.

Text Field It is used to create text input.

Text Area It is used to create a text area in the html form.

File It is used to create a input type = "file" component which

is used to upload file to the server.

Password It is a password field which is used to get password from

the user.

CheckBox It creates a check box that user can select or clear.

Radio

Button

A radio field which is used to get user choice.

Table It allows us to present information in a tabular format.

Image It displays an image on an HTML form

ListBox It displays a list of items to the user. You can set the size

E RESOURCES

36

from two or more to specify how many items you wish to

show.

Dropdown It displays a list of items to the user in a dropdown list.

Horizontal

Rule

It displays a horizontal line across the HTML page.

Example

Here, an HTML server control has been implemented in the form.

// htmlcontrolsexample.aspx

1. <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="html

controlsexample.aspx.cs" Inherits="asp.netexample.htmlcontrolsexample"

%>

2. <!DOCTYPE html>

3. <html xmlns="http://www.w3.org/1999/xhtml">

4. <head runat="server">

5. <title></title>

6. </head>

7. <body>

8. <form id="form1" runat="server">

9. <div>

10. <input id="Text1" type="text" runat="server"/>

11. <asp:Button ID="Button1" runat="server" Text="Button" OnClick="Bu

tton1_Click"/>

12. </div>

13. </form>

14. </body>

15. </html>

This application contains a code behind file.

// htmlcontrolsexample.aspx.cs

1. using System;

2. namespace asp.netexample

E RESOURCES

37

3. {

4. public partial class htmlcontrolsexample : System.Web.UI.Page

5. {

6. protected void Page_Load(object sender, EventArgs e)

7. {

8. }

9. protected void Button1_Click(object sender, EventArgs e)

10. {

11. string a = Request.Form["Text1"];

12. Response.Write(a);

13. }

14. }

15. }

Output:

When we click the button after entering text, it responses back to client.

E RESOURCES

38

1.6. WEB SERVER CONTROLS

ASP.NET provides web forms controls that are used to create HTML

components. These controls are categories as server and client based. The

following table contains the server controls for the web forms.

Control Name Applicable Events Description

Label None It is used to display text

on the HTML page.

TextBox TextChanged It is used to create a

text input in the form.

Button Click, Command It is used to create a

button.

LinkButton Click, Command It is used to create a

button that looks

similar to the hyperlink.

ImageButton Click It is used to create an

E RESOURCES

39

imagesButton. Here, an

image works as a

Button.

Hyperlink None It is used to create a

hyperlink control that

responds to a click

event.

DropDownList SelectedIndexChanged It is used to create a

dropdown list control.

ListBox SelectedIndexCnhaged It is used to create a

ListBox control like the

HTML control.

DataGrid CancelCommand,

EditCommand,

DeleteCommand,

ItemCommand,

SelectedIndexChanged,

PageIndexChanged,

SortCommand,

UpdateCommand,

ItemCreated,

ItemDataBound

It used to create a frid

that is used to show

data. We can also

perform paging, sorting,

and formatting very

easily with this control.

DataList CancelCommand,

EditCommand,

DeleteCommand,

ItemCommand,

SelectedIndexChanged,

UpdateCommand,

ItemCreated,

It is used to create

datalist that is non-

tabular and used to

show data.

E RESOURCES

40

ItemDataBound

CheckBox CheckChanged It is used to create

checkbox.

CheckBoxList SelectedIndexChanged It is used to create a

group of check boxes

that all work together.

RadioButton CheckChanged It is used to create radio

button.

RadioButtonList SelectedIndexChanged It is used to create a

group of radio button

controls that all work

together.

Image None It is used to show image

within the page.

Panel None It is used to create a

panel that works as a

container.

PlaceHolder None It is used to set

placeholder for the

control.

Calendar SelectionChanged,

VisibleMonthChanged,

DayRender

It is used to create a

calendar. We can set the

default date, move

forward and backward

etc.

AdRotator AdCreated It allows us to specify a

E RESOURCES

41

list of ads to display.

Each time the user re-

displays the page.

Table None It is used to create

table.

XML None It is used to display

XML documents within

the HTML.

Literal None It is like a label in that

it displays a literal, but

allows us to create new

literals at runtime and

place them into this

control.

1.7. ASP.NET VALIDATION CONTROLS

To perform validation, ASP.NET provides controls that automatically

check user input and require no code. We can also create custom validation

for our application. Following are the validation controls

Validator Description

CompareValidator It is used to compare the value of an input

control against a value of another input

control.

RangeValidator It evaluates the value of an input control to

check the specified range.

RegularExpressionValidator It evaluates the value of an input control to

E RESOURCES

42

determine whether it matches a pattern

defined by a regular expression.

RequiredFieldValidator It is used to make a control required.

ValidationSummary It displays a list of all validation errors on the

Web page.

1.7.1 ASP.NET CompareValidator Control

This validator evaluates the value of an input control against another input

control on the basis of specified operator. We can use comparison operators

like: less than, equal to, greater than etc.

CompareValidator Properties

Property Description

AccessKey It is used to set keyboard shortcut for the

control.

TabIndex The tab order of the control.

BackColor It is used to set background color of the control.

BorderColor It is used to set border color of the control.

BorderWidth It is used to set width of border of the control.

Font It is used to set font for the control text.

ForeColor It is used to set color of the control text.

Text It is used to set text to be shown for the control.

ToolTip It displays the text when mouse is over the

E RESOURCES

43

control.

Visible To set visibility of control on the form.

Height It is used to set height of the control.

Width It is used to set width of the control.

ControlToCompare It takes ID of control to compare with.

ControlToValidate It takes ID of control to validate.

ErrorMessage It is used to display error message when

validation failed.

Operator It is used set comparison operator.

Example

Here, in the following example, we are validating user input by using

CompareValidator controller. Source code of the example is given below.

// compare_validator_demo.aspx

1. <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="com

pare_validator_demo.aspx.cs"

2. Inherits="asp.netexample.compare_validator_demo" %>

3. <!DOCTYPE html>

4. <html xmlns="http://www.w3.org/1999/xhtml">

5. <head runat="server">

6. <title></title>

7. <style type="text/css">

8. .auto-style1 {

9. width: 100%;

10. }

11. .auto-style2 {

12. height: 26px;

13. }

E RESOURCES

44

14. .auto-style3 {

15. height: 26px;

16. width: 93px;

17. }

18. .auto-style4 {

19. width: 93px;

20. }

21. </style>

22. </head>

23. <body>

24. <form id="form1" runat="server">

25. <table class="auto-style1">

26. <tr>

27. <td class="auto-style3">

28. First value</td>

29. <td class="auto-style2">

30. <asp:TextBox ID="firstval" runat="server" required="true"></asp:Text

Box>

31. </td>

32. </tr>

33. <tr>

34. <td class="auto-style4">

35. Second value</td>

36. <td>

37. <asp:TextBox ID="secondval" runat="server"></asp:TextBox>

38. It should be greater than first value</td>

39. </tr>

40. <tr>

41. <td class="auto-style4"></td>

42. <td>

43. <asp:Button ID="Button1" runat="server" Text="save"/>

44. </td>

45. </tr>

E RESOURCES

45

46. </table>

47. < asp:CompareValidator ID="CompareValidator1" runat="server" Con

trolToCompare="secondval"

48. ControlToValidate="firstval" Display="Dynamic" ErrorMessage="Enter

valid value" ForeColor="Red"

49. Operator="LessThan" Type="Integer"></asp:CompareValidator>

50. </form>

51. </body>

52. </html>

Output:

E RESOURCES

46

1.7.2.ASP.NET RangeValidator Control

This validator evaluates the value of an input control to check that the value

lies between specified ranges. It allows us to check whether the user input is

between a specified upper and lower boundary. This range can be numbers,

alphabetic characters and dates.

The ControlToValidateproperty is used to specify the control to validate.

The MinimumValue and MaximumValue properties are used to set

minimum and maximum boundaries for the control.

RangeValidator Properties

Property Description

AccessKey It is used to set keyboard shortcut for the

control.

TabIndex The tab order of the control.

BackColor It is used to set background color of the control.

BorderColor It is used to set border color of the control.

BorderWidth It is used to set width of border of the control.

Font It is used to set font for the control text.

ForeColor It is used to set color of the control text.

Text It is used to set text to be shown for the control.

ToolTip It displays the text when mouse is over the

control.

Visible To set visibility of control on the form.

E RESOURCES

47

Height It is used to set height of the control.

Width It is used to set width of the control.

ControlToValidate It takes ID of control to validate.

ErrorMessage It is used to display error message when

validation failed.

Type It is used to set datatype of the control value.

MaximumValue It is used to set upper boundary of the range.

MinimumValue It is used to set lower boundary of the range.

Example

In the following example, we are using RangeValidator to validate user

input in specified range.

// RangeValidator.aspx

1. <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Ran

geValidator.aspx.cs"

2. Inherits="asp.netexample.RangeValidator" %>

3. <!DOCTYPE html>

4. <html xmlns="http://www.w3.org/1999/xhtml">

5. <head runat="server">

6. <title></title>

7. <style type="text/css">

8. .auto-style1 {

9. height: 82px;

10. }

11. .auto-style2 {

12. width: 100%;

13. }

14. .auto-style3 {

15. width: 89px;

E RESOURCES

48

16. }

17. .auto-style4 {

18. margin-left: 80px;

19. }

20. </style>

21. </head>

22. <body>

23. <form id="form1" runat="server">

24. <div class="auto-style1">

25. <p class="auto-style4">

26. Enter value between 100 and 200

27. </p>

28. <table class="auto-style2">

29. <tr>

30. <td class="auto-style3">

31. <asp:Label ID="Label2" runat="server" Text="Enter a value"></asp:La

bel>

32. </td>

33. <td>

34. <asp:TextBox ID="uesrInput"runat="server"></asp:TextBox>

35. <asp:RangeValidator ID="RangeValidator1" runat="server" ControlTo

Validate="uesrInput"

36. ErrorMessage="Enter value in specified range" ForeColor="Red" Maxim

umValue="199" MinimumValue="101"

37. SetFocusOnError="True"Type=" Integer"></asp:RangeValidator>

38. </td>

39. </tr>

40. <tr>

41. <td class="auto-style3"> </td>

42. <td>

43.

44. <asp:Button ID="Button2" runat="server" Text="Save"/>

45. </td>

E RESOURCES

49

46. </tr>

47. </table>

48.

49.

50. </div>

51. </form>

52. </body>

53. </html>

Output:

It throws an error message when the input is not in range.

E RESOURCES

50

1.7.3.ASP.NET RegularExpressionValidator Control

This validator is used to validate the value of an input control against the

pattern defined by a regular expression. It allows us to check and validate

predictable sequences of characters like: e-mail address, telephone number

etc. The ValidationExpression property is used to specify the regular

expression, this expression is used to validate input control.

RegularExpression Properties

Property Description

AccessKey It is used to set keyboard shortcut for the

control.

BackColor It is used to set background color of the control.

BorderColor It is used to set border color of the control.

Font It is used to set font for the control text.

ForeColor It is used to set color of the control text.

Text It is used to set text to be shown for the control.

ToolTip It displays the text when mouse is over the

control.

Visible To set visibility of control on the form.

Height It is used to set height of the control.

Width It is used to set width of the control.

ErrorMessage It is used to set error message that display when

validation fails.

E RESOURCES

51

ControlToValidate It takes ID of control to validate.

ValidationExpression It is used to set regular expression to determine

validity.

The regular expression is set in the ValidationExpression property.

The following table summarizes the commonly used syntax constructs for

regular expressions:

Character

Escapes

Description

\b Matches a backspace.

\t Matches a tab.

\r Matches a carriage return.

\v Matches a vertical tab.

\f Matches a form feed.

\n Matches a new line.

\ Escape character.

Apart from single character match, a class of characters could be specified

that can be matched, called the metacharacters.

E RESOURCES

52

Metacharacters Description

. Matches any character except \n.

[abcd] Matches any character in the set.

[^abcd] Excludes any character in the set.

[2-7a-mA-M] Matches any character specified in the range.

\w Matches any alphanumeric character and underscore.

\W Matches any non-word character.

\s Matches whitespace characters like, space, tab, new

line etc.

\S Matches any non-whitespace character.

\d Matches any decimal character.

\D Matches any non-decimal character.

Quantifiers could be added to specify number of times a character could

appear.

E RESOURCES

53

Quantifier Description

* Zero or more matches.

+ One or more matches.

? Zero or one matches.

{N} N matches.

{N,} N or more matches.

{N,M} Between N and M matches.

Example

Here, in the following example, we are explaining how to use

RegularExpressionValidator control to validate the user input against the

given pattern.

// RegularExpressionDemo.aspx

1. <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Reg

ularExpressionDemo.aspx.cs"

2. Inherits="asp.netexample.RegularExpressionDemo" %>

3. <!DOCTYPE html>

4. <html xmlns="http://www.w3.org/1999/xhtml">

5. <head runat="server">

6. <title></title>

7. </head>

8. <body>

9. <form id="form1" runat="server">

10. <div>

E RESOURCES

54

11. <table class="auto-style1">

12. <tr>

13. <td class="auto-style2">Email ID</td>

14. <td>

15. <asp:TextBox ID="username" runat="server"></asp:TextBox>

16. <asp:RegularExpressionValidator ID="RegularExpressionValidator1"

runat="server"ControlToValidate="username"

17. ErrorMessage="Please enter valid email" ForeColor="Red"ValidationEx

pression="\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*">

18. </asp:RegularExpressionValidator>

19. </td>

20. </tr>

21. <tr>

22. <td class="auto-style2"></td>

23. <td>

24.

25. <asp:Button ID="Button1" runat="server" Text="Save"/>

26. </td>

27. </tr>

28. </table>

29. </div>

30. </form>

31. </body>

32. </html>

Output:

It produces the following output when view in the browser.

E RESOURCES

55

It will validate email format as we specified in regular expression. If

validation fails, it throws an error message.

1.7.4.ASP.NET RequiredFieldValidator Control

This validator is used to make an input control required. It will throw an

error if user leaves input control empty. It is used to mandate form control

required and restrict the user to provide data. It removes extra spaces from

the beginning and end of the input value before validation is performed.

E RESOURCES

56

The ControlToValidateproperty should be set with the ID of control to

validate.

RequiredFieldValidator Properties

Property Description

AccessKey It is used to set keyboard shortcut for the control.

BackColor It is used to set background color of the control.

BorderColor It is used to set border color of the control.

Font It is used to set font for the control text.

ForeColor It is used to set color of the control text.

Text It is used to set text to be shown for the control.

ToolTip It displays the text when mouse is over the control.

Visible To set visibility of control on the form.

Height It is used to set height of the control.

Width It is used to set width of the control.

ErrorMessage It is used to set error message that display when

validation fails.

ControlToValidate It takes ID of control to validate.

Example

Here, in the following example, we are

explaining RequiredFieldValidator control and creating to mandatory

TextBox controls.

// RequiredFieldValidator.aspx

E RESOURCES

57

1. <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Req

uiredFieldValidator.aspx.cs"

2. Inherits="asp.netexample.RequiredFieldValidator" %>

3. <!DOCTYPE html>

4. <html xmlns="http://www.w3.org/1999/xhtml">

5. <head runat="server">

6. <title></title>

7. <style type="text/css">

8. .auto-style1 {

9. width: 100%;

10. }

11. .auto-style2 {

12. width: 165px;

13. }

14. </style>

15. </head>

16. <body>

17. <form id="form1" runat="server">

18. <div>

19. </div>

20. <table class="auto-style1">

21. <tr>

22. <td class="auto-style2">User Name</td>

23. <td>

24. <asp:TextBox ID="username" runat="server"></asp:TextBox>

25. <asp:RequiredFieldValidatorIDasp:RequiredFieldValidatorID="user" r

unat="server" ControlToValidate="username"

26. ErrorMessage="Please enter a user name" ForeColor="Red"></asp:Req

uiredFieldValidator>

27. </td>

28. </tr>

29. <tr>

30. <td class="auto-style2">Password</td>

E RESOURCES

58

31. <td>

32. <asp:TextBox ID="password" runat="server"></asp:TextBox>

33. <asp:RequiredFieldValidator ID="pass" runat="server" ControlToVali

date="password" ErrorMessage="Please enter a password"

34. ForeColor="Red"></asp:RequiredFieldValidator>

35. </td>

36. </tr>

37. <tr>

38. <td class="auto-style2"> </td>

39. <td>

40.

41. <asp:Button ID="Button1" runat="server" Text="login"/>

42. </td>

43. </tr>

44. </table>

45. </form>

46. </body>

47. </html>

Output:

It produces the following output when view in the browser.

It throws error messages when user login with empty controls.

E RESOURCES

59

1.7.5.ASP.NET ValidationSummary Control

This validator is used to display list of all validation errors in the web form.

It allows us to summarize the error messages at a single location. We can

set DisplayMode property to display error messages as a list, bullet list or

single paragraph.

ValidationSummary Properties

Property Description

AccessKey It is used to set keyboard shortcut for the control.

BackColor It is used to set background color of the control.

BorderColor It is used to set border color of the control.

Font It is used to set font for the control text.

ForeColor It is used to set color of the control text.

Text It is used to set text to be shown for the control.

ToolTip It displays the text when mouse is over the

E RESOURCES

60

control.

Visible To set visibility of control on the form.

Height It is used to set height of the control.

Width It is used to set width of the control.

ShowMessageBox It displays a message box on error in up-level

browsers.

ShowSummary It is used to show summary text on the form page.

ShowValidationErrors It is used to set whether the validation summary

should be shown or not.

Example

The following example explains how to use ValidationSummery control in

the application.

// ValidationSummeryDemo.aspx

1. <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Validati

onSummeryDemo.aspx.cs"

2. Inherits="asp.netexample.ValidationSummeryDemo" %>

3. <!DOCTYPE html>

4. <html xmlns="http://www.w3.org/1999/xhtml">

5. <head runat="server">

6. <title></title>

7. </head>

8. <body>

9. <form id="form1" runat="server">

10. <div>

11. </div>

12. <table class="auto-style1">

13. <tr>

14. <td class="auto-style2">User Name</td>

E RESOURCES

61

15. <td>

16. <asp:TextBox ID="username" runat="server"></asp:TextBox>

17. <asp:RequiredFieldValidator ID="user" runat="server" ControlToValidat

e="username"

18. ErrorMessage="Please enter a user name" ForeColor="Red">*</asp:Requi

redFieldValidator>

19. </td>

20. </tr>

21. <tr>

22. <td class="auto-style2">Password</td>

23. <td>

24. <asp:TextBox ID="password" runat="server"></asp:TextBox>

25. <asp:RequiredFieldValidator ID="pass" runat="server" ControlToValidat

e="password"

26. ErrorMessage="Please enter a password" ForeColor="Red">*</asp:Requir

edFieldValidator>

27. </td>

28. </tr>

29. <tr>

30. <td class="auto-style2">

31.

32. <asp:Button ID="Button1" runat="server"Text="login"/>

33. </td>

34. <td>

35. <asp:ValidationSummary ID="ValidationSummary1" runat="server" Fore

Color="Red"/>

36.

37. </td>

38. </tr>

39. </table>

40. </form>

41. </body>

42. </html>

E RESOURCES

62

Output:

It produces the following output when view in the browser.

It throws error summary when user login without credentials.

1.7.6. VALIDATION GROUPS

Complex pages have different groups of information provided in different

panels. In such situation, a need might arise for performing validation

separately for separate group. This kind of situation is handled using

validation groups.

E RESOURCES

63

To create a validation group, you should put the input controls and the

validation controls into the same logical group by setting

their ValidationGroup property.

1.8. ASP.NET CUSTOM CONTROLS

ASP.NET allows the users to create controls. These user defined controls are

categorized into:

 User controls

 Custom controls

1.8.1 USER CONTROLS

User controls behaves like miniature ASP.NET pages or web forms, which

could be used by many other pages. These are derived from the

System.Web.UI.UserControl class. These controls have the following

characteristics:

 They have an .ascx extension.

 They may not contain any <html>, <body>, or <form> tags.

 They have a Control directive instead of a Page directive.

To understand the concept, let us create a simple user control, which will

work as footer for the web pages. To create and use the user control, take

the following steps:

 Create a new web application.

 Right click on the project folder on the Solution Explorer and choose

Add New Item.

E RESOURCES

64

 Select Web User Control from the Add New Item dialog box and name

it footer.ascx. Initially, the footer.ascx contains only a Control

directive.

 <%@ Control Language="C#" AutoEventWireup="true"

CodeBehind="footer.ascx.cs" Inherits="customcontroldemo.footer" %>

Add the following code to the file:

 <table>

 <tr>

 <td align="center"> Copyright ©2010 TutorialPoints Ltd.</td>

 </tr>



 <tr>

 <td align="center"> Location: Hyderabad, A.P </td>

 </tr>

 </table>

To add the user control to your web page, you must add the Register

directive and an instance of the user control to the page. The following code

shows the content file:

<%@ Page Language="C#" AutoEventWireup="true"

CodeBehind="Default.aspx.cs" Inherits="customcontroldemo._Default" %>

<%@ Register Src="~/footer.ascx" TagName="footer" TagPrefix="Tfooter" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

 <head runat="server">

 <title>

 Untitled Page

E RESOURCES

65

 </title>

 </head>

 <body>

 <form id="form1" runat="server">

 <div>

 <asp:Label ID="Label1" runat="server" Text="Welcome to ASP.Net

Tutorials "></asp:Label>

 <asp:Button ID="Button1" runat="server" onclick="Button1_Click"

Text="Copyright Info" />

 </div>

 <Tfooter:footer ID="footer1" runat="server" />

 </form>

 </body>

</html>

When executed, the page shows the footer and this control could be used in

all the pages of your website.

Observe the following:

(1) The Register directive specifies a tag name as well as tag prefix for the

control.

<%@ Register Src="~/footer.ascx" TagName="footer" TagPrefix="Tfooter" %>

(2) The following tag name and prefix should be used while adding the user

control on the page:

<Tfooter:footer ID="footer1" runat="server" />

E RESOURCES

66

1.8.2.CUSTOM CONTROLS

Custom controls are deployed as individual assemblies. They are compiled

into a Dynamic Link Library (DLL) and used as any other ASP.NET server

control. They could be created in either of the following way:

 By deriving a custom control from an existing control

 By composing a new custom control combing two or more existing

controls.

 By deriving from the base control class.

To understand the concept, let us create a custom control, which will

simply render a text message on the browser. To create this control, take

the following steps:

Create a new website. Right click the solution (not the project) at the top of

the tree in the Solution Explorer.

In the New Project dialog box, select ASP.NET Server Control from the

project templates.

E RESOURCES

67

The above step adds a new project and creates a complete custom control

to the solution, called ServerControl1. In this example, let us name the

project CustomControls. To use this control, this must be added as a

reference to the web site before registering it on a page. To add a reference

to the existing project, right click on the project (not the solution), and click

Add Reference.

Select the CustomControls project from the Projects tab of the Add

Reference dialog box. The Solution Explorer should show the reference.

To use the control on a page, add the Register directive just below the

@Page directive:

<%@ Register Assembly="CustomControls" Namespace="CustomControls"

TagPrefix="ccs" %>

Further, you can use the control, similar to any other controls.

<form id="form1" runat="server">

 <div>

 <ccs:ServerControl1 runat="server" Text = "I am a Custom Server

Control" />

 </div>

</form>

When executed, the Text property of the control is rendered on the browser

as shown:

Working with Custom Controls

E RESOURCES

68

In the previous example, the value for the Text property of the custom

control was set. ASP.NET added this property by default, when the control

was created. The following code behind file of the control reveals this.

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Linq;

using System.Text;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

namespace CustomControls

{

 [DefaultProperty("Text")]

 [ToolboxData("<{0}:ServerControl1 runat=server></{0}:ServerControl1 >")]

 public class ServerControl1 : WebControl

 {

 [Bindable(true)]

 [Category("Appearance")]

 [DefaultValue("")]

 [Localizable(true)]

 public string Text

 {

 get

 {

 String s = (String)ViewState["Text"];

 return ((s == null) ? "[" + this.ID + "]" : s);

 }

 set

E RESOURCES

69

 {

 ViewState["Text"] = value;

 }

 }

 protected override void RenderContents(HtmlTextWriter output)

 {

 output.Write(Text);

 }

 }

}

The above code is automatically generated for a custom control. Events and

methods could be added to the custom control class.

Example

Let us expand the previous custom control named SeverControl1. Let us

give it a method named checkpalindrome, which gives it a power to check

for palindromes.

Palindromes are words/literals that spell the same when reversed. For

example, Malayalam, madam, saras, etc.

Extend the code for the custom control, which should look as:

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Linq;

using System.Text;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

E RESOURCES

70

namespace CustomControls

{

 [DefaultProperty("Text")]

 [ToolboxData("<{0}:ServerControl1 runat=server></{0}:ServerControl1 >")]

 public class ServerControl1 : WebControl

 {

 [Bindable(true)]

 [Category("Appearance")]

 [DefaultValue("")]

 [Localizable(true)]

 public string Text

 {

 get

 {

 String s = (String)ViewState["Text"];

 return ((s == null) ? "[" + this.ID + "]" : s);

 }

 set

 {

 ViewState["Text"] = value;

 }

 }

 protected override void RenderContents(HtmlTextWriter output)

 {

 if (this.checkpanlindrome())

 {

 output.Write("This is a palindrome:
");

 output.Write("");

 output.Write("");

E RESOURCES

71

 output.Write(Text);

 output.Write("");

 output.Write("");

 }

 else

 {

 output.Write("This is not a palindrome:
");

 output.Write("");

 output.Write("");

 output.Write(Text);

 output.Write("");

 output.Write("");

 }

 }

 protected bool checkpanlindrome()

 {

 if (this.Text != null)

 {

 String str = this.Text;

 String strtoupper = Text.ToUpper();

 char[] rev = strtoupper.ToCharArray();

 Array.Reverse(rev);

 String strrev = new String(rev);

 if (strtoupper == strrev)

 {

 return true;

 }

 else

 {

 return false;

 }

E RESOURCES

72

 }

 else

 {

 return false;

 }

 }

 }

}

When you change the code for the control, you must build the solution by

clicking Build --> Build Solution, so that the changes are reflected in your

project. Add a text box and a button control to the page, so that the user

can provide a text, it is checked for palindrome, when the button is clicked.

<form id="form1" runat="server">

 <div>

 Enter a word:

 <asp:TextBox ID="TextBox1" runat="server" style="width:198px">

</asp:TextBox>

 <asp:Button ID="Button1" runat="server onclick="Button1_Click"

Text="Check Palindrome" style="width:132px" />

 <ccs:ServerControl1 ID="ServerControl11" runat="server" Text = "" />

 </div>

</form>

The Click event handler for the button simply copies the text from the text

box to the text property of the custom control.

protected void Button1_Click(object sender, EventArgs e)

E RESOURCES

73

{

 this.ServerControl11.Text = this.TextBox1.Text;

}

When executed, the control successfully checks palindromes.

Observe the following:

(1) When you add a reference to the custom control, it is added to the

toolbox and you can directly use it from the toolbox similar to any other

control.

(2) The RenderContents method of the custom control class is overridden

here, as you can add your own methods and events.

(3) The RenderContents method takes a parameter of HtmlTextWriter type,

which is responsible for rendering on the browser.

1.9 KEY TERMS

 CLR – a run-time environment called the common language

runtime, which runs the code and provides services that make the

development process easier.

 IIS – Internet Information Service, The work of IIS is to provide

the web application’s generated HTML code result to the client

browser which initiated the request.

E RESOURCES

74

 Managed code - Code that has to develop with a language compiler

that targets the runtime is called managed code.

 Metadata- To enable the runtime to provide services to managed code,

language compilers must emit metadata that describes the types,

members, and references in the code.

 CLI- The "Common Language Infrastructure" or CLI is a platform on

which the .Net programs are executed.

 Garbage Collection - Garbage collection is the process of removing

unwanted resources when they are no longer required.

 Common Language Interpreter – This is the final layer in .Net which

would be used to run a .net program developed in any programming

language. So the subsequent compiler will send the program to the

CLI layer to run the .Net application.

 Interoperability – the ability of computer systems or software to

exchange and make use of information. "interoperability between

devices made by different manufacturers"

 Portability – Portability is a characteristic attributed to a

computer program if it can be used in an operating system other than

the one in which it was created without requiring major rework.

Porting is the task of doing any work necessary to make the

computer program run in the new environment

1.9.1 TWO MARKS

1. Define CLR

Ans: CLR is a run-time environment called the common language

runtime, which runs the code and provides services that make the

development process easier

2. Illustrate the version history of ASP.Net.

Ans :

YEAR VERSION

2002 1.0

E RESOURCES

75

YEAR VERSION

2003 1.1

2005 2.0

2006 3.0

2007 3.5

2008 3.5 SP 1

2010 4.0

2012 4.5

2013 4.5.1

2014 4.5.2

2015 4.6

2015 4.6.1

2016 4.6.2

2017 4.7

2017 4.7.1

3. What is Web Application?

Ans: A Web Application is an application installed only on the web

server which is accessed by the users using a web browser like

Microsoft Internet Explorer, Google Chrome, Mozilla firefox, Apple

Safari etc

4. Specify the use of IIS

Ans : The web applications which are developed using the .Net

Framework or its subsets required to execute under the Microsoft

Internet Information Services (IIS) on the server side. The work of

IIS is to provide the web application’s generated HTML code

result to the client browser which initiated the request.

E RESOURCES

76

5. What is Managed Code?

Ans: Code that has to develop with a language compiler that targets

the runtime is called managed code

6. Discuss the benefits of Managed Code

Ans : Managed code benefits from features such as cross-language

integration, cross-language exception handling, enhanced security,

versioning and deployment support, a simplified model for component

interaction, and debugging and profiling services.

7. Define Metadata.

Ans : Metadata describes the types, members, and references in the

code, which is used to enable the runtime to provide services to

managed code, language compilers must emit.

8. What is cross-language Integration?

Ans : It is the ability provided by the common language runtime (CLR)

and the common language specification (CLS), of the .NET Framework,

for interaction with code written in a different programming language.

Cross language support is a language interoperability feature with

advantages, such as the reuse of types defined in other languages; a

single environment for debugging and profiling, due to the use of

Microsoft intermediate language (MSIL); and consistent exception

handling, where exceptions thrown in one language can be caught in

another language.

9. Why Garbage collection is needed?

Ans : Garbage collection is the process of removing unwanted

resources when they are no longer required. Examples of garbage

collection are

o A File handler which is no longer required. If the application has

finished all operations on a file, then the file handle may no

longer be required.

E RESOURCES

77

o The database connection is no longer required. If the application

has finished all operations on a database, then the database

connection may no longer be required.

10. What is common Language Interpreter?

Ans : Common Language Interpreter is the final layer in .Net which

would be used to run a .net program developed in any programming

language. So the subsequent compiler will send the program to the

CLI layer to run the .Net application.

11. Define Interoperability.

Ans : the ability of computer systems or software to exchange and

make use of information. "interoperability between devices made by

different manufacturers"

12. Define portability.

Ans : Portability is a characteristic attributed to a computer program if

it can be used in an operating system other than the one in which it

was created without requiring major rework. Porting is the task of

doing any work necessary to make the computer program run in the

new environment

13. What is the use of Validation Control?

Ans : It evaluates the value of an input control to check the specified

range. It evaluates the value of an input control to determine whether

it matches a pattern defined by a regular expression. It is used to

make a control required.

1.9.2 FIVE MARKS

1. Give a brief introduction about ASP.Net and its Version history.

2. Discuss in detail about the working of CLR.

3. Write short notes on the benefits of CLR.

E RESOURCES

78

4. What are the different types of Applications supported under

ASP.NET? Discuss.

5. Discuss about .Net Framework Design Principle in short.

6. Explain the ASP.Net Page Structure.

7. Give a brief introduction about Page Life Cycle.

8. Explain about HTML Web Server Controls.

1.9.1 TEN MARKS

1. Discuss in detail about .NET Framework architecture and its

components.

2. Discuss in detail about CLI and its features.

3. How to create and run a web application under .NET Environment?

Discuss with an example.

4. What are HTML Server Controls in ASP.NET? Discuss briefly.

5. Elaborate the various used of Validation controls and its types in

ASP.NET.

6. Discuss about ASP.Net Custom Controls.

E RESOURCES

79

UNIT – II

ASP .Net Form Validation and State Management

2.1 INTRODUCTION

 ASP.NET Web Forms is a part of the ASP.NET web application

framework. It is used to create ASP.NET web applications. Apart from

this it also create ASP.NET MVC, ASP.NET Web Pages, and ASP.NET

Single Page Applications.

 Web Forms are pages that users request using their browser. Any

ASPX files are usually referred to as Web Forms or Web Form Pages

because they normally process form input.

 The Motivation of Web Applications Development is to gather or

provide information. In Web application development collecting valid

data is more important. In this chapter we focus on how to collect valid

data through web applications and various web server controls used to

validate the data.

 This chapter also overview the state management techniques in

ASP.NET and discussing about the various types of state management

both client side and server side.

2.2 BASIC CONCEPT OF ASP.NET WEB FORMS

 Web forms are made up of different types of HTML elements that are

constructed using raw HTML form elements, ASP.NET HTML server

controls, or ASP.NET Web Form server controls.

 Data entered into a form can be sent to the server, processed, then

sent back to the client in different format.

 The first time a Web form is requested, the entire page is compiled.

Later requests are served from the compiled page and do not have to

be recompiled.

 Any pure HTML page can be given an .aspx extension and run as an

ASP.NET page.Programmers customize Web Forms by adding Web

E RESOURCES

80

controls, which include labels, text boxes,, images, buttons and other

GUI components.

ASP.Net Web Form also offers

 Separation of HTML and other UI code from application logic.

 A rich suite of server controls for common tasks, including data

access.

 Powerful data binding, with great tool support.

 Support for client-side scripting that executes in the browser.

 Support for a variety of other capabilities, including routing, security,

performance, internationalization, testing, debugging, error handling

and state management.

2.3 VALIDATION

Validation is a set of rules that apply to the data that should be

collected. These rules can be many or few and enforced either strictly or in a

lax manner: It really depends on user. The data you collect for validation

comes from the Web forms provide in the applications.

 Validation is basically the act of comparing something to a given set of

rules and determining if it satisfies the criteria those rules represent.

Validations can be performed on the

a) Server side Validation

b) Client side Validation

Fig(2.1) ASP .Net Form Validation Types

E RESOURCES

81

The user input validation take place on the Server Side during a post back

session is called Server Side Validation and the user input validation take place

on the Client Side (web browser) is called Client Side Validation. Client Side

Validation does not require a postback.They above diagram 2.1 shows about

the validation types in ASP. Net.

a) Server Side Validation

In the Server Side Validation, the input submitted by the user is being sent to

the server and validated. After the validation process on the Server Side, the

feedback is sent back to the client by a new dynamically generated web page.

It is better to validate user input on Server Side because we can protect against

the malicious users, who can easily bypass your Client Side scripting language

and submit dangerous input to the server.

For Example: Suppose that the end user clicks the Submit button on a form

after filling out some information. This form is packaged in a request and sent

to the server where the application resides. At this point in the

request/response cycle, we can run validation checks on the information

submitted. It is called server-side validation.

b) Client Side Validation

In the Client Side Validation we can provide a better user experience by

responding quickly at the browser level. When we perform a Client Side

Validation, all the user inputs validated in the user's browser itself. Client Side

validation does not require a round trip to the server, so the network traffic

which will help your server perform better.

For example: if the user enter an invalid email format, we can show an error

message immediately before the user move to the next field, so the user can

correct every field before they submit the form. This is called client-side

validation.

E RESOURCES

82

2.3.1. CLIENT-SIDE VERSUS SERVER-SIDE VALIDATION

CLIENT SIDE VALIDATION SERVER SIDE

VALIDATION

Client-side validation means that the

validation checks are performed on the

client.

Server-side validation means that

the validation checks are

performed on the server instead of

on the client.

Client-side validation is quick and

responsive for the end user.

Client-side validation also pushes the

processing power required of validation

to the client meaning that you don’t

need to spin CPU cycles on the server

to process the same information

because the client can do the work for

you.

Server-side validation can be slow

because the page has to be posted

to a remote location and checked.

End user might not be the

happiest surfer in the world if,

after waiting 20 seconds for a form

to post, he is told his e-mail

address isn’t in the correct format.

Client-side validation is the more

insecure form of validation.

When a page is generated in an end

user’s browser, this end user can look

at the code of the page quite easily

The more secure form of validation

is server-side validation.

 It is more secure because these

checks cannot be easily bypassed.

Instead, the form data values are

checked using server code (C# or

VB) on the server.

Hackers can simply bypass the

validation.

It is secure because hackers can’t

simply bypass the validation.

The best approach is always to perform client-side validation first and

then, after the form passes and is posted to the server, to perform the

validation checks again using server-side validation This approach provides

the best of both worlds. It is secure because hackers can’t simply bypass the

validation.

E RESOURCES

83

They may bypass the client-side validation, but they quickly find that

their form data is checked once again on the server after it is posted. This

validation technique is also highly effective — giving you both the quickness

and snappiness of client-side validation.

2.4 VALIDATION CONTROLS

ASP.NET validation controls validate the user input data to ensure

that useless, unauthenticated, or contradictory data don't get stored.

ASP.NET not only introduces form validations as server controls, but it also

makes these controls rather smart. ASP.NET performs browser detection

when generating the ASP.NET page and makes decisions based on the

information it gets.

ASP.NET provides the following validation controls:

1. RequiredFieldValidator

2. RangeValidator

3. CompareValidator

4. RegularExpressionValidator

5. CustomValidator

6. ValidationSummary

The following table describes the functionality of each of the available

validation server controls.

Validation Server Control Description

RequiredFieldValidator Ensures that the user does not

skip a form entry field

CompareValidator

Allows for comparisons between

the user’s input and another item

using a comparison operator

(equals, greater than, less than,

and so on)

RangeValidator Checks the user’s input based

E RESOURCES

84

 upon a lower- and upperlevel range

of numbers or characters

RegularExpressionValidator

Checks that the user’s entry

matches a pattern defined by a

regular expression. This is a good

control to use to check e-mail

addresses and phone numbers

CustomValidator

Checks the user’s entry using

custom-coded validation logic

ValidationSummary Displays all the error messages

from the validators in one specific

spot on the page

BaseValidator Class

The validation control classes are inherited from the BaseValidator class

hence they inherit its properties and methods. Therefore, it would help to

take a look at the properties and the methods of this base class, which are

common for all the validation controls:

Members Description

ControlToValidate Indicates the input control to

validate.

Display Indicates how the error

message is shown.

EnableClientScript Indicates whether client side

validation will take.

Enabled Enables or disables the

validator.

ErrorMessage Indicates error string.

Text Error text to be shown if

validation fails.

IsValid Indicates whether the value of

E RESOURCES

85

the control is valid.

SetFocusOnError It indicates whether in case of

an invalid control, the focus

should switch to the related

input control.

ValidationGroup The logical group of multiple

validators, where this control

belongs.

Validate() This method revalidates the

control and updates the

IsValid property.

2.4.1. Required Field Validator Control

The RequiredFieldValidator control simply checks to see if something

was entered into the HTML form element. It is a simple validation control,

but it is one of the most frequently used. We use RequiredFieldValidator

control for each form element on which you wish to enforce a value-required

rule. It is generally tied to a text box to force input into the text box.

The syntax of the control is as given:

<asp:RequiredFieldValidator ID="candidate"

 runat="server" ControlToValidate ="ddlcandidate"

 ErrorMessage="Please choose a candidate"

 InitialValue="Please choose a candidate">

 </asp:RequiredFieldValidator>

The following program shows a simple use of the RequiredFieldValidator

Control.

<form id="form1" runat="server">

 Your name:

E RESOURCES

86

 <asp:TextBox runat="server" id="txtName" />

 <asp:RequiredFieldValidator runat="server" id="reqName"

controltovalidate="txtName" errormessage="Please enter your name!" />

 <asp:Button runat="server" id="btnSubmitForm" text="Ok" />

</form>

Build and run this page. It is presented with a simple text box and button

on the page. Don’t enter any value inside the text box, and click the Submit

button. The result is shown in Figure 2.2.

Fig (2.2) Required field Validator

 a) Using the Initial Value Property

Another important property when working with the

RequireFieldValidator control is the InitialValue property. Sometimes we

have form elements that are populated with some default properties (for

exam- ple, from a data store), and these form elements might present the

end user with values that require changes before the form can be submitted

to the server.

When using the InitialValue property, we specify to the

RequiredFieldValidator control the initial text of the element. The end user is

then required to change that text value before submiting the form. They

following Listing shows an example of using this property.

E RESOURCES

87

<asp:TextBox ID=‖TextBox1‖ Runat=‖server‖>My Initial

Value</asp:TextBox>

<asp:RequiredFieldValidator ID=‖RequiredFieldValidator1‖

Runat=‖server‖ ErrorMessage=‖Please change the value of the textbox!‖

ControlToValidate=‖TextBox1‖ InitialValue=‖My Initial Value‖>

In this case, the InitialValue property contains a value of My Initial

Value. When the page is built and run, the text box contains this value as

well. The RequiredFieldValidator control requires a change in this value for

the page to be considered valid.

b) Disallowing Blank Entries and Requiring Changes at the Same

Time

A blank text box does not fire a valida-tion error because the

RequiredFieldValidator control is reconstructed to force the end user only to

change the default value of the text box..

To both require a change to the initial value of the text box and to

disallow a blank entry (thereby making the element a required element), we

must put an additional RequiredFieldValidator control on the page.

This second RequiredFieldValidator control is associated with the same

text box as the first RequiredFieldValidator control. This is illustrated in the

example shown below.

<asp:TextBox ID=‖TextBox1‖ Runat=‖server‖>My Initial

Value</asp:TextBox>

<asp:RequiredFieldValidator ID=‖RequiredFieldValidator1‖ Runat=‖server‖

ErrorMessage=‖Please change value‖ ControlToValidate=‖TextBox1‖

InitialValue=‖My Initial Value‖></asp:RequiredFieldValidator>

E RESOURCES

88

<asp:RequiredFieldValidator ID=‖RequiredFieldValidator2‖ Runat=‖server‖

ErrorMessage=‖Do not leave empty‖ ControlToValidate=‖TextBox1‖>

</asp:RequiredFieldValidator>

In this example, you can see that the text box does indeed have two

RequiredFieldValidator controls associated with it. The first,

RequiredFieldValidator1, requires a change to the default value of the text

box through the use of the InitialValue property. The second

RequiredFieldValidator control, RequiredFieldValidator2, simply makes the

TextBox1 control a form element that requires a value.

c) Validating Drop-Down Lists with the RequiredFieldValidator

Control

We can use the RequiredFieldValidator control with an

<asp:DropDownList> server control. Suppose we have a drop-down list that

requires the end user to select her profession from a list of items. The first

line of the drop-down list includes instructions to the end user about what to

select, and you want to make this a required form element as well. The code

to do this is shown below.

<asp:DropDownList id=‖DropDownList1‖ runat=‖server‖>

<asp:ListItem Selected=‖True‖>Select a profession</asp:ListItem>

<asp:ListItem>Programmer</asp:ListItem>

<asp:ListItem>Lawyer</asp:ListItem>

<asp:ListItem>Doctor</asp:ListItem>

<asp:ListItem>Artist</asp:ListItem>

</asp:DropDownList>

<asp:RequiredFieldValidator id=‖RequiredFieldValidator1‖ runat=‖server‖

ErrorMessage=‖Please make a selection‖

ControlToValidate=‖DropDownList1‖

InitialValue=‖Select a profession‖>

</asp:RequiredFieldValidator>

E RESOURCES

89

The RequiredFieldValidator control in this example associates itself

with the DropDownList control through the use of the ControlToValidate

property. The drop- down list to which the validation control is bound has an

initial value — Select a profession.

4.3.2 Compare Validator Control

The CompareValidator control compares a value in one control with a

fixed value or a value in another control.The CompareValidator control

allows to make comparisons between two form elements as well as to

compare values contained within form elements to constants that you

specify. For instance, a form element’s value must be an integer and greater

than a specified number. we can also state that values must be strings,

dates, or other data types that are at your disposal.

It has the following specific properties:

Properties Description

Type It specifies the data type.

ControlToCompare It specifies the value of the input control to compare

with.

ValueToCompare It specifies the constant value to compare with.

Operator It specifies the comparison operator, the available

values are: Equal, NotEqual, GreaterThan,

GreaterThanEqual, LessThan, LessThanEqual, and

DataTypeCheck.

The basic syntax of the control is as follows:

<asp:CompareValidator ID="CompareValidator1" runat="server"

 ErrorMessage="CompareValidator">

</asp:CompareValidator>

E RESOURCES

90

a) Validating against Other Controls

One of the more common ways of using the CompareValidator control is to

make a comparison between two form elements.

For example, suppose that we have an application which requires users

to have passwords in order to access the site. Create one text box asking for

the user’s password and a second text box which asks the user to confirm

the password. Because the text box is in password mode, the end user

cannot see what she is typing — just the number of characters that she has

typed.

To reduce the chances of the end user mistyping her password and

inputting this incorrect password into the system, ask her to confirm the

password. After the form is input into the system, simply have to make a

comparison between the two text boxes to see if they match. If they match, it

is likely that the end user typed the password correctly, and input the

password choice into the system. If the two text boxes do not match, the

form to be invalid. The following example, demonstrates this situation.

<%@ Page Language=‖VB‖ %>

<script runat=‖server‖>

Protected Sub Button1_Click(sender As Object, e As EventArgs)

Label1.Text = ―Passwords match‖ End Sub

</script>

<html xmlns=‖http://www.w3.org/1999/xhtml‖ >

<head runat=‖server‖>

<title>CompareFieldValidator</title>

</head>

<body>

<form runat=‖server‖>

<p>

Password

<asp:TextBox ID=‖TextBox1‖ Runat=‖server‖

TextMode=‖Password‖></asp:TextBox>

http://www.w3.org/1999/xhtml

E RESOURCES

91

<asp:CompareValidator ID=‖CompareValidator1‖

Runat=‖server‖ ErrorMessage=‖Passwords do not match!‖

ControlToValidate=‖TextBox2‖

ControlToCompare=‖TextBox1‖></asp:CompareValidator>

</p>

<p>

In this example, we are making a comparison between the value of

TextBox2 and that of TextBox1. Therefore, use the ControlToCompare

property. This specifies what value is compared to TextBox2. In this case, the

value is TextBox1.If the two text boxes do not match after the page is posted

by the end user, the value of the ErrorMessage property from the

CompareValidator control is displayed in the browser. An example of this is

shown in Figure 2.3.

Fig(2.3) Compare Validator Control

b) Validating against Constants

We also use the CompareValidator control to make comparisons against

constants of specific data types. For example, suppose we have a text box on

registration form that asks for the age of the user. In most cases we want to

get back an actual number and not something such as aa or bb as a value.

The following programs shows how to ensure that we get back an actual

number.

E RESOURCES

92

In this example, the end user is required to enter in a number into the

text box. If they attempts to bypass the validation by entering a fake value

that contains anything other than a number, the page is identified as invalid,

and the CompareValidator control displays the value of the ErrorMessage

property.

To specify the data types that you want to use in these comparisons, use

the Type property. The Type property can take the following values:

 Currency

 Date

 Double

 Integer

 String

Not only can you make sure that what is entered is of a specific data

type, but you can also make sure that what is entered is valid when

compared to specific constants. For instance, you can make sure what is

entered in a form element is greater than, less than, equal to, greater than or

equal to, or less than or equal to a specified value. An example of this is

illustrated in the following program.

Age:

<asp:TextBox ID=‖TextBox1‖ Runat=‖server‖ MaxLength=‖3‖>

</asp:TextBox>

<asp:CompareValidator ID=‖CompareValidator1‖ Runat=‖server‖

ErrorMessage=‖You must enter a number‖

ControlToValidate=‖TextBox1‖ Type=‖Integer‖

Operator=‖DataTypeCheck‖></asp:CompareValidator>

E RESOURCES

93

Age:

<asp:TextBox ID=‖TextBox1‖ Runat=‖server‖></asp:TextBox>

<asp:CompareValidator ID=‖CompareValidator1‖

Runat=‖server‖ Operator=‖GreaterThan‖

ValueToCompare=‖18‖

ControlToValidate=‖TextBox1‖

ErrorMessage=‖You must be older than 18 to join‖ Type=‖Integer‖>

</asp:CompareValidator>

In this case, the CompareValidator control not only associates itself

with the TextBox1 control and requires that the value must be an integer,

but it also uses the Operator and the ValueToCompare prop- erties to ensure

that the number is greater than 18. Therefore, if the end user enters a value

of 18 or less, the validation fails, and the page is considered invalid.

The Operator property can take one of the following values:

❑ Equal

❑ NotEqual

❑ GreaterThan

❑ GreaterThanEqual

❑ LessThan

❑ LessThanEqual

❑ DataTypeCheck

The Value to compare property is where you place the constant value used in

the comparison. In the preceding example, it is the number 18.

2.4.3 RangeValidator Control

The RangeValidator control verifies that the input value falls within a

predetermined range.The RangeValidator control is quite similar to that of

the CompareValidator control, but it makes sure that the end user value or

selection provided is between a specified range as opposed to being just

greater than or less than a specified constant.

E RESOURCES

94

It has three specific properties

Properties Description

Type It defines the type of the data. The available values

are: Currency, Date, Double, Integer, and String.

MinimumValue It specifies the minimum value of the range.

MaximumValue It specifies the maximum value of the range.

The syntax of the control is as given:

<asp:RangeValidator ID="rvclass" runat="server"

ControlToValidate="txtclass"

 ErrorMessage="Enter your class (6 - 12)" MaximumValue="12"

 MinimumValue="6" Type="Integer">

 </asp:RangeValidator>

.

For an example , go back to the text-box element that asks for the date of

the end user and performs a validation on the value provided. This is

illustrated in the following program.

Date:

<asp:TextBox runat="server" id="txtDate" />

<asp:RangeValidator runat="server" id="rngDate" controltovalidate="txtDate"

type="Date" minimumvalue="01-01-2006" maximumvalue="31-12-2006"

errormessage="Please enter a valid date within 2006!" />

 In this example, this page consists of a text box asking for the date

of the end user. The RangeValidator control makes an analysis of the value

provided and makes sure the value is somewhere in the range of 01-01-

2006 to 31-12-2006.

E RESOURCES

95

 This is done through the use of the MaximumValue and

MinimumValue properties. The RangeValidator control also makes sure

what is entered is an integer data type. It uses the Type property, which is

set to Integer. The collection of screenshots in Figure 2.3 shows this

example in action.

Fig (2.3) Range Validator Control

4.5 . CALENDER CONTROL

The Calendar server control is a rich control that enables to place a

full-featured calendar directly on Web pages. It allows for a high degree of

customization to ensure that it looks and behaves in a unique manner.

It provides the following capabilities:

 Displaying one month at a time

 Selecting a day, a week or a month

 Selecting a range of days

 Moving from month to month

 Controlling the display of the days programmatically

The Calendar control, in its simplest form, is coded in the following manner:

<asp:Calender ID = "Calendar1" runat = "server">

</asp:Calender>

E RESOURCES

96

This code produces a calendar on your Web page without any styles

added, as shown in Figure 2.4

Fig 2.4 Calender Control

a)Properties and Events of the Calendar Control

The calendar control has many properties and events, using which

you can customize the actions and display of the control.

The following table provides some important properties of the Calendar

control:

Properties Description

Caption Gets or sets the caption for the calendar control.

CaptionAlign Gets or sets the alignment for the caption.

CellPadding Gets or sets the number of spaces between the data and

the cell border.

CellSpacing Gets or sets the space between cells.

E RESOURCES

97

DayHeaderStyle Gets the style properties for the section that displays the

day of the week.

DayNameFormat Gets or sets format of days of the week.

DayStyle Gets the style properties for the days in the displayed

month.

FirstDayOfWeek Gets or sets the day of week to display in the first column.

NextMonthText Gets or sets the text for next month navigation control. The

default value is >.

NextPrevFormat Gets or sets the format of the next and previous month

navigation control.

OtherMonthDayStyle Gets the style properties for the days on the Calendar

control that are not in the displayed month.

PrevMonthText Gets or sets the text for previous month navigation control.

The default value is <.

SelectedDate Gets or sets the selected date.

SelectedDates Gets a collection of DateTime objects representing the

selected dates.

SelectedDayStyle Gets the style properties for the selected dates.

SelectionMode Gets or sets the selection mode that specifies whether the

user can select a single day, a week or an entire month.

SelectMonthText Gets or sets the text for the month selection element in the

selector column.

SelectorStyle Gets the style properties for the week and month selector

column.

E RESOURCES

98

SelectWeekText Gets or sets the text displayed for the week selection

element in the selector column.

ShowDayHeader Gets or sets the value indicating whether the heading for

the days of the week is displayed.

ShowGridLines Gets or sets the value indicating whether the gridlines

would be shown.

ShowNextPrevMonth Gets or sets a value indicating whether next and previous

month navigation elements are shown in the title section.

ShowTitle Gets or sets a value indicating whether the title section is

displayed.

TitleFormat Gets or sets the format for the title section.

Titlestyle Get the style properties of the title heading for the Calendar

control.

TodayDayStyle Gets the style properties for today's date on the Calendar

control.

TodaysDate Gets or sets the value for today's date.

UseAccessibleHeader Gets or sets a value that indicates whether to render the

table header <th> HTML element for the day headers

instead of the table data <td> HTML element.

VisibleDate Gets or sets the date that specifies the month to display.

WeekendDayStyle Gets the style properties for the weekend dates on the

Calendar control.

The Calendar control has the following three most important events that

allow the developers to program the calendar control. They are:

E RESOURCES

99

Events Description

SelectionChanged It is raised when a day, a week or an entire month is

selected.

DayRender It is raised when each data cell of the calendar control is

rendered.

VisibleMonthChanged It is raised when user changes a month.

b)Working with the Calendar Control

Putting a bare-bone calendar control without any code behind file

provides a workable calendar to a site, which shows the months and days

of the year. It also allows navigation to next and previous months.

Fig 2.5 Working with Calender control

Calendar controls allow the users to select a single day, a week, or an

entire month. This is done by using the SelectionMode property. This

property has the following values:

E RESOURCES

100

Properties Description

Day To select a single day.

DayWeek To select a single day or an entire week.

DayWeekMonth To select a single day, a week, or an entire month.

None Nothing can be selected.

The syntax for selecting days:

<asp:Calender ID = "Calendar1" runat = "server"

SelectionMode="DayWeekMonth">

</asp:Calender>

When the selection mode is set to the value DayWeekMonth, an extra

column with the > symbol appears for selecting the week, and a >> symbol

appears to the left of the days name for selecting the month.

Fig 2.6 Calender control with Selection Mode

The following example demonstrates selecting a date and displays the

date in a label. The content file code is as follows:

<%@ Page Language="C#" AutoEventWireup="true"

CodeBehind="Default.aspx.cs" Inherits="calendardemo._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

E RESOURCES

101

<html xmlns="http://www.w3.org/1999/xhtml" >

 <head runat="server">

 <title>

 Untitled Page

 </title>

 </head>

 <body>

 <form id="form1" runat="server">

 <div>

 <h3> Your Birthday:</h3>

 <asp:Calendar ID="Calendar1" runat="server

SelectionMode="DayWeekMonth"

onselectionchanged="Calendar1_SelectionChanged">

 </asp:Calendar>

 </div>

 <p>Todays date is:

 <asp:Label ID="lblday" runat="server"></asp:Label>

 </p>

 <p>Your Birday is:

 <asp:Label ID="lblbday" runat="server"></asp:Label>

 </p>

 </form>

 </body>

</html>

The event handler for the event SelectionChanged:

E RESOURCES

102

protected void Calendar1_SelectionChanged(object sender, EventArgs e)

{

 lblday.Text = Calendar1.TodaysDate.ToShortDateString();

 lblbday.Text = Calendar1.SelectedDate.ToShortDateString();

}

When the file is run, it should produce the following output:

Fig 2.7 Calender control with Selection changed event

c)Choosing A Date Format to Output from The Calendar

When you use the Calendar1_SelectionChanged event, the

selected date is written out using the ToShortDateString() method. The

Calendar control also allows you to write out the date in a number of

other formats, as detailed in the following list:

❑ ToFileTime: Converts the selection to the local operating system file

time:

127473912000000000.

❑ ToFileTimeUtc: Converts the selection to the operating

system file time, but instead of using the local time zone,

E RESOURCES

103

the UTC time is used: 127473696000000000.

❑ ToLocalTime: Converts the current coordinated universal time

(UTC) to local time:

12/12/2004 6:00:00 PM.

❑ ToLongDateString: Converts the selection to a human-readable

string in a long format:

Monday, December 13, 2004.

❑ ToLongTimeString: Converts the selection to a time value

(no date is included) of a long for- mat: 12:00:00 AM.

❑ ToOADate: Converts the selection to an OLE Automation date

equivalent: 38334.

❑ ToShortDateString: Converts the selection to a human-readable

string in a short format:

12/13/2004.

❑ ToShortTimeString: Converts the selection to a time value

(no date is included) in a short for- mat: 12:00 AM.

❑ ToString: Converts the selection to the following: 12/13/2004

12:00:00 AM.

❑ ToUniversalTime: Converts the selection to universal time (UTC):

12/13/2004 6:00:00 AM.

d) Modifying the Style and Behavior of Calendar Control

Using Visual Studio, we customize the calendar controls from the

Design view of the page.. Highlight the Calendar control and open the

control’s smart tag to see the Auto Format link. That gives a list of available

styles that can be applied to the Calendar control.

Some of the styles are shown in Figure 2.8.

E RESOURCES

104

Fig 2.8 Various styles of Calender Control

2.5 AD ROTATOR SERVER CONTROL

The AdRotator control randomly selects banner graphics from a list,

which is specified in an external XML schedule file. This external XML

schedule file is called the advertisement file.

The AdRotator control allows you to specify the advertisement file and

the type of window that the link should follow in the AdvertisementFile and

the Target property respectively.

The basic syntax of adding an AdRotator is as follows:

<asp:AdRotator runat = "server" AdvertisementFile = "adfile.xml" Target =

"_blank" />

Before going into the details of the AdRotator control and its properties, let

us look into the construction of the advertisement file.

The Advertisement File

The advertisement file is an XML file, which contains the information

about the advertisements to be displayed.Following is an example of XML

file:

E RESOURCES

105

<?xml version="1.0" encoding="utf-8" ?>

<Advertisements>

<Ad>

<ImageUrl>~/Images/image1.gif</ImageUrl>

<NavigateUrl>http://roseindia.net</NavigateUrl>

<AlternateText>Roseindia</AlternateText>

<Keyword>Site1</Keyword>

</Ad>

<Ad>

<ImageUrl>~/Images/image2.png</ImageUrl>

<NavigateUrl>http://www.google.com</NavigateUrl>

<AlternateText>Google</AlternateText>

<Keyword>Site2</Keyword>

</Ad>

</Advertisements>

AdRotator.aspx (source page):

<%@ Page Language="C#" AutoEventWireup="true"

MasterPageFile="~/RoseindiaMaster.master"

CodeFile="AdRotator.aspx.cs" Inherits="AdRotator" %>

<asp:Content ID="Content1" runat="server"

contentplaceholderid="ContentPlaceHolder1">

<div>

<h2 style="color:Green">AdRotator in ASP.NET 4, C#</h2>

<asp:AdRotator ID="AdRotator1"

runat="server"

Width="468px"

Height="60px"

AdvertisementFile="~/XML/Adxml.xml"/>

E RESOURCES

106

</div>

</asp:Content>

Output:

View the page in browser is as follows:

Fig 2.9 output of Adrotator before refresh

When you refresh the page the second image will be display as follows:

Fig 2.10 output of Adrotator after refresh

E RESOURCES

107

Like all XML files, the advertisement file needs to be a structured text

file with well-defined tags delineating the data. There are the following

standard XML elements that are commonly used in the advertisement file.

Apart from these tags, customs tags with custom attributes could also be

included

Element Description

Advertisements Encloses the advertisement file.

Ad Delineates separate ad.

ImageUrl The path of image that will be displayed.

NavigateUrl The link that will be followed when the user clicks the ad.

AlternateText The text that will be displayed instead of the picture if it

cannot be displayed.

Keyword Keyword identifying a group of advertisements. This is used

for filtering.

Impressions The number indicating how often an advertisement will

appear.

Height Height of the image to be displayed.

Width Width of the image to be displayed.

a) Properties and Events of the AdRotator Class

The AdRotator class is derived from the WebControl class and inherits

its properties. Apart from those, the AdRotator class has the following

properties:

E RESOURCES

108

Properties Description

AdvertisementFile The path to the advertisement file.

AlternateTextFeild The element name of the field where alternate text is

provided. The default value is AlternateText.

DataMember The name of the specific list of data to be bound when

advertisement file is not used.

DataSource Control from where it would retrieve data.

DataSourceID Id of the control from where it would retrieve data.

Font Specifies the font properties associated with the

advertisement banner control.

ImageUrlField The element name of the field where the URL for the image

is provided. The default value is ImageUrl.

KeywordFilter For displaying the keyword based ads only.

NavigateUrlField The element name of the field where the URL to navigate to

is provided. The default value is NavigateUrl.

Target The browser window or frame that displays the content of

the page linked.

UniqueID Obtains the unique, hierarchically qualified identifier for

the AdRotator control.

Following are the important events of the AdRotator class:

Events Description

AdCreated It is raised once per round trip to the server after creation

of the control, but before the page is rendered

E RESOURCES

109

DataBinding Occurs when the server control binds to a data source.

DataBound Occurs after the server control binds to a data source.

Disposed Occurs when a server control is released from memory,

which is the last stage of the server control lifecycle when

an ASP.NET page is requested

Init Occurs when the server control is initialized, which is the

first step in its lifecycle.

Load Occurs when the server control is loaded into the Page

object.

PreRender Occurs after the Control object is loaded but prior to

rendering.

Unload Occurs when the server control is unloaded from memory.

2.6 INTERNET EXPLORER WEB CONTROL

 Internet Explorer WebControls, which are a powerful collection of

ASP.NET server controls. The WebControls implement a single-source

authoring solution for four popular UI

elements: MultiPage, TabStrip, Toolbar, and TreeView.The WebControls

provide an authoring solution with widespread reach, by delivering HTML

3.2 compatible content to downlevel browsers .

ASP.NET Web forms detect the client browser capabilities and include

Dynamic HTML (DHTML) behaviors in the Web pages downloaded to uplevel

browsers.

 The objects exposed by the DHTML behaviors and the ASP.NET

controls are presented in the Internet Explorer WebControls Reference.

https://docs.microsoft.com/en-us/previous-versions/ms529252%28v%3dvs.85%29
https://docs.microsoft.com/en-us/previous-versions/ms529257%28v%3dvs.85%29
https://docs.microsoft.com/en-us/previous-versions/ms529258%28v%3dvs.85%29
https://docs.microsoft.com/en-us/previous-versions/ms529261%28v%3dvs.85%29

E RESOURCES

110

 a) WebControls

This section illustrates the type of interface that can be created by

each one. Each section focuses on one of the WebControls and links to the

appropriate overviews and reference documentation.

i) TreeView

The TreeView control contains a hierarchy of TreeViewItem controls. We

use the TreeView control to display information from a wide variety of data

sources such as an XML file, site-map file, string, or from a database.

It provides a way to display information in a hierarchical structure by

using collapsible nodes . The top level in a tree view are root nodes that can

be expanded or collapsed if the nodes have child nodes. The following fig

shows about the Treeview Control.

Fig 2.11 Sample Treeview Control

This control exposes both a server and client Object Model.

ii)ToolBar

The Toolbar can be used to author UI elements that render and

function in ways similar to the toolbars in Windows applications. In uplevel

browsers, the Toolbar can have rich interactive behaviour. For example, it

can dock with other elements in a Web page or the browser window and can

https://docs.microsoft.com/en-us/previous-versions/ms528838%28v%3dvs.85%29

E RESOURCES

111

modify its orientation accordingly. Like the other WebControls,

the Toolbar can be customized with graphics elements and

CSS.The Toolbar control exposes both a server and client Object Model.

iii)Tab Strip and MultiPage

The TabStrip is often used in combination with the MultiPage control.

However, each control can also be used separately. The following example

shows a typical use for these controls.

In the sample, the tabbing UI elements are authored with

the TabStrip control. The MultiPage control is used as a container for pages

of Web content, which are activated when a Tab is selected. A MultiPage is a

container for a collection of PageView elements. Clicking the Tab navigates

to a new PageView automatically.

For more detailed information on using these controls, see About the

TabStrip WebControl and About the MultiPage WebControl. Also, see

the TabStrip Reference and MultiPage Reference pages for links to the client-

side and server-side references for these controls.

2.7 STATE MANAGEMENT

State management means to preserve state of a control, web page,

object/data, and user in the application explicitly because all ASP.NET web

applications are stateless, i.e., by default, for each page posted to the server,

the state of controls is lost.

 The current value of all the controls and variables for the current user

in the current session is called the State.

2.7.1 Types of state management

There are two types of state management techniques: client side and server

side.

a) Client side

1. Hidden Field

2. View State

3. Cookies

4. Control State

https://docs.microsoft.com/en-us/previous-versions/ms528893%28v%3dvs.85%29
https://docs.microsoft.com/en-us/previous-versions/ms529224%28v%3dvs.85%29
https://docs.microsoft.com/en-us/previous-versions/ms528872%28v%3dvs.85%29
https://docs.microsoft.com/en-us/previous-versions/ms529550%28v%3dvs.85%29
https://docs.microsoft.com/en-us/previous-versions/ms529227%28v%3dvs.85%29
https://docs.microsoft.com/en-us/previous-versions/ms529257%28v%3dvs.85%29
https://docs.microsoft.com/en-us/previous-versions/ms529257%28v%3dvs.85%29
https://docs.microsoft.com/en-us/previous-versions/ms529257%28v%3dvs.85%29
https://docs.microsoft.com/en-us/previous-versions/ms529252%28v%3dvs.85%29
https://docs.microsoft.com/en-us/previous-versions/ms529244%28v%3dvs.85%29
https://docs.microsoft.com/en-us/previous-versions/ms529240%28v%3dvs.85%29

E RESOURCES

112

5. Query Strings

b) Server side

1. Session

2. Application

2.7.3 Levels of State Management

1. Control level: In ASP.NET, by default controls provide state

management automatically.

2. Variable or object level: In ASP.NET, member variables at page

level are stateless and thus we need to maintain state explicitly.

3. Single or multiple page level: State management at single as well

as multiple page level i.e., managing state between page requests.

4. User level: State should be preserved as long as a user is running

the application.

5. Application level: State available for complete application

irrespective of the user, i.e., should be available to all users.

6. Application to application level: State management between or

among two or more applications.

2.7.4 Client Side Methods

1. Hidden field

Hidden field is a control provided by ASP.NET which is used to store

small amounts of data on the client. It store one value for the variable and it

is a preferable way when a variable's value is changed frequently. Hidden

field control is not rendered to the client (browser) and it is invisible on the

browser. A hidden field travels with every request like a standard control’s

value.

Let us see with a simple example how to use a hidden field. These

examples increase a value by 1 on every "No Action Button" click. The

source of the hidden field control is.

<asp:HiddenField ID="HiddenField1" runat="server" />

E RESOURCES

113

In the code-behind page: Default.aspx Code

1. %@PageLanguage="C#"AutoEventWireup="true"CodeFile="Default.asp

x.cs"Inherits="_Default"%>

2. <!DOCTYPEhtml>

3. <htmlxmlns="http://www.w3.org/1999/xhtml">

4. <headrunat="server">

5. <title></title>

6. </head>

7.

8. <body>

9. <formid="form1" runat="server">

10. <div>

11. <asp:HiddenFieldID="hdnfldCurrentDateTime" r

unat="server" />

12. <asp:LabelID="lblCurrentDateTime" runat="serv

er" Text=""></asp:Label>

13. </div>

14. </form>

15. </body>

16.

17. </html>

Default.aspx.cs Code

1. using System;

2. using System.Collections.Generic;

3. using System.Linq;

4. using System.Web;

5. using System.Web.UI;

6. using System.Web.UI.WebControls;

7. public partial class_Default: System.Web.UI.Page {

8. protected void Page_Load(object sender, EventArgs e) {

9. hdnfldCurrentDateTime.Value = DateTime.Now.ToString();

E RESOURCES

114

10. lblCurrentDateTime.Text = Convert.ToString(hdnfldCurrent

DateTime.Value);

11. }

12. }

Output of the above program as follows:

Fig 2.11 Hidden Field demo

2. View State

View state is another client side state management mechanism

provided by ASP.NET to store user's data, i.e., sometimes the user needs to

preserve data temporarily after a post back, then the view state is the

preferred way for doing it. It stores data in the generated HTML using

hidden field not on the server.

View State provides page level state management i.e., as long as the

user is on the current page, state is available and the user redirects to the

next page and the current page state is lost. View State can store any type of

data because it is object type but it is preferable not to store a complex type

of data due to the need for serialization and deserilization on each post

back.

View state is enabled by default for all server side controls of ASP.NET

with a property EnableviewState set to true.

3. Cookies

Cookie is a small text file which is created by the client's browser and

also stored on the client hard disk by the browser. It does not use server

memory. Generally a cookie is used to identify users.A cookie is a small file

that stores user information.

E RESOURCES

115

Whenever a user makes a request for a page the first time, the server

creates a cookie and sends it to the client along with the requested page and

the client browser receives that cookie and stores it on the client machine

either permanently or temporarily (persistent or non persistence). The next

time the user makes a request for the same site, either the same or another

page, the browser checks the existence of the cookie for that site in the

folder. If the cookie exists it sends a request with the same cookie, else that

request is treated as a new request.

Types of Cookies

a) Persistence Cookie: Cookies which you can set an expiry date time are

called persistence cookies. Persistence cookies are permanently stored till

the time you set.

Let us see how to create persistence cookies. There are two ways, the first

one is:

Response.Cookies["nameWithPCookies"].Value = "This is A Persistance

Cookie";

Response.Cookies["nameWithPCookies"].Expires =

DateTime.Now.AddSeconds(10);

And the second one is:

HttpCookie aCookieValPer = new HttpCookie("Persistance");

aCookieValPer.Value = "This is A Persistance Cookie";

aCookieValPer.Expires = DateTime.Now.AddSeconds(10);

Response.Cookies.Add(aCookieValPer);

b. Non-Persistence Cookie: Non persistence cookies are not permanently

stored on the user client hard disk folder. It maintains user information as

long as the user accesses the same browser. When user closes the browser

the cookie will be discarded. Non Persistence cookies are useful for public

computers.

Let us see how to create a non persistence cookies. There are two ways, the

first one is:

E RESOURCES

116

Response.Cookies["nameWithNPCookies"].Value = "This is A Non Persistance

Cookie";

And the second way is:

HttpCookie aCookieValNonPer = new HttpCookie("NonPersistance");

aCookieValNonPer.Value = "This is A Non Persistance Cookie;

Response.Cookies.Add(aCookieValNonPer);how to create cookie :

How to read a cookie:

if (Request.Cookies["NonPersistance"] != null)

Label2.Text = Request.Cookies["NonPersistance"].Value;

Let's understand persistence and non persistence cookies more clearly with

a diagram:

Fig 2.8 Persistence and Non-persistence of Cookies

Limitation of cookies:

 The number of cookies allowed is limited and varies according to the

browser. Most browsers allow 20 cookies per server in a client's hard disk

folder and the size of a cookie is not more than 4096 bytes or 4 KB of data

that also includes name and value data.

4. Control State

Control State is another client side state management technique.

Whenever we develop a custom control and want to preserve some

information, we can use view state but suppose view state is disabled

explicitly by the user, the control will not work as expected. For expected

results for the control we have to use Control State property. Control state is

separate from view state.

E RESOURCES

117

How To Use Control State Property: Control state implementation is

simple. First override the OnInit() method of the control and add a call for

the Page.RegisterRequiresControlState() method with the instance of the

control to register. Then override LoadControlState and SaveControlState in

order to save the required state information.

2.7.5 Server side

1. Session

Session management is a very strong technique to maintain state.

Generally session is used to store user's information and/or uniquely

identify a user (or say browser). The server maintains the state of user

information by using a session ID. When users make a request without a

session ID, ASP.NET creates a session ID and sends it with every request

and response to the same user.

How to get and set value in Session:

Session["Count"] = Convert.ToInt32(Session["Count"]) + 1;//Set Value to The

Session

Label2.Text = Session["Count"].ToString(); //Get Value from the Sesion

Let us see an example where we save the count of button clicks in a

session, and save the ―number of redirects to the same page‖ button click in

a query string.

Here we have set the expiry to 10 minutes. After starting the

application, the application variable exists till the end of the application.

A session variable will expire after 10 minutes (if it is idle). A query

string contains the value in URL so it won’t depend on the user idle time

and could be used by the server anytime it is passed with a request.

E RESOURCES

118

Fig 2.9 Session Management

Session Events in ASP.Net

To manage a session, ASP.NET provides two

events: session_start and session_end that is written in a special file

called Global.asax in the root directory of the project.

Session_Start: The Session_start event is raised every time a new user

makes a request without a session ID, i.e., new browser accesses the

application, then a session_start event raised.

void Session_Start(object sender, EventArgs e)

{

 Session["Count"] = 0; // Code that runs when a new session is started

}

Session_End: The Session_End event is raised when session ends either

because of a time out expiry or explicitly by using Session. Abandon().

The Session_End event is raised only in the case of In proc mode not in the

state server and SQL Server modes.

There are four session storage mechanisms provided by ASP.NET:

 In Proc mode

 State Server mode

 SQL Server mode

 Custom mode

E RESOURCES

119

In Process mode: In proc mode is the default mode provided by ASP.NET.

In this mode, session values are stored in the web server's memory (in IIS). If

there are more than one IIS servers then session values are stored in each

server separately on which request has been made. Since the session values

are stored in server, whenever server is restarted the session values will be

lost.

In State Server mode: This mode could store session in the web server but

out of the application pool. But usually if this mode is used there will be a

separate server for storing sessions, i.e., stateServer. The benefit is that

when IIS restarts the session is available. It stores session in a separate

Windows service. For State server session mode, we have to configure it

explicitly in the web config file and start the asp.net_state service.

In SQL Server mode: Session is stored in a SQL Server database. This kind

of session mode is also separate from IIS, i.e., session is available even after

restarting the IIS server. This mode is highly secure and reliable .

but also has a disadvantage that there is overhead from serialization and

deserialization of session data. This mode should be used when reliability is

more important than performance.

Custom Session mode: Generally we should prefer in proc state server

mode or SQL Server mode but if you need to store session data using other

than these techniques then ASP.NET provides a custom session mode. This

way we have to maintain everything customized even generating session ID,

data store, and also security.

Attributes Description

Cookieless true/false Indicates that the session is used

with or without cookie. cookieless set

to true indicates sessions without

cookies is used and cookieless set to

false indicates sessions with cookies

is used. cookieless set to false is the

E RESOURCES

120

default set.

timeout Indicates the session will abound if it

is idle before session is abounded

explicitly (the default time is 20 min).

StateConnectionString Indicates the session state is stored

on the remote computer (server).

This attribute is required when

session mode is StateServer

SqlConnectionString Indicates the session state is stored

in the database. This attribute is

required when session mode

is SqlServer.

2. Application

Application state is a server side state management technique. The

date stored in application state is common for all users of that particular

ASP.NET application and can be accessed anywhere in the application. It is

also called application level state management. Data stored in the

application should be of small size.

How to get and set a value in the application object:

Application["Count"] = Convert.ToInt32(Application["Count"]) + 1; //Set

Value to The Application Object

Label1.Text = Application["Count"].ToString(); //Get Value from the

Application Object

Application events in ASP.NET

There are three types of events in ASP.NET. Application event is

written in a special file called Global.asax. This file is not created by default,

it is created explicitly by the developer in the root directory. An application

can create more than one Global.asax file but only the root one is read by

ASP.NET.

Application_start: The Application_Start event is raised when an app domain

starts. When the first request is raised to an application then

the Application_Start event is raised. Let's see Global.asax file.

E RESOURCES

121

void Application_Start(object sender, EventArgs e)

{

 Application["Count"] = 0;

}

Application_Error: It is raised when an unhandled exception occurs, and we

can manage the exception in this event.

Application_End: The Application_End event is raised just before an

application domain ends because of any reason, may IIS server restarting or

making some changes in an application cycle.

2.8 KEY TERMS

Web Forms: Web forms are made up of different types of HTML elements

that are constructed using raw HTML form elements.

Validation:Validation is basically the act of comparing something to a given

set of rules and determining if it satisfies the criteria those rules represent.

Server side Validation:The user input validation take place on the Server

Side during a post back session is called Server Side Validation.

Client Side Validation:The user input validation take place on the Client

Side (web browser) is called Client Side Validation. Client Side Validation

does not require a postback.

 State management:State Management means to preserve state of a

control, web page, object/data, and user in the application explicitly

because all ASP.NET web applications are stateless, i.e., by default, for each

page posted to the server, the state of controls is lost.

State: The current value of all the controls and variables for the

current user in the current session is called the State.

Session:Session is used to store user's information and/or uniquely identify

a user (or say browser).

E RESOURCES

122

Cookies:Cookie is a small text file which is created by the client's browser

and also stored on the client hard disk by the browser.

Persistence Cookie: Cookies which you can set an expiry date time are

called persistence cookies. Persistence cookies are permanently stored till

the time you set.

Non-Persistence Cookie: : Non persistence cookies are not permanently

stored on the user client hard disk folder. It maintains user information as

long as the user accesses the same browser.

2.8.1 TWO MARKS

1. What is Web forms?

Web Forms are pages that users request using their browser. Any ASPX files

are usually referred to as Web Forms or Web Form Pages because they

normally process form input.

2. What is Validation?

Validation is basically the act of comparing something to a given set of rules

and determining if it satisfies the criteria those rules represent.

3. List out the types of Validation?

a) Server side Validation

b) Client side Validation

4. Define Server side Validation.

The user input validation take place on the Server Side during a post back

session is called Server Side Validation. For Example: Suppose that the end

user clicks the Submit button on a form after filling out some information.

This form is packaged in a request and sent to the server where the

application resides. At this point in the request/response cycle, we can run

validation checks on the information submitted

5. Define Client Side Validation.

The user input validation take place on the Client Side (web browser) is

called Client Side Validation. Client Side Validation does not require a

postback. For example: if the user enter an invalid email format, we can

E RESOURCES

123

show an error message immediately before the user move to the next field, so

the user can correct every field before they submit the form.

5. List various validation controls.

1. RequiredFieldValidator

2. RangeValidator

3. CompareValidator

4. RegularExpressionValidator

5. CustomValidator

6. ValidationSummary

6. Write the syntax of Required Field Validator.

<asp:RequiredFieldValidator ID="candidate"

 runat="server" ControlToValidate ="cname"

 ErrorMessage="error message to show"

 InitialValue="Intial value to show">

 </asp:RequiredFieldValidator>

7. Write the purpose of compare validator control.

The CompareValidator control compares a value in one control with a

fixed value or a value in another control. The CompareValidator control

allows to make comparisons between two form elements as well as to

compare values contained within form elements to constants that you

specify.

8. Define State management.

State Management means to preserve state of a control, web page,

object/data, and user in the application explicitly because all ASP.NET web

applications are stateless, i.e., by default, for each page posted to the server,

the state of controls is lost.

9. Define State.

 The current value of all the controls and variables for the current user

in the current session is called the State.

E RESOURCES

124

10. What is the use of Session?

Session is used to store user's information and/or uniquely identify a

user (or say browser).

11. List out the session storage mechanisms?

 In Proc mode

 State Server mode

 SQL Server mode

 Custom mode

12. Define Cookies.

Cookie is a small text file which is created by the client's browser and also

stored on the client hard disk by the browser.

12. List out the types of cookies.

Persistence Cookie and Non-Persistence Cookie

13. Define Persistence Cookie.

 Cookies which you can set an expiry date time are called persistence

cookies. Persistence cookies are permanently stored till the time you set.

14. Define Non - Persistence Cookie.

Non persistence cookies are not permanently stored on the user client

hard disk folder. It maintains user information as long as the user accesses

the same browser.

15. List out various elements in Internet Explorer Web Control.

MultiPage, TabStrip, Toolbar, and TreeView

16. List out the various types of State Management.

Client side and Server side

17.List out the Client side state management element

Hidden Field, View State, Cookies, Control State and Query Strings

18. List out the various types of Server side state management.

Session and Application

2.8.2 FIVE MARKS

1. Differentiate between Client side and server side validation techniques.

2.Write short note on various validation controls in ASP. Net.

https://docs.microsoft.com/en-us/previous-versions/ms529252%28v%3dvs.85%29
https://docs.microsoft.com/en-us/previous-versions/ms529257%28v%3dvs.85%29
https://docs.microsoft.com/en-us/previous-versions/ms529258%28v%3dvs.85%29
https://docs.microsoft.com/en-us/previous-versions/ms529261%28v%3dvs.85%29

E RESOURCES

125

3. What is the purpose of Required Field Validator Control? Explain it with

example.

4. Explain Range Validator Control with example.

5.Explain Ad rotator Control.

6. Write a short note on Internet Explorer Web Control.

7. Write a short note on Session Event in ASP .net.

2.8.3 TEN MARKS

1. Enumerate State Management with example

2. Explain Internet Explorer Web controls.

3. What is the purpose of Ad Rotator Server Control with example.

4. Explain Calender control with properties and events.

5. Explain Required Field Validator Control with example.

6. Explain Range validator control with example.

7. Explain cookies with example.

UNIT – III

ADO .Net

3.1 ARCHITECTURE OF ADO.NET

E RESOURCES

126

FIG 2.1 ARCHITECTURE OF ADO.Net

3.1.1 ADO.NET OBJECT MODEL:

 ADO.NET consist of a set of Objects that expose data access services

to the .NET environment.

 It is a data access technology from Microsoft .Net Framework , which

provides communication between relational and non relational

systems through a common set of components .

 All ADO.NET related functionality appears under the System.Data

namespace.

 Data Access in ADO.NET relies on two components :

1. .NET Data Providers.

2. DataSet

3.1.1.1 DATA PROVIDERS AND DATASET

FIG 3.2 DATA PROVIDERS

 The Data Provider classes are meant to work with different kinds of

data sources. They are used to perform all data-management

operations on specific databases.

 Data Set class provides mechanisms for managing data when it is

disconnected from the data source.

E RESOURCES

127

DATA PROVIDERS

 The .Net Framework includes mainly three Data Providers for

ADO.NET. They are

 Microsoft SQL Server Data Provider

 OLEDB Data Provider and

 ODBC Data Provider .

CONNECTION OBJECTS

i. SQL Server uses the SqlConnection object ,

ii. OLEDB uses the OLEDBConnection Object and

iii. ODBC uses ODBCConnection Object respectively.

 A data provider contains

 Connection

 Command

 DataAdapter

 DataReader objects.

 These four objects provides the functionality of Data Providers in the

ADO.NET.

Connection

 The Connection Object provides physical connection to the Data

Source.

 Connection object needs the necessary information to recognize the

data source and to log on to it properly, this information is provided

through a connection string.

i. SQL Server uses the SqlConnection object ,

ii. OLEDB uses the OLEDBConnection Object and

iii. ODBC uses ODBCConnection Object respectively.

Command

 The Command Object uses to perform SQL statement or stored

procedure to be executed at the Data Source.

 The command object provides a number of Execute methods that

can be used to perform the SQL queries in a variety of fashions.

E RESOURCES

128

 Examples of command objects are SqlCommand, OracleCommand

and so on.

 A Command needs to be able to accept parameters.

 The Parameter object of ADO.NET allows commands to be more

flexible and accept input values and act accordingly.

DataReader

 The DataReader Object is a stream-based , forward-only, read-only

retrieval of query results from the Data Source, which do not update

the data.

 DataReader requires a live connection with the database and

provides a very intelligent way of consuming all or part of the result

set.

 The disadvantage of using a DataReader object is that it requires an

open database connection and increases network activity.

DataAdapter

 DataAdapter Object populate a Dataset Object with results from a

Data Source .

 It is a special class whose purpose is to bridge the gap between the

disconnected Dataset objects and the physical data source.

 Examples of DataAdapters are SqlDataAdapter, OracleDataAdapter

and so on. It has commands like Select, Insert, Update and Delete .

 Select command is used to retrieve data from the database.

 Insert, update and delete commands are used to send changes to

the data in dataset to database.

3.1.1.2 DATASET

E RESOURCES

129

FIG 3.3 DATASET

 DataSet provides a disconnected representation of result sets

from the Data Source

 It is completely independent from the Data Source.

 DataSet provides much greater flexibility when dealing with

related Result Sets.

 DataSet contains rows, columns, primary keys, constraints, and

relations with other DataTable objects.

 It consists of a collection of DataTable objects that you can relate

to each other with DataRelation objects.

 The DataAdapter Object provides a bridge between the DataSet

and the Data Source.

3.2 CONNECTED AND DISCONNECTED DATABASE

Connected Architecture of ADO.NET

 The architecture of ADO.net, in which connection must be

opened to access the data retrieved from database is called as

connected architecture.

 Connected architecture was built on the classes connection,

command, datareader and transaction.

FIG 3.4 CONNECTED DATABASE

Disconnected Architecture in ADO.NET

 The architecture of ADO.net in which data retrieved from

database can be accessed even when connection to database

was closed is called as disconnected architecture.

E RESOURCES

130

 Disconnected architecture of ADO.net was built on classes

connection, dataadapter, command builder and dataset and

dataview.

 Disconnected architecture is a method of retrieving a record set

from the database and storing it giving you the ability to do

many operations on the data in memory.. A method of using

disconnected architecture is using a Dataset.

FIG 3.5 DISCONNECTED DATABASE

 DataReader is Connected Architecture since it keeps the connection

open until all rows are fetched one by one

 DataSet is DisConnected Architecture since all the records are

brought at once and there is no need to keep the connection alive

3.2.1 Difference between Connected and disconnected Database

Connected Disconnected

It is connection oriented. It is disconnection oriented.

Datareader DataSet

Connected methods gives faster

performance

Disconnected get low in speed and

performance.

connected can hold the data of single

table

disconnected can hold multiple

tables of data

connected you need to use a read

only forward only data reader

disconnected you cannot

Data Reader can't persist the data Data Set can persist the data

It is Read only, we can't update the

data.

We can update data

E RESOURCES

131

3.3 CREATING DATABASE IN ADO.NET

 There are a few things you should make sure you understand/obtain

before you begin. Take a look below:

• Starting up a command prompt in Windows or Linux.

• .NET framework 4.5 or greater installed and ready to go.

• A text editor.

• An ADO.NET Database Driver contained in products such as MySQL,

PostgreSQL or RDM.

3.3.1 STEPS TO CREATING APPLICATION

Step 1 Open a command line prompt

 Change to the directory in which you have installed the files for the

sample.

Step 2 Viewing .cs file

 Using text editor, view the file ―HelloWorldADO.NET.java‖.

Step 3 Viewing sample class

 class can contain the same name as the .cs file containing the class.

It should appear as follows:

Namespace HelloWorldApplication {

class HelloWorldADO.NET {

…

}

}

In this example everything is done within this class.

Step 4 Examining the main method

 The main method is the entry point for your program. For this simple

example, we are only using one .cs file. Therefore, the class will contain the

main method as shown below. We will be accepting no arguments to this

program.

static void main() {

…

}

https://dev.mysql.com/downloads/connector/net/
https://www.devart.com/dotconnect/postgresql/
https://raima.com/how-to-create-a-database-using-ado-net/download-table/

E RESOURCES

132

Step 5 Creating and initializing your Connection Object

 You will initialize your Connection object before you have access to

any of the methods it contains. When you are done with the object, simply

add a finally block that performs the corresponding close() method, and the

outermost block will contain catch block to handle all possible Exceptions.

This will be easier to see with the full code.

RdmConnection connection = new

RdmConnection("host=localhost;database=hello_worldADO");

try {

…

}

} catch (Exception exception) {

…

} finally {

Conn.close();

}

Step 6 Creating Statement Object

 The newly created Connection object connection has a method in it

called createCommand() that will return a RdmCommand object. Use that

object with this Connection to the database.

RdmCommand command = connection.createCommand();

try {

…

} finally {

command.close();

}

Step 7 Execute Statements to Create or Open the Database

 Using the RdmCommand object command just created, execute

several different methods depending on the type of statement want to

execute.

 For example, if you would like to execute a SQL statement such as

 ―OPEN database_name‖ or

E RESOURCES

133

 ―DELETE * FROM table_name‖

In this example, we will create the database programmatically. In this

example, the database is trivial, consisting of a single table named

hello_table containing a single character column named foo. The sequence

will create a table if it doesn’t yet exist, or just open it if it does exist.

try {

RdmTransaction rdmtrans = connection.BeginTransaction();

command.CommandText = ―CREATE TABLE hello_table (f00 char(31))‖;

command.executeNonQuery();

rdmtrans.commit(); // now the database physically exists

} catch (Exception exception) {

// we are here if database exists

}

Step 8 Inserting a new Row using the Statement Object

 To insert a single row into this database, we use the Execute

NonQuery() method, which is used for complete (unprepared) INSERT,

UPDATE or DELETE statements. This implicitly starts a transaction, which

will be one unit of update work applied to the database atomically. One

INSERT is shown below with a parameter binding, but more could be added

at this point.

command.CommandText = "INSERT INTO hello_table(f00) VALUES(?)";

command.CommandText = insertString;

RdmParameter parameter = new RdmParameter();

parameter.RdmType = RdmType.AnsiString;

parameter.Direction = ParameterDirection.Input;

parameter.Value = "Hello World!";

command.Parameters.Add(parameter);

command.ExecuteNonQuery();

E RESOURCES

134

Step 9 Committing Changes

 In order to have changes finalized in the database perform a

transaction commit. In ADO.NET this is done through a method in the

RdmTransaction object. The method we will be using is

RdmTransaction.Commit() and that will finalize any changes made during a

transaction.

rdmtrans.Commit(); //Commits all changes

Step 10 Creating Result Set Object (retrieving data from the database)

 In ADO.NET, when we want to retrieve data from the database,

perform a SQL SELECT statement using your Command object with an

execute method that returns a Result Set object. This method is called

Command.execute Reader().

 This means it will execute the specified Query and return the Query

results in the given Reader.

command.CommandText = "SELECT * FROM hello_table";

RdmDataReader reader = command.ExecuteReader();

try {

…

} finally {

reader.Close();

}

Step 11 Accessing the Result Set

 In order to access every piece of data in your Result Set, you must

iterate through it. A method is provided within the Result Set to check if the

next result in the Result Set is NULL, meaning no more data. If the method

reader.Read() returns TRUE then there is data in the database and you can

retrieve it from your result set.

 To access the data inside the Result Set you must perform a getter

method. There are numerous getter methods available to retrieve the specific

data type from the Result Set. In this example we want a string, therefore we

E RESOURCES

135

use the reader.getString() method, with the parameter being the column

(first/only column is 0) you are retrieving from.

 Take a look at the code below to see an example of how this can be

done.

while(reader.Read() != false)

{

Console.WriteLine(reader.GetString(0));

}

 This loop will retrieve all rows in the result set. When this sample

program is run for the first time, there will be only one row. If you run it

multiple times, you will find one row for each time it has been run.

Step 12 Deallocating Resources

 Here we will deallocate all of the resources you used above. In this

case, our resources are each object that we used above, being Connection

object, Statement, and Result Set objects. For each nested try block you will

have a finally block, which performs the corresponding close method. These

statements have been shown in context above, but here are the cleanup

calls in sequence from the code.

}

 finally

 {

reader.Close ();

}

}

 finally

 {

command.Close ();

}

}

 catch (Exception exception) {

Console.WriteLine (―Exception : ‖ + exception.ToString ());

}

E RESOURCES

136

 finally

{

connection.Close ();

}

Step 13 Final Catch and Finally block

 The very last block contains both a catch block and a finally block.

The catch block determines what to do if an exception was thrown in the

code above. The finally block will be executed regardless of an exception

being thrown. Here we will deallocate our Connection object.

 }

 catch (Exception exception)

 {

WriteLine(―Exception : ‖ + exception.ToString());

}

 finally

 {

connection.Close();

}

Step 14 Compiling your application

 If your ADO.NET is installed correctly you should have access to the

c#, called csc. In order to compile, you must use the csc compiler. The

format looks like this:

 csc {main_class.cs (entry point to program)}

In this case you would type:

csc HelloWorldADO.cs

 You should see no warnings, and after completion a .class file will

have been generated. You directory should contain:

HelloWorldADO.cs

HelloWorldADO.NET.a

E RESOURCES

137

Step 15 Running the program

 Running the program is as simple as typing ―java {executable name}‖.

In this case you would have ―HelloWorldADO‖ as that is the entry point to

your program. If everything works as expected you should see something

like the following as displayed in a Windows Command Prompt:

3.4 CREATE CONNECTION USING ADO.NET OBJECT MODEL

 Connection Object is used for connecting your application to data

source or database. It carries required authentic information like username

and password in the connection string and opens a connection. You need to

different type of connection object for different type of data providers.

 For example:

OLEDB – OleDbConnection

SQLServer – SqlConnection

ODBC – OdbcConnection

Oracle – OracleConnection

3.4.1 WHAT IS CONNECTION STRING?

 Connection String combines all the required authentic information

that is used for connecting to a Data Source, like Server Name, Database

Name, User Name, Password etc. It is just a single line string that is used by

connection object to connect to the database. A connection string looks like

this.

Data Source=.\SQLEXPRESS;Initial Catalog=TestDB; Integrated Security=True

or,

Data Source=.\SQLEXPRESS;Initial Catalog=TestDB;User

ID=sa;Password=System123;Pooling=False

3.4.2 HOW TO STORE CONNECTION STRING IN WEB.CONFIG FILE?

 In order to connect with Database, it is mandatory to keep connection

string in a safe and centralized location. It is not recommended to writing

E RESOURCES

138

connection string in each and every connection. We can store the connection

string in Web.config file, app.config file or into a class file.

Web.config File – Add and Retrieve Connection String

 If you are developing ASP.Net Project or ASP Web Project then you can

store the connection string in Web.config file.

1. Open Web.config file from solution Explorer

2. Paste following code Just Before </Configuration>

1. <connectionStrings>

2. <add name="StudentConn" connectionString="Data

Source=.\SQLEXPRESS;Initial Catalog=StudentDB;Integrated

Security=True;Pooling=False"/>

3. </connectionStrings>

Access Connection String from web.config

You can access this connection string in ASP.NET MVC, like this

1. using System.Configuration;

2.

3. namespace ConnectionString_Example.Controllers

4. {

5. public class conString

6. {

7. public string getConString()

8.

E RESOURCES

139

9. {

10. string constring =

ConfigurationManager.ConnectionStrings["studentconn"].ToString();

11. return constring;

12. }

13. }

14. }

 File – Add and Retrieve Connection String

If you are working on the windows form, you can save connection string in

App.config file.

Add Connection String into app.config

1. <connectionStrings>

2. <add name="StudentConn" connectionString="Data

Source=.\SQLEXPRESS;Initial Catalog=TestDB;User

ID=sa;Password=System123;Pooling=False"/>

3. </connectionStrings>

Retrieve Connection String from app.config

1. using System;

2. using System.Windows.Forms;

3. using System.Data.SqlClient;

4. using System.Configuration;

5.

6. namespace FirstForm

7. {

8. public partial class Form1 : Form

9. {

10. public Form1()

11. {

12. InitializeComponent();

13. }

14.

E RESOURCES

140

15. private void button1_Click(object sender, EventArgs e)

16. {

17. var ConString =

ConfigurationManager.ConnectionStrings["StudentConn"].ConnectionString;

18. SqlConnection con = new SqlConnection(ConString);

19. con.Open();

20. }

21. }

22. }

3.4.3 CONNECT TO DATASOURCE

There are 5 steps to connecting database.

1. Add Namespace: using System.Data.SqlClient;

2. Create Connection Object and Pass Connection String as Parameter.

3. Open Connection

4. Execute SQL Query

5. Close the Connection.

Example

1. SqlConnection con = new SqlConnection("Data

Source=.\SQLEXPRESS;Initial Catalog=TestDB;User

ID=sa;Password=System123;Pooling=False";);

2. con.Open();

3. // Update, Insert Delete Job in Table

4. ss con.Close();

3.5 DISPLAY DATA ON DATABOUND CONTROLS

 Data bound controls used in ASP.NET is to display data in various

forms and do various database activities such as Add, Edit, Update and

Delete operations. The control makes the data more organized and presents

the data in an efficient way for the viewers.

 Under the Data tab of the Visual Studio Toolbox, we can get several

controls under the Data tab that could be used to display data from a data

source like a database or XML file.

The standard ASP.NET data presentation controls are:

E RESOURCES

141

 DataList

 DetailsView

 FormView

 GridView

 ListView

 Repeater

 We can divide these data presentation controls into the following two

main groups. First of all, we go to the first group that includes the four

controls Repeater, DataList, GridView and ListView.

3.5.1 REPEATER CONTROL

 The Repeater control was introduced with ASP.NET 1.0. The ASP.NET

Repeater is a basic container control that allows you to create custom lists

from any data available to the page. It provides a highly customized

interface. It renders a read-only template.

 The Repeater control is a Data Bind Control, also known as container

controls. The Repeater control is used to display a repeated list of items that

are bound to the control. This control may be bound to a database table, an

XML file, or another list of items. It has no built-in layout or styles, so you

must explicitly declare all layout, formatting and style tags within the

controls templates. The Repeater repeats a layout of HTML you write, it has

the least functionality of the rest of the three controls.

The Repeater control supports the following features:

 List format

 No default output

 More control and complexity

 Item as row

 Paging, Sorting and Grouping requires custom code writing

 only Web control that allows you to split markup tags across the

templates

 no built-in selection capabilities

 no built-in support for edit, insert and delete capabilities

 no built-in support for paging, sorting and grouping capabilities

E RESOURCES

142

 no built-in layout or styles, need to declare all layout, formatting and

style tags explicitly within the control's templates

 Strictly emits the markup specified in its templates, nothing more and

nothing less.

3.5.2 DATALIST CONTROL

 The DataList control was introduced with ASP.NET 1.0. DataList

allows you to repeat columns horizontally or vertically. The DataList control

renders data as a table and enables you to display data records in various

layouts, such as ordering them in columns or rows.

 We can configure the DataList control to enable users to edit or delete

a record in the table. We can use a DataList control where we need a single-

column list. The DataList control works like the Repeater control, used to

display the data in a repeating structure, such as a table.

 It displays data in a format that you can define using a template and

styles. However, it arranges the data defined in the template within various

HTML structures. This includes options for horizontal or vertical layout and

it also allows you to set how the data should be repeated, as flow or table

layout. The DataList control does not automatically use a data source

control to edit data.

 The DataList control supports the following features

 Support for binding data source controls such as SqlDataSource,

LinqDataSource and ObjectDataSource

 Directional rendering

 Good for columns

 Item as cell

 Updatable

 Control over Alternate item

 Paging function needs handwriting.

3.5.3 GRIDVIEW CONTROL

 ASP.NET provides a number of tools for showing tabular data in a

grid, including the GridView control. It was introduced with ASP.NET 2.0.

The GridView control is used to display the values of a data source in a

E RESOURCES

143

table. Each column represents a field where each row represents a record. It

can also display empty data.

 The GridView control provides many built-in capabilities that allow

the user to sort, update, delete, select and page through items in the

control. The GridView control can be bound to a data source control, in

order to bind a data source control, set the DataSourceID property of the

GridView control to the ID value of the data source control. It's considered a

replacement for the DataGrid control from .NET 1.1. Therefore, it is also

known as a super DataGrid.

 The GridView control offers improvements such as the ability to define

multiple primary key fields, improved user interface customization using

bound fields and templates and a new model for handling or canceling

events. Performance is slow compared to DataGrid and ListView.

The GridView control supports the following features

 Improved data source binding capabilities

 Tabular rendering – displays data as a table

 Item as row

 Built-in sorting capability

 Built-in select, edit and delete capabilities

 Built-in paging capability

 Built-in row selection capability

 Multiple key fields

 Programmatic access to the GridView object model to dynamically set

properties, handle events and so on

 Richer design-time capabilities

 Control over Alternate item, Header, Footer, Colors, font, borders, and

so on.

 Slow performance as compared to Repeater and DataList control

3.5.4 LISTVIEW CONTROL

 The ListView control was introduced with ASP.NET 3.5. The ListView

control resembles the GridView control. The only difference between them is

E RESOURCES

144

that the ListView control displays data using user-defined templates instead

of row fields.

 Creating own templates gives more flexibility in controlling how the

data is displayed. It enables you to bind to data items that are returned from

a data source and display them. The data can be displayed in pages where

you can display items individually, or you can group them.

 The template contains the formatting, controls and binding

expressions that are used to lay out the data. The ListView control is useful

for data in any repeating structure, similar to the DataList and Repeater

controls. It implicitly supports the ability to edit, insert and delete

operations, as well as sorting and paging functionality.

The ListView control supports the following features

 Binding to data source controls Customizable appearance through

user-defined templates and styles.

 Built-in sorting and grouping capabilities

 Built-in insert, edit and delete capabilities

 Support for paging capabilities using a DataPager control.

 Built-in item selection capabilities

 Multiple key fields

 Programmatic access to the ListView object model to dynamically set

properties, handle events and so on

 Fast performance as compared to GridView

3.5.5 Repeater vs. DataList vs. GridView vs. ListView

 The DataList control differs from the Repeater control in that the

DataList control explicitly places items in an HTML table, whereas the

Repeater control does not. The common problem of using a GridView is a

large ViewState that could cause slow page loads.

 Default GridView paging opens a complete data set in the server's

memory. For large tables or for high traffic websites, this will overload the

web server's resources. Even the DataPager control of a ListView still opens

all the records in memory. Also, pages are opened using JavaScript. That

means only the first page is indexed by search engines. The solution could

E RESOURCES

145

be to create a custom pager, but this takes time to create, test and optimize

code, as well as later maintenance of a separate project. The ListView

control can exceed the capabilities of a Repeater or DataList control, but

GridView still has the advantage of faster implementation and short markup

code.

Now for the second group. Here is the description of the two controls

DetailsView and FormView.

3.5.6 DETAILSVIEW CONTROL

 The DetailsView control was introduced with ASP.NET 2.0. The

DetailsView control uses a table-based layout where each field of the data

record is displayed as a row in the control. Unlike the GridView control, the

DetailsView control displays one row from a data source at a time by

rendering an HTML table.

 The Details View supports both declarative and programmatic data

binding. The DetailsView control is often used in master-detail scenarios

where the selected record in a master control determines the record to

display in the DetailsView control. It shows the details for the row in a

separate space. We can customize the appearance of the DetailsView control

using its style properties. Alternatively, we can also use Cascading Style

Sheets (CSS) to provide styles to a DetailsView control. A Details View

control appears as a form of recording and is provided by multiple records

as well as insert, update and delete record functions.

 The DetailsView control supports the following features

 Tabular rendering

 Supports column layout, by default two columns at a time

 Optional support for paging and navigation.

 Built-in support for data grouping

 Built-in support for edit, insert and delete capabilities

3.5.7 FORMVIEW CONTROL

 The FormView was introduced with ASP.NET 2.0. The FormView

control renders a single data item at a time from a data source, even if its

E RESOURCES

146

data source exposes a multiple records data item from a data source. It

allows for a more flexible layout when displaying a single record.

 The FormView control renders all fields of a single record in a single

table row. In contrast, the FormView control does not specify a pre-defined

layout for displaying a record. Instead, create templates that contain

controls to display individual fields from the record. The template contains

the formatting, controls and binding expressions used to lay out the form.

 When using templates, we can place any control such as a dropdown

list, checkbox and we can even place tables and rich controls like a

GridView and so on. A FormView is a databound control used to insert,

display, edit, update and delete data in ASP.NET that renders a single

record at a time.

 A FormView control is similar to a DetailView in ASP.NET but the only

difference is that a DetailsView has a built-in tabular rendering whereas a

FormView requires a user-defined template to insert, display, edit, update

and delete data.

The FormView control supports the following features

 Template driven

 Supports column layout

 Built-in support for paging and grouping

 Built-in support for insert, edit and delete capabilities

3.5.8 DETAILSVIEW VS. FORMVIEW CONTROL

 Compared to the DetailsView control, the FormView control gives more

flexibility over the rendering of fields. This form of rendering data enables

more control over the layout of the fields. Using the FormView control is

more complex as compared to the DetailsView control.

 The major difference between these controls is that the Details View

control displays a single database record as a table based layout. In this

layout, data recorded for each field appears as a row in the control and the

FormView control uses a template to display a single database record at a

time.

E RESOURCES

147

3.6 DATA GRID

 The DataGrid Web server control is a multi-column, data-bound grid.

Columns can be made that displays and edit data. Multi-columns include

Edit, Update, Cancel, Select buttons, Custom Buttons, and Template

Columns. Therefore Template Columns can be laid further in Template-

Editing Mode.

 The DataGrid control displays the fields of a data source as columns

in a table. Each row in the control represents a record in the data source.

The control supports selection, editing, deleting, paging, and sorting.

 Like the Repeater and DataList controls, it enables to format and

display records from a database table. However, it has several advanced

features, such as support for sorting and paging through records, which

makes it unique.

 Records can be displayed in a DataGrid without using templates. A

data source can be simply bound to the DataGrid, and it automatically

displays the records.

 The following example, displays all the records from the Employees

database table in a DataGrid.

E RESOURCES

148

The output of above example is shown below:

E RESOURCES

149

 By default, a DataGrid displays gridlines around its items.

Modification of the Grid line appearance can be done by setting the

GridLines property. The possible values are Both, Horizontal, None, or

Vertical.

 For example, to completely disable GridLines, the DataGrid would look

like this: -

<asp:DataGrid

GridLines="None"

Runat="Server" />

 The cell spacing and cell padding of the cells in a DataGrid can be

controlled by modifying the DataGrid control's CellSpacing and CellPadding

properties like this:

<asp:DataGrid

CellSpacing="10"

CellPadding="10"

Runat="Server">

E RESOURCES

150

 A background image can be specified for a DataGrid by assigning the

name of an image to the BackImageUrl property.

 For example, the following DataGrid displays an image named Bricks.

Gif in the background:

<asp:DataGrid

BackImageUrl="expert.Gif"

Runat="Server" />

 Finally, headers and footers can be displayed and hidden for the

columns in a DataGrid by enabling or disabling the ShowHeader and

ShowFooter properties. By default the ShowHeader property has the value

True, and the ShowFooter property has the value False. To prevent column

headers from being displayed, a DataGrid would be like this:

<asp:DataGrid

ShowHeader="False"

Runat="Server" />

3.6.1 CREATING COLUMNS IN A DATAGRID CONTROL

 The DataGrid control displays the columns in a variety of ways.By

default, the columns are generated automatically based on fields in the data

source. However, in order to control the content and layout of columns more

precisely, the following types of columns can be defined:

Type of

Column
Description

Bound

column

Allows specifying which data source field to display and

specifies the format of that field, using a .NET formatting

expression.

Hyperlink

column
Displays information as hyperlinks.

Button

column

Allows adding a button for each item in the grid and defining

custom functionality for that button.

E RESOURCES

151

Edit, Update,

Cancel

column

Allows creating in-place editing. For more details, see

"Editing Items" below.

Template

column

Allows creating combinations of HTML text and server

controls to design a custom layout for a column.

3.6.2 EVENTS

 The DataGrid control supports several events. One of them, the

ItemCreated event, gives you a way to customize the item-creation process.

The ItemDataBound event also gives you the ability to customize the

DataGrid items, but after the data is available for inspection. For example, if

you were using the DataGrid control to display a to-do list, you could

display overdue items in red text, completed items in black text, and other

tasks in green text.

 The remaining events are raised in response to button or LinkButton

clicked in grid items. They are designed to implement common data

manipulation tasks. Four events of this type are supported:

 EditCommand

 DeleteCommand

 UpdateCommand

 CancelCommand

 When the user clicks one of the buttons (labeled by default Edit,

Delete, Update, or Cancel, respectively), the corresponding event is

raised.The DataGrid control also supports the ItemCommand event that is

raised when a user clicks a button that is not one of the predefined buttons

above. This event can be used for custom functions by setting a button's

CommandName property to a value needed, and then testing for it in the

ItemCommand event handler.

3.7 KEY TERMS

Details View: DetailsView control displays a single database record as a

table based layout

 FormView Control: the FormView control uses a template to display a

single database record at a time

E RESOURCES

152

Connection Object: Connection Object is used for connecting your

application to data source or database. It carries required authentic

information like username and password in the connection string and opens

a connection.

Connection String: Connection String combines all the required

authentic information that is used for connecting to a Data Source, like

Server Name, Database Name, User Name, Password etc. It is just a single

line string that is used by connection object to connect to the database.

OLEDB : OleDbConnection

 SQLServer : SqlConnection

 ODBC : OdbcConnection

 Oracle : OracleConnection

DataSet: DataSet provides a disconnected representation of result sets from

the Data Source.

DataProvider: The Data Provider classes are meant to work with different

kinds of data sources. They are used to perform all data-management

operations on specific databases.

DataReader: The DataReader Object is a stream-based , forward-only, read-

only retrieval of query results from the Data Source, which do not update

the data.

DataAdapter: DataAdapter Object populate a Dataset Object with results

from a Data Source.

3.7.1 Questions: 2 Marks

1. List the events in DataGrid Control.

ItemCreated, ItemDataBound, EditCommand, DeleteCommand,

UpdateCommand , CancelCommand

2. Distinguish between DetailsView and FormView Control.

 The major difference between these controls is that the DetailsView

control displays a single database record as a table based layout. In this

layout, data recorded for each field appears as a row in the control and the

FormView control uses a template to display a single database record at a

time.

E RESOURCES

153

3. Differentiate between GridView and ListView Control.

 The ListView control can exceed the capabilities of a Repeater or

DataList control, but GridView still has the advantage of faster

implementation and short markup code.

4. Write the steps for Connecting Database in ADO.Net.

 There are 5 steps to connecting database.

1. Add Namespace: using System.Data.SqlClient;

2. Create Connection Object and Pass Connection String as Parameter.

3. Open Connection

4. Execute SQL Query

5. Close the Connection.

5. What is Connection Object?

 Connection Object is used for connecting your application to data

source or database. It carries required authentic information like username

and password in the connection string and opens a connection.

6. What is Connection String?

 Connection String combines all the required authentic information

that is used for connecting to a Data Source, like Server Name, Database

Name, User Name, Password etc. It is just a single line string that is used by

connection object to connect to the database.

7. List some Data Connection Objects for different Data Providers.

 OLEDB – OleDbConnection

 SQLServer – SqlConnection

 ODBC – OdbcConnection

 Oracle – OracleConnection

8. Define DataSet.

 DataSet provides a disconnected representation of result sets from the

Data Source.

9. Define DataProvider.

 The Data Provider classes are meant to work with different kinds of

data sources. They are used to perform all data-management operations on

specific databases.

E RESOURCES

154

10. Define DataReader.

 The DataReader Object is a stream-based , forward-only, read-only

retrieval of query results from the Data Source, which do not update the

data.

11. Define DataAdapter.

DataAdapter Object populate a Dataset Object with results from a

Data Source .

12. Distinguish between Connected and Disconnected DataBase in

ADO.NET

Connected Disconnected

It is connection oriented. It is disconnection oriented.

Datareader DataSet

Connected methods gives faster

performance

Disconnected get low in speed and

performance.

connected can hold the data of

single table

disconnected can hold multiple

tables of data

connected you need to use a read

only forward only data reader

disconnected you cannot

Data Reader can't persist the data Data Set can persist the data

It is Read only, we can't update the

data.

We can update data

3.7.2 Questions: 5 Marks

1. Explain the events in DataGrid Control.

2. How to create columns in DataGrid Control.

3. List the features of FormView Control.

4. Discuss about Details View Control.

5. Explain in detail about List view Control and GridView Control.

6. Illustrate in detail about Add and Retrieve Connection String.

7. Explain DataProviders And DataSet.

3.7.3 Questions: 10 Marks

1. Explain DataGrid in detail.

E RESOURCES

155

2. How to display data on DataBound controls.

3. How to store Connection String in WebConfiguration file?

4. How to create connection in ADO.Net Object Model?

5. Write the steps for creating Application in ADO.NET.

6. Discuss in detail about creation of Database in ADO.NET

7. Explain the architecture of ADO.NET

8. Explain in detail about Connected and Disconnected Database in

ADO.NET

UNIT – IV

Database Accessing on Web Applications

4.1 INTRODUCTION

ASP.NET allows the following sources of data to be accessed and used:

 Databases (e.g., Access, SQL Server, Oracle, MySQL)

 XML documents

 Business Objects

 Flat files

 ASP.NET hides the complex processes of data access and provides

much higher level of classes and objects through which data is

accessed easily.

 These classes hide all complex coding for connection, data retrieving,

data querying, and data manipulation.

 The .NET Framework is that it is very easy to encapsulate a

database, allowing the rest of the program to work with data in a very

generic way, without worrying about where it came from.

4.2 DATA BINDING CONCEPT WITH WEB

 Every ASP.NET web form control inherits the DataBind method from

its parent Control class, which gives it an inherent capability to bind

data to at least one of its properties.

E RESOURCES

156

 This is known as simple data binding or inline data binding.

 Simple data binding involves attaching any collection (item collection)

which implements the IEnumerable interface, or the DataSet and

DataTable classes to the DataSource property of the control.

 On the other hand, some controls can bind records, lists, or columns

of data into their structure through a DataSource control.

 These controls derive from the BaseDataBoundControl class. This is

called declarative data binding.

 The data source controls help the data-bound controls implement

functionalities such as, sorting, paging, and editing data collections.

 The BaseDataBoundControl is an abstract class, which is inherited

by two more abstract classes:

 DataBoundControl

 HierarchicalDataBoundControl

The abstract class DataBoundControl is again inherited by two more

abstract classes:

 ListControl

 CompositeDataBoundControl

The controls capable of simple data binding are derived from the

ListControl abstract class and these controls are:

 BulletedList

 CheckBoxList

 DropDownList

 ListBox

 RadioButtonList

E RESOURCES

157

The controls capable of declarative data binding (a more complex data

binding) are derived from the abstract class CompositeDataBoundControl.

These controls are:

 DetailsView

 FormView

 GridView

 RecordList

Simple Data Binding

 Simple data binding involves the read-only selection lists. These

controls can bind to an array list or fields from a database.

 Selection lists takes two values from the database or the data source;

one value is displayed by the list and the other is considered as the

value corresponding to the display.

 Let us take up a small example to understand the concept. Create a

web site with a bulleted list and a SqlDataSource control on it.

 Configure the data source control to retrieve two values from your

database

 Choosing a data source for the bulleted list control involves:

 Selecting the data source control

 Selecting a field to display, which is called the data field

 Selecting a field for the value

E RESOURCES

158

When the application is executed, check that the entire title column is

bound to the bulleted list and displayed.

Declarative Data Binding

 The declarative data binding using the GridView control.

 The other composite data bound controls capable of displaying and

manipulating data in a tabular manner are the DetailsView,

FormView, and RecordList control.

However, the data binding involves the following objects:

E RESOURCES

159

 A dataset that stores the data retrieved from the database.

 The data provider, which retrieves data from the database by using a

command over a connection.

 The data adapter that issues the select statement stored in the

command object; it is also capable of update the data in a database

by issuing Insert, Delete, and Update statements.

Relation between the data binding objects:

 4.3 Data Grid

 .NET Framework provides DataGrid control to display data on the web

page. It was introduced in .NET 1.0.

 DataGrid is used to display data in scrollable grid. It requires data

source to populate data in the grid.

 It is a server side control and can be dragged from the toolbox to the

web form.

 Data Source for the DataGrid can be either a DataTable or a

database.

 Let's see an example, how can we create a DataGrid in our

application.

E RESOURCES

160

 In this example application One is using the DataTable and second is

using the database to display data into the DataGrid.

ASP.NET DataGrid Example with DataTable

This example uses DataTable to bind data to the DataGrid control.

// DataGridExample2.aspx

1. <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="DataGri

dExample2.aspx.cs" Inherits="DataGridExample.DataGridExample2" %>

2. <!DOCTYPE html>

3. <html xmlns="http://www.w3.org/1999/xhtml">

4. <head runat="server">

5. <title></title>

6. </head>

7. <body>

8. <form id="form1" runat="server">

9. <div>

10. <p>This DataGrid contains DataTable records </p>

11. <asp:DataGrid ID="DataGrid1" runat="server">

12. </asp:DataGrid>

13. </div>

14. </form>

15. </body>

16. </html>

CodeBehind

// DataGridExample2.aspx.cs

1. using System;

2. using System.Data;

3. namespace DataGridExample

4. {

E RESOURCES

161

5. public partial class DataGridExample2 : System.Web.UI.Page

6. {

7. protected void Page_Load(object sender, EventArgs e)

8. {

9. DataTable table = new DataTable();

10. table.Columns.Add("ID");

11. table.Columns.Add("Name");

12. table.Columns.Add("Email");

13. table.Rows.Add("101", "Deepak Kumar", "deepak@example.com");

14. table.Rows.Add("102", "John", "john@example.com");

15. table.Rows.Add("103", "Subramanium Swami", "subramanium@e

xample.com");

16. table.Rows.Add("104", "Abdul Khan", "abdul@example.com");

17. DataGrid1.DataSource = table;

18. DataGrid1.DataBind();

19. }

20. }

21. }

Output:

It produces the following output to the browser.

ID NAME EMAIL

101 Deepak Kumar deepak@example.com

102 Jhon jhon@example.com

103 Subramanium

swami

subramanium@example.com

104 Abdhul Khan abdhul@example.com

E RESOURCES

162

4.4 Binding Standard Web Server Controls

 Controls are small building blocks of the graphical user interface,

which include text boxes, buttons, check boxes, list boxes, labels,

and numerous other tools.

 Using these tools, the users can enter data, make selections and

indicate their preferences.

 Controls are also used for structural jobs, like validation, data access,

security, creating master pages, and data manipulation.

ASP.NET uses five types of web controls, which are:

 HTML controls

 HTML Server controls

 ASP.NET Server controls

 ASP.NET Ajax Server controls

 User controls and custom controls

ASP.NET server controls are the primary controls used in ASP.NET. These

controls can be grouped into the following categories:

 Validation controls - These are used to validate user input and they

work by running client-side script.

 Data source controls - These controls provides data binding to

different data sources.

 Data view controls - These are various lists and tables, which can

bind to data from data sources for displaying.

 Personalization controls - These are used for personalization of a

page according to the user preferences, based on user information.

 Login and security controls - These controls provide user

authentication.

 Master pages - These controls provide consistent layout and interface

throughout the application.

E RESOURCES

163

 Navigation controls - These controls help in navigation. For example,

menus, tree view etc.

 Rich controls - These controls implement special features. For

example, AdRotator, FileUpload, and Calendar control.

The syntax for using server controls is:

<asp:controlType ID ="ControlID" runat="server" Property1=value1

[Property2=value2] />

In addition, visual studio has the following features, to help produce in

error-free coding:

 Dragging and dropping of controls in design view

 IntelliSense feature that displays and auto-completes the properties

 The properties window to set the property values directly

Properties of the Server Controls

 ASP.NET server controls with a visual aspect are derived from the

WebControl class and inherit all the properties, events, and methods

of this class.

 The WebControl class itself and some other server controls that are

not visually rendered are derived from the System.Web.UI.Control

class. For example, PlaceHolder control or XML control.

 ASP.Net server controls inherit all properties, events, and methods of

the WebControl and System.Web.UI.Control class.

The following table shows the inherited properties, common to all server

controls:

E RESOURCES

164

Property Description

AccessKey Pressing this key with the Alt key moves focus to the
control.

Attributes It is the collection of arbitrary attributes (for
rendering only) that do not correspond to properties

on the control.

BackColor Background color.

BindingContainer The control that contains this control's data binding.

BorderColor Border color.

BorderStyle Border style.

BorderWidth Border width.

CausesValidation Indicates if it causes validation.

ChildControlCreated It indicates whether the server control's child controls
have been created.

ClientID Control ID for HTML markup.

Context The HttpContext object associated with the server
control.

Controls Collection of all controls contained within the control.

ControlStyle The style of the Web server control.

E RESOURCES

165

CssClass CSS class

DataItemContainer Gets a reference to the naming container if the
naming container implements IDataItemContainer.

DataKeysContainer Gets a reference to the naming container if the
naming container implements IDataKeysControl.

DesignMode It indicates whether the control is being used on a
design surface.

DisabledCssClass Gets or sets the CSS class to apply to the rendered
HTML element when the control is disabled.

Enabled Indicates whether the control is grayed out.

EnableTheming Indicates whether theming applies to the control.

EnableViewState Indicates whether the view state of the control is

maintained.

Events Gets a list of event handler delegates for the control.

Font Font.

Forecolor Foreground color.

HasAttributes Indicates whether the control has attributes set.

HasChildViewState Indicates whether the current server control's child
controls have any saved view-state settings.

Height Height in pixels or %.

E RESOURCES

166

ID Identifier for the control.

IsChildControlStateCleared Indicates whether controls contained within this
control have control state.

IsEnabled Gets a value indicating whether the control is
enabled.

IsTrackingViewState It indicates whether the server control is saving
changes to its view state.

IsViewStateEnabled It indicates whether view state is enabled for this
control.

LoadViewStateById It indicates whether the control participates in
loading its view state by ID instead of index.

Page Page containing the control.

Parent Parent control.

RenderingCompatibility It specifies the ASP.NET version that the rendered

HTML will be compatible with.

Site The container that hosts the current control when

rendered on a design surface.

SkinID Gets or sets the skin to apply to the control.

Style Gets a collection of text attributes that will be
rendered as a style attribute on the outer tag of the

Web server control.

TabIndex Gets or sets the tab index of the Web server control.

E RESOURCES

167

TagKey Gets the HtmlTextWriterTag value that corresponds

to this Web server control.

TagName Gets the name of the control tag.

TemplateControl The template that contains this control.

TemplateSourceDirectory Gets the virtual directory of the page or control
containing this control.

ToolTip Gets or sets the text displayed when the mouse
pointer hovers over the web server control.

UniqueID Unique identifier.

ViewState Gets a dictionary of state information that saves and

restores the view state of a server control across
multiple requests for the same page.

ViewStateIgnoreCase It indicates whether the StateBag object is case-
insensitive.

ViewStateMode Gets or sets the view-state mode of this control.

Visible It indicates whether a server control is visible.

Width Gets or sets the width of the Web server control.

Methods of the Server Controls

E RESOURCES

168

The following table provides the methods of the server controls:

Method Description

AddAttributesToRender Adds HTML attributes and styles that need to be

rendered to the specified HtmlTextWriterTag.

AddedControl Called after a child control is added to the

Controls collection of the control object.

AddParsedSubObject Notifies the server control that an element, either

XML or HTML, was parsed, and adds the element

to the server control's control collection.

ApplyStyleSheetSkin Applies the style properties defined in the page

style sheet to the control.

ClearCachedClientID Infrastructure. Sets the cached ClientID value to

null.

ClearChildControlState Deletes the control-state information for the

server control's child controls.

ClearChildState Deletes the view-state and control-state

information for all the server control's child

controls.

ClearChildViewState Deletes the view-state information for all the

server control's child controls.

CreateChildControls Used in creating child controls.

CreateControlCollection Creates a new ControlCollection object to hold

the child controls.

E RESOURCES

169

CreateControlStyle Creates the style object that is used to implement

all style related properties.

DataBind Binds a data source to the server control and all

its child controls.

DataBind(Boolean) Binds a data source to the server control and all

its child controls with an option to raise the

DataBinding event.

DataBindChildren Binds a data source to the server control's child

controls.

Dispose Enables a server control to perform final clean up

before it is released from memory.

EnsureChildControls Determines whether the server control contains

child controls. If it does not, it creates child

controls.

EnsureID Creates an identifier for controls that do not have

an identifier.

Equals(Object) Determines whether the specified object is equal

to the current object.

Finalize Allows an object to attempt to free resources and

perform other cleanup operations before the

object is reclaimed by garbage collection.

FindControl(String) Searches the current naming container for a

server control with the specified id parameter.

FindControl(String, Int32) Searches the current naming container for a

server control with the specified id and an

E RESOURCES

170

integer.

Focus Sets input focus to a control.

GetDesignModeState Gets design-time data for a control.

GetType Gets the type of the current instance.

GetUniqueIDRelativeTo Returns the prefixed portion of the UniqueID

property of the specified control.

HasControls Determines if the server control contains any

child controls.

HasEvents Indicates whether events are registered for the

control or any child controls.

IsLiteralContent Determines if the server control holds only literal

content.

LoadControlState Restores control-state information.

LoadViewState Restores view-state information.

MapPathSecure Retrieves the physical path that a virtual path,

either absolute or relative, maps to.

MemberwiseClone Creates a shallow copy of the current object.

MergeStyle Copies any nonblank elements of the specified

style to the web control, but does not overwrite

any existing style elements of the control.

E RESOURCES

171

OnBubbleEvent Determines whether the event for the server

control is passed up the page's UI server control

hierarchy.

OnDataBinding Raises the data binding event.

OnInit Raises the Init event.

OnLoad Raises the Load event.

OnPreRender Raises the PreRender event.

OnUnload Raises the Unload event.

OpenFile Gets a Stream used to read a file.

RemovedControl Called after a child control is removed from the

controls collection of the control object.

Render Renders the control to the specified HTML writer.

RenderBeginTag Renders the HTML opening tag of the control to

the specified writer.

RenderChildren Outputs the contents of a server control's

children to a provided HtmlTextWriter object,

which writes the contents to be rendered on the

client.

RenderContents Renders the contents of the control to the

specified writer.

E RESOURCES

172

RenderControl(HtmlTextWriter) Outputs server control content to a provided

HtmlTextWriter object and stores tracing

information about the control if tracing is

enabled.

RenderEndTag Renders the HTML closing tag of the control into

the specified writer.

ResolveAdapter Gets the control adapter responsible for rendering

the specified control.

SaveControlState Saves any server control state changes that have

occurred since the time the page was posted back

to the server.

SaveViewState Saves any state that was modified after the

TrackViewState method was invoked.

SetDesignModeState Sets design-time data for a control.

ToString Returns a string that represents the current

object.

TrackViewState Causes the control to track changes to its view

state so that they can be stored in the object's

view state property.

4.5 Display Data on Web Form using Data Bound Controls

Data Bound Controls

 ASP.NET provides a wide variety of rich controls that can be bound to

data.

E RESOURCES

173

 Under the Data tab of the Visual Studio Toolbox, you can get several

controls under the Data tab that could be used to display data from a

data source, like a database or XML file.

The standard ASP.NET data presentation controls are:

 DataList

 DetailsView

 FormView

 GridView

 ListView

 Repeater

Data List Control

The DataList control was introduced with ASP.NET 1.0.

E RESOURCES

174

 DataList is the next step up from a Repeater; except you have very

little control over the HTML that the control renders.

 DataList allows you to repeat columns horizontally or vertically.

 The DataList control renders data as a table and enables you to

display data records in various layouts, such as ordering them in

columns or rows.

 You can configure the DataList control to enable users to edit or delete

a record in the table. We can use a DataList control where we need a

single-column list.

 The DataList control works like the Repeater control, used to display

the data in a repeating structure, such as a table.

 It displays data in a format that you can define using a template and

styles. However, it arranges the data defined in the template within

various HTML structures.

 This includes options for horizontal or vertical layout and it also

allows you to set how the data should be repeated, as flow or table

layout.

 The DataList control does not automatically use a data source control

to edit data. Instead, it provides command events in which you can

write your own code for these scenarios.

 You can configure the DataList control where the user can edit or

delete a record in the table. The DataList control supports the

following features:

 Support for binding data source controls such as SqlDataSource,

LinqDataSource and ObjectDataSource

 Directional rendering

 Good for columns

 Item as cell

E RESOURCES

175

 Updatable

 Control over Alternate item

 Paging function needs handwriting.

After execution our ListView will look like this.

Details View control

The DetailsView control was introduced with ASP.NET 2.0.

 The DetailsView control uses a table-based layout where each field of

the data record is displayed as a row in the control.

 Unlike the GridView control, the DetailsView control displays one row

from a data source at a time by rendering an HTML table.

 The DetailsView supports both declarative and programmatic data

binding.

 The DetailsView control is often used in master-detail scenarios where

the selected record in a master control determines the record to

display in the DetailsView control.

 It shows the details for the row in a separate space. We can customize

the appearance of the DetailsView control using its style properties.

E RESOURCES

176

 Alternatively, we can also use Cascading Style Sheets (CSS) to provide

styles to a DetailsView control.

 A Details View control appears as a form of recording and is provided

by multiple records as well as insert, update and delete record

functions.

The DetailsView control supports the following features:

 Tabular rendering

 Supports column layout, by default two columns at a time

 Optional support for paging and navigation.

 Built-in support for data grouping

 Built-in support for edit, insert and delete capabilities

FormView control

The FormView was introduced with ASP.NET 2.0.

 The FormView control renders a single data item at a time from a data

source, even if its data source exposes a multiple records data item

from a data source.

 It allows for a more flexible layout when displaying a single record.

 The FormView control renders all fields of a single record in a single

table row.

E RESOURCES

177

 In contrast, the FormView control does not specify a pre-defined

layout for displaying a record.

 Instead, you create templates that contain controls to display

individual fields from the record.

 The template contains the formatting, controls and binding

expressions used to lay out the form.

 When using templates, we can place any control such as a dropdown

list, checkbox and we can even place tables and rich controls like a

GridView and so on.

 A FormView is a databound control used to insert, display, edit,

update and delete data in ASP.NET that renders a single record at a

time.

 A FormView control is similar to a DetailView in ASP.NET but the only

difference is that a DetailsView has a built-in tabular rendering

whereas a FormView requires a user-defined template to insert,

display, edit, update and delete data.

 The FormView control supports the following features:Template driven

 Supports column layout

 Built-in support for paging and grouping

 Built-in support for insert, edit and delete capabilities

Grid View Control

ASP.NET provides a number of tools for showing tabular data in a

grid, including the GridView control. It was introduced with ASP.NET

2.0.

 The GridView control is used to display the values of a data source

in a table.

E RESOURCES

178

 Each column represents a field where each row represents a

record. It can also display empty data.

 The GridView control provides many built-in capabilities that allow

the user to sort, update, delete, select and page through items in

the control.

 The GridView control can be bound to a data source control, in

order to bind a data source control, set the DataSourceID property

of the GridView control to the ID value of the data source control.

 It's considered a replacement for the DataGrid control from .NET

1.1. Therefore, it is also known as a super DataGrid.

 The GridView control offers improvements such as the ability to

define multiple primary key fields, improved user interface

customization using bound fields and templates and a new model

for handling or canceling events.

 Performance is slow compared to DataGrid and ListView.

The GridView control supports the following features:

 Improved data source binding capabilities

 Tabular rendering – displays data as a table

 Item as row

 Built-in sorting capability

 Built-in select, edit and delete capabilities

 Built-in paging capability

 Built-in row selection capability

 Multiple key fields

 Programmatic access to the GridView object model to dynamically set

properties, handle events and so on

 Richer design-time capabilities

 Control over Alternate item, Header, Footer, Colors, font, borders, and

so on.

E RESOURCES

179

 Slow performance as compared to Repeater and DataList control



List View Control

The ListView control was introduced with ASP.NET 3.5.

 The ListView control resembles the GridView control. The only

difference between them is that the ListView control displays data

using user-defined templates instead of row fields.

 Creating your own templates gives you more flexibility in

controlling how the data is displayed.

 It enables you to bind to data items that are returned from a data

source and display them.

 The data can be displayed in pages where you can display items

individually, or you can group them.

 The template contains the formatting, controls and binding

expressions that are used to lay out the data.

 The ListView control is useful for data in any repeating structure,

similar to the DataList and Repeater controls.

 It implicitly supports the ability to edit, insert and delete

operations, as well as sorting and paging functionality. You can

define individual templates for each of these scenarios.

E RESOURCES

180

The ListView control supports the following features:

 Binding to data source controls Customizable appearance through

user-defined templates and styles.

 Built-in sorting and grouping capabilities

 Built-in insert, edit and delete capabilities

 Support for paging capabilities using a DataPager control.

 Built-in item selection capabilities

 Multiple key fields

 Programmatic access to the ListView object model to dynamically set

properties, handle events and so on

 Fast performance as compared to GridView

Repeater Control

The Repeater control was introduced with ASP.NET 1.0. The ASP.NET

Repeater is a basic container control that allows you to create custom lists

from any data available to the page.

 It provides a highly customized interface. It renders a read-only

template; in other words, it supports only the ItemTemplate to define

custom binding.

 The Repeater control is a Data Bind Control, also known as container

controls.

E RESOURCES

181

 The Repeater control is used to display a repeated list of items that

are bound to the control.

 This control may be bound to a database table, an XML file, or

another list of items.

 It has no built-in layout or styles, so you must explicitly declare all

layout, formatting and style tags within the controls templates.

 You would require writing an explicit code to do paging using this

control.

 The Repeater repeats a layout of HTML you write, it has the least

functionality of the rest of the three controls.

The Repeater control supports the following features:

 List format

 No default output

 More control and complexity

 Item as row

 Paging, Sorting and Grouping requires custom code writing

 only Web control that allows you to split markup tags across the

templates

 no built-in selection capabilities

 no built-in support for edit, insert and delete capabilities

 no built-in support for paging, sorting and grouping capabilities

 no built-in layout or styles, need to declare all layout, formatting and

style tags explicitly within the control's templates

 Strictly emits the markup specified in its templates, nothing more and

nothing less.

Using the data we stored in table Student of our sample database, the

Repeater control will look like this.

E RESOURCES

182

4.6.1 2 MARK QUESTIONS

1. What is ASP.Net?

 It is a framework developed by Microsoft on which we can develop new

generation web sites using web forms(aspx), MVC, HTML, Javascript, CSS

etc. Its successor of Microsoft Active Server Pages(ASP). Currently there is

ASP.NET 4.0, which is used to develop web sites. There are various page

extensions provided by Microsoft that are being used for web site

development. Eg: aspx, asmx, ascx, ashx, cs, vb, html, XML etc.

2. What's the use of Response.Output.Write ()?

 We can write formatted output using Response.Output.Write ().

3. In which event of page cycle is the ViewState available?

 After the Init() and before the Page_Load().

4. What is the difference between Server.Transfer and Response.Redirect?

 In Server.Transfer page processing transfers from one page to the

other page without making a round-trip back to the client's browser. This

provides a faster response with a little less overhead on the server. The

E RESOURCES

183

clients url history list or current url Server does not update in case of

Server.Transfer.

 Response.Redirect is used to redirect the user's browser to another

page or site. It performs trip back to the client where the client's browser is

redirected to the new page. The user's browser history list is updated to

reflect the new address.

5. From which base class all Web Forms are inherited?

 Page class.

6. What are the different validators in ASP.NET?

 Required field Validator

 Range Validator

 Compare Validator

 Custom Validator

 Regular expression Validator

 Summary Validator

7. Which validator control you use if you need to make sure the values in

two different controls matched?

 Compare Validator control.

8. What is ViewState?

 ViewState is used to retain the state of server-side objects between page

post backs.

9. Where the viewstate is stored after the page postback?

 ViewState is stored in a hidden field on the page at client side.

ViewState is transported to the client and back to the server, and is not

stored on the server or any other external source.

10. How long the items in ViewState exists?

E RESOURCES

184

 They exist for the life of the current page.

11. What are the different Session state management options available in

ASP.NET?

 In-Process

 Out-of-Process.

 In-Process stores the session in memory on the web server.

 Out-of-Process Session state management stores data in an external

server. The external server may be either a SQL Server or a State Server. All

objects stored in session are required to be serializable for Out-of-Process

state management.

12. How you can add an event handler?

 Using the Attributes property of server side control.

e.g. btnSubmit.Attributes.Add("onMouseOver","JavascriptCode();")

13. What is caching?

 Caching is a technique used to increase performance by keeping

frequently accessed data or files in memory. The request for a cached

file/data will be accessed from cache instead of actual location of that file.

14. What are the different types of caching?ASP.NET has 3 kinds of caching

 Output Caching,

 Fragment Caching,

 Data Caching.

15. Which type if caching will be used if we want to cache the portion of a

page instead of whole page?

 Fragment Caching: It caches the portion of the page generated by

the request. For that, we can create user controls with the below code:

E RESOURCES

185

<%@ OutputCache Duration="120"

VaryByParam="CategoryID;SelectedID"%>

16. List the events in page life cycle.

1) Page_PreInit

2) Page_Init

3) Page_InitComplete

4) Page_PreLoad

5) Page_Load

6) Page_LoadComplete

7) Page_PreRender

8) Render

17. Can we have a web application running without web.Config file?

 Yes

18. Is it possible to create web application with both webforms and mvc?

 Yes. We have to include below mvc assembly references in the web

forms application to create hybrid application.

 System.Web.Mvc

 System.Web.Razor

 System.ComponentModel.DataAnnotations

19. Can we add code files of different languages in App_Code folder?

 No. The code files must be in same language to be kept in

App_code folder.

20. What is Protected Configuration?

 It is a feature used to secure connection string information.

4.6.2 5 MARK QUESTIONS

1. What are the basics of data binding concept? Summarize.

2. Draw a neat diagram of data grid and explain in detail.

3. Explain about the Data Bound Controls.

E RESOURCES

186

4. Write about Web Server Controls. Explain.

5. Briefly notes on Database Accessing.

4.6.3 10 MARK QUESTIONS

 1. Explain in detail about the Database Accessing in Web applications.

2. Explain about data bound controls in detail.

3. Describe the advantages and disadvantages of Data Grid.

4. Explain Binding standard web server controls in detail

UNIT –V

XML

5.1 WRITING DATASET CONTENTS AS XML DATA

 In ASP.NET you can write an XML representation of a DataSet,

with or without its schema. If schema information is included inline with the

XML, it is written using the XML Schema definition language (XSD).

 The schema contains the table definitions of the DataSet as well as

the relation and constraint definitions.

 When a DataSet is written as XML data, the rows in the DataSet are

written in their current versions. The DataSet can also be written as a

DiffGram so that both the current and the original values of the rows

will be included.

 The XML representation of the DataSet can be written to a file, a

stream, an XmlWriter, or a string. These choices provide great

flexibility for how you transport the XML representation of

the DataSet. To obtain the XML representation of the DataSet as a

string, use the GetXml method as shown in the following

Example

 string xmlDS = custDS.GetXml();

 GetXml returns the XML representation of the DataSet without

schema information. To write the schema information from

the DataSet (as XML Schema) to a string, use GetXmlSchema.

https://docs.microsoft.com/en-us/dotnet/api/system.data.dataset
https://docs.microsoft.com/en-us/dotnet/api/system.data.dataset
https://docs.microsoft.com/en-us/dotnet/api/system.data.dataset
https://docs.microsoft.com/en-us/dotnet/api/system.data.dataset
https://docs.microsoft.com/en-us/dotnet/api/system.data.dataset
https://docs.microsoft.com/en-us/dotnet/api/system.data.dataset
https://docs.microsoft.com/en-us/dotnet/api/system.data.dataset
https://docs.microsoft.com/en-us/dotnet/api/system.data.dataset
https://docs.microsoft.com/en-us/dotnet/api/system.data.dataset
https://docs.microsoft.com/en-us/dotnet/api/system.data.dataset

E RESOURCES

187

 To write a DataSet to a file, stream, or XmlWriter, use

the WriteXml method. The first parameter you pass to WriteXml is

the destination of the XML output.

 For example, pass a string containing a file name,

a System.IO.TextWriter object, and so on. You can pass an optional

second parameter of an XmlWriteMode to specify how the XML

output is to be written.

The following table shows the options for XmlWriteMode.

XmlWriteMode

option DESCRIPTION

IgnoreSchema Writes the current contents of the DataSet as XML data,

without an XML Schema. This is the default.

WriteSchema Writes the current contents of the DataSet as XML data

with the relational structure as inline XML Schema.

DiffGram Writes the entire DataSet as a DiffGram, including original

and current values. For more information, see DiffGrams.

 When writing an XML representation of a DataSet that

contains DataRelation objects, you will most likely want the resulting

XML to have the child rows of each relation nested within their related

parent elements.

 To accomplish this, set the Nested property of

the DataRelation to true when you add the DataRelation to

the DataSet. For more information, see Nesting DataRelations.

 The following are two examples of how to write the XML representation

of a DataSet to a file. The first example passes the file name for the

https://docs.microsoft.com/en-us/dotnet/api/system.data.dataset
https://docs.microsoft.com/en-us/dotnet/api/system.data.dataset
https://docs.microsoft.com/en-us/dotnet/api/system.data.dataset
https://docs.microsoft.com/en-us/dotnet/api/system.data.dataset
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/dataset-datatable-dataview/diffgrams
https://docs.microsoft.com/en-us/dotnet/api/system.data.dataset
https://docs.microsoft.com/en-us/dotnet/api/system.data.dataset
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/dataset-datatable-dataview/nesting-datarelations
https://docs.microsoft.com/en-us/dotnet/api/system.data.dataset

E RESOURCES

188

resulting XML as a string to WriteXml. The second example passes

a System.IO.StreamWriter object.

Program

custDS.WriteXml("Customers.xml", XmlWriteMode.WriteSchema);

C#Copy

System.IO.StreamWriter xmlSW = new

System.IO.StreamWriter("Customers.xml");

custDS.WriteXml(xmlSW, XmlWriteMode.WriteSchema);

xmlSW.Close();

MAPPING COLUMNS TO XML ELEMENTS, ATTRIBUTES, AND TEXT

 You can specify how a column of a table is represented in XML

using the ColumnMapping property of the DataColumn object. The

following table shows the different MappingType values for

the ColumnMapping property of a table column, and the resulting XML.

MappingType

value Description

Element This is the default. The column is written as an XML

element where the ColumnName is the name of the

element and the contents of the column are written as

the text of the element. For example:

<ColumnName>Column Contents</ColumnName>

Attribute

The column is written as an XML attribute of the XML

element for the current row where the ColumnName is

the name of the attribute and the contents of the column

are written as the value of the attribute. For example:

<RowElement ColumnName="Column Contents" />

E RESOURCES

189

MappingType

value Description

SimpleContent The contents of the column are written as text in the

XML element for the current row. For example:

<RowElement>Column Contents</RowElement>

Hidden The column is not written in the XML output.

 Create one empty data dataset with database name, so that this

name will reflect to your converted xml document.

DataSet ds = new DataSet();

ds.DataSetName = "ds";

Add your data (data tables) to this dataset with name

data.TableName = "tb";

ds.Tables.Add(data);

Create one XmlDocument & load data string into it

using (MemoryStream memoryStream = new MemoryStream())

{

 using (TextWriter streamWriter = new StreamWriter(memoryStream))

 {

 XmlSerializer xmlSerializer = new XmlSerializer(typeof(DataSet));

 xmlSerializer.Serialize(streamWriter, ds);

 result = Encoding.UTF8.GetString(memoryStream.ToArray());

 }}

XmlDocument _doc = new XmlDocument();

E RESOURCES

190

_doc.LoadXml(result);

5.2 READ XML DATA INTO A DATASET

 ASP.NET provides simple methods for working with XML data. In this

walkthrough, you create a Windows application that loads XML data

into a dataset.

 The dataset is then displayed in a DataGridView control. Finally, an

XML schema based on the contents of the XML file is displayed in a

text box.

Create a new project

 Create a new Windows Forms App project for either C# or Visual

Basic. Name the project ReadingXML.

 Generate the XML file to be read into the dataset

 Because this walkthrough focuses on reading XML data into a

dataset, the contents of an XML file is provided.

 On the Project menu, select Add New Item.

 Select XML File, name the file authors.xml, and then select Add.

 The XML file loads into the designer and is ready for edit.

 Paste the following XML data into the editor below the XML

declaration:

 XMLCopy

<Authors_Table>

 <authors>

 <au_id>172-32-1176</au_id>

 <au_lname>White</au_lname>

 <au_fname>Johnson</au_fname>

 <phone>408 496-7223</phone>

 <address>10932 Bigge Rd.</address>

 <city>Menlo Park</city>

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.datagridview

E RESOURCES

191

 <state>CA</state>

 <zip>94025</zip>

 <contract>true</contract>

 </authors>

 <authors>

 <au_id>213-46-8915</au_id>

 <au_lname>Green</au_lname>

 <au_fname>Margie</au_fname>

 <phone>415 986-7020</phone>

 <address>309 63rd St. #411</address>

 <city>Oakland</city>

 <state>CA</state>

 <zip>94618</zip>

 <contract>true</contract>

 </authors>

 <authors>

 <au_id>238-95-7766</au_id>

 <au_lname>Carson</au_lname>

 <au_fname>Cheryl</au_fname>

 <phone>415 548-7723</phone>

 <address>589 Darwin Ln.</address>

 <city>Berkeley</city>

 <state>CA</state>

 <zip>94705</zip>

E RESOURCES

192

 <contract>true</contract>

 </authors>

 <authors>

 <au_id>267-41-2394</au_id>

 <au_lname>Hunter</au_lname>

 <au_fname>Anne</au_fname>

 <phone>408 286-2428</phone>

 <address>22 Cleveland Av. #14</address>

 <city>San Jose</city>

 <state>CA</state>

 <zip>95128</zip>

 <contract>true</contract>

 </authors>

 <authors>

 <au_id>274-80-9391</au_id>

 <au_lname>Straight</au_lname>

 <au_fname>Dean</au_fname>

 <phone>415 834-2919</phone>

 <address>5420 College Av.</address>

 <city>Oakland</city>

 <state>CA</state>

 <zip>94609</zip>

 <contract>true</contract>

 </authors>

E RESOURCES

193

</Authors_Table>

On the File menu, select Save authors.xml.

Create the user interface:

 The user interface for this application consists of the following:

 A DataGridView control that displays the contents of the XML file as

data.

 A TextBox control that displays the XML schema for the XML file.

 Two Button controls.

 One button reads the XML file into the dataset and displays it in

the DataGridView control.

 A second button extracts the schema from the dataset, and through

a StringWriter displays it in the TextBox control.

 To add controls to the form

 Open Form1 in design view.

 From the Toolbox, drag the following controls onto the form:

 One DataGridView control

 One TextBox control

 Two Button controls

Set the following properties:

Control Property Setting

TextBox1 Multiline True

 ScrollBars Vertical

Button1 Name ReadXmlButton

 Text Read XML

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.datagridview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.datagridview
https://docs.microsoft.com/en-us/dotnet/api/system.io.stringwriter
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.datagridview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.button

E RESOURCES

194

Control Property Setting

Button2 Name ShowSchemaButton

 Text Show Schema

Create the dataset that receives the XML data

 In this step, you create a new dataset named authors. For more

information about datasets.

 In Solution Explorer, select the source file for Form1, and then select

the View Designer button on the Solution Explorer toolbar.

 From the Toolbox, Data tab, drag a DataSet onto Form1.

 In the Add Dataset dialog box, select Untyped dataset, and then

select OK.

 DataSet1 is added to the component tray.

 In the Properties window, set the Name and DataSetName properties

forAuthorsDataSet.

 Create the event handler to read the XML file into the dataset

 The Read XML button reads the XML file into the dataset. It then sets

properties on the DataGridView control that bind it to the dataset.

 In Solution Explorer, select Form1, and then select the View

Designer button on the Solution Explorer toolbar.

 Select the Read XML button.

 The Code Editor opens at the ReadXmlButton_Click event handler.

 Type the following code into the ReadXmlButton_Click event handler:

EXAMPLE:

private void ReadXmlButton_Click(object sender, EventArgs e)

{

 string filePath = "Complete path where you saved the XML file";

https://docs.microsoft.com/en-us/visualstudio/ide/reference/toolbox-data-tab?view=vs-2019
https://docs.microsoft.com/en-us/dotnet/api/system.data.dataset.datasetname
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.datagridview

E RESOURCES

195

 AuthorsDataSet.ReadXml(filePath);

 dataGridView1.DataSource = AuthorsDataSet;

 dataGridView1.DataMember = "authors";

}

 In the ReadXMLButton_Click event handler code, change the filepath

= entry to the correct path.Create the event handler to display the schema in

the textboxThe Show Schema button creates a StringWriter object that's

filled with the schema and is displayed inthe TextBoxcontrol.

 In Solution Explorer, select Form1, and then select the View

Designer button.Select the Show Schema button.The Code Editor opens at

the ShowSchemaButton_Click event handler.Paste the following code into

the ShowSchemaButton_Click event handler.

C#Copy

private void ShowSchemaButton_Click(object sender, EventArgs e)

{

 System.IO.StringWriter swXML = new System.IO.StringWriter();

 AuthorsDataSet.WriteXmlSchema(swXML);

 textBox1.Text = swXML.ToString();

}

Test the Form:

 You can now test the form to make sure it behaves as expected.

 Select F5 to run the application.

 Select the Read XML button.

 The DataGridView displays the contents of the XML file.

 Select the Show Schema button.

 The text box displays the XML schema for the XML file.

Next steps

 This walkthrough teaches you the basics of reading an XML file into a

dataset, as well as creating a schema based on the contents of the XML file.

Here are some tasks that you might do next:Edit the data in the dataset and

https://docs.microsoft.com/en-us/dotnet/api/system.io.stringwriter
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox

E RESOURCES

196

write it back out as XML. For more information, see WriteXml.Edit the data

in the dataset and write it out to a database.

5.3 REMOTE METHOD CALL USING XML SOAP

What is SOAP?

 SOAP is an XML-based protocol for accessing web services over HTTP.

It has some specification which could be used across all applications.

 SOAP is known as the Simple Object Access Protocol, but in later

times was just shortened to SOAP v1.2. SOAP is a protocol or in other

words is a definition of how web services talk to each other or talk to

client applications that invoke them.

 SOAP was developed as an intermediate language so that applications

built on various programming languages could talk easily to each

other and avoid the extreme development effort.

 To Exchanging data between applications is crucial in today's

networked world. But data exchange between these heterogeneous

applications would be complex. So will be the complexity of the code

to accomplish this data exchange.

 One of the methods used to combat this complexity is to use XML

(Extensible Markup Language) as the intermediate language for

exchanging data between applications.

 Every programming language can understand the XML markup

language. Hence, XML was used as the underlying medium for data

exchange.

 But there are no standard specifications on use of XML across all

programming languages for data exchange. That is where SOAP comes

in.

 SOAP was designed to work with XML over HTTP and have some sort

of specification which could be used across all applications. We will

look into further details on the SOAP protocol in the subsequent

chapters.

https://docs.microsoft.com/en-us/dotnet/api/system.data.dataset.writexml

E RESOURCES

197

5.3.1 ADVANTAGES OF SOAP:

 SOAP is the protocol used for data interchange between applications.

Below are some of the reasons as to why SOAP is used.

 When developing Web services, you need to have some of language

which can be used for web services to talk with client applications.

SOAP is the perfect medium which was developed in order to achieve

this purpose.

 This protocol is also recommended by the W3C consortium which is

the governing body for all web standards.

 SOAP is a light-weight protocol that is used for data interchange

between applications. Note the keyword 'light.'

 Since SOAP is based on the XML language, which itself is a light

weight data interchange language, hence SOAP as a protocol that also

falls in the same category.

 SOAP is designed to be platform independent and is also designed to

be operating system independent. So the SOAP protocol can work any

programming language based applications on both Windows

and Linux platform.

 It works on the HTTP protocol –SOAP works on the HTTP protocol,

which is the default protocol used by all web applications. Hence,

there is no sort of customization which is required to run the web

services built on the SOAP protocol to work on the World Wide Web.

5.3.2 SOAP Building blocks

 The SOAP specification defines something known as a "SOAP

message" which is what is sent to the web service and the client application.

The diagram below shows the various building blocks of a SOAP Message.

https://www.guru99.com/unix-linux-tutorial.html

E RESOURCES

198

FIG 5.3 SOAP BUILDING BLOCK

 The SOAP message is nothing but a mere XML document which has

the below components.An Envelope element that identifies the XML

document as a SOAP message – This is the containing part of the

SOAP message and is used to encapsulate all the details in the SOAP

message. This is the root element in the SOAP message.

 A Header element that contains header information – The header

element can contain information such as authentication credentials

which can be used by the calling application. It can also contain the

definition of complex types which could be used in the SOAP message.

 By default, the SOAP message can contain parameters which could be

of simple types such as strings and numbers, but can also be a

E RESOURCES

199

complex object type.A simple example of a complex type is shown

below.

 Suppose we wanted to send a structured data type which had a

combination of a "Tutorial Name" and a "Tutorial Description," then

we would define the complex type as shown below.

 The complex type is defined by the element tag <xsd:complexType>.

All of the required elements of the structure along with their

respective data types are then defined in the complex type collection.

Example:

<xsd:complexType>

 <xsd:sequence>

 <xsd:element name="Tutorial Name" type="string"/>

 <xsd:element name="Tutorial Description" type="string"/>

 </xsd:sequence>

</xsd:complexType>

 A Body element that contains call and response information – This

element is what contains the actual data which needs to be sent

between the web service and the calling application.

 Below is an example of the SOAP body which actually works on the

complex type defined in the header section.

 Here is the response of the Tutorial Name and Tutorial Description

that is sent to the calling application which calls this web service.

<soap:Body>

 <GetTutorialInfo>

 <TutorialName>Web Services</TutorialName>

 <TutorialDescription>All about web

services</TutorialDescription>

 </GetTutorialInfo>

E RESOURCES

200

</soap:Body>

5.3.4 SOAP Message Structure

 SOAP messages are normally auto-generated by the web service when

it is called.Whenever a client application calls a method in the web service,

the web service will automatically generate a SOAP message which will have

the necessary details of the data which will be sent from the web service to

the client application.

5.4 WEB SERVICE DESCRIPTION LANGUAGE:

 WSDL breaks down web services into three specific, identifiable

elements that can be combined or reused once defined. The three major

elements of WSDL that can be defined separately are:

 Types

 Operations

 Binding

 A WSDL document has various elements, but they are contained within

these three main elements, which can be developed as separate documents

and then they can be combined or reused to form complete WSDL files.

Definition:

 It is the root element of all WSDL documents. It defines the name of the

web service, declares multiple namespaces used throughout the remainder

of the document, and contains all the service elements described here.

 Data types: The data types to be used in the messages are in the form of

XML schemas.

 Message: It is an abstract definition of the data, in the form of a message

presented either as an entire document or as arguments to be mapped to a

method invocation.

Operation: It is the abstract definition of the operation for a message, such

as naming a method, message queue, or business process, that will accept

and process the message.

E RESOURCES

201

 Port type: It is an abstract set of operations mapped to one or more end-

points, defining the collection of operations for a binding.The collection of

operations, as it is abstract, can be mapped to multiple transports through

various bindings.

 Binding: It is the concrete protocol and data formats for the operations and

messages defined for a particular port type.

 Port: It is a combination of a binding and a network address, providing the

target address of the service communication.

 Service: It is a collection of related end-points encompassing the service

definitions in the file. The services map the binding to the port and include

any extensibility definitions. In addition to these major elements, the WSDL

specification also defines the following utility elements:

 Documentation: This element is used to provide human-readable

documentation and can be included inside any other WSDL element.

 Import: This element is used to import other WSDL documents or XML

Schemas. WSL parts are usually generated automatically using web

services-aware tools.

The WSDL Document Structure The main structure of a WSDL document

looks like this:

<definitions>

<types>

 definition of types........

</types>

<message>

 definition of a message....

</message>

<portType>

E RESOURCES

202

 <operation>

 definition of a operation.......

 </operation>

</portType>

<binding>

 definition of a binding....

</binding>

<service>

 definition of a service....

</service>

</definitions>

A WSDL document can also contain other elements, like extension elements

and a service element that makes it possible to group together the

definitions of several web services in one single WSDL document. Proceed

further to analyze an example of WSDL Document.

5.4.1 FEATURES OF WSDL :

 WSDL is an XML-based protocol for information exchange in

decentralized and distributed environments.

 WSDL definitions describe how to access a web service and what

operations it will perform.

 WSDL is a language for describing how to interface with XML-based

services.

 WSDL is an integral part of Universal Description, Discovery, and

Integration (UDDI), an XML-based worldwide business registry.

 WSDL is the language that UDDI uses.

 WSDL is pronounced as 'wiz-dull' and spelled out as 'W-S-D-L'

E RESOURCES

203

Example Contents of HelloService.wsdl file:

<definitions name="HelloService"

 targetNamespace="http://www.examples.com/wsdl/HelloService.wsdl"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:tns="http://www.examples.com/wsdl/HelloService.wsdl"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <message name="SayHelloRequest">

 <part name="firstName" type="xsd:string"/>

 </message>

 <message name="SayHelloResponse">

 <part name="greeting" type="xsd:string"/>

 </message>

 <portType name="Hello_PortType">

 <operation name="sayHello">

 <input message="tns:SayHelloRequest"/>

 <output message="tns:SayHelloResponse"/>

 </operation>

 </portType>

 <binding name="Hello_Binding" type="tns:Hello_PortType">

 <soap:binding style="rpc"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="sayHello">

 <soap:operation soapAction="sayHello"/>

E RESOURCES

204

 Binding:

 Direction to use the SOAP HTTP transport protocol.

 Service: Service available at http://www.examples.com/SayHello/

 Port: Associates the binding with the URI

http://www.examples.com/SayHello/ where the running service can be

accessed.

WSDL ─ Definitions element

 The <definitions> element must be the root element of all WSDL

documents. It defines the name of the web service. Here is the piece of code

from the last chapter that uses the definitions element.

<definitions name="HelloService"

 targetNamespace="http://www.examples.com/wsdl/HelloService.wsdl"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:tns="http://www.examples.com/wsdl/HelloService.wsdl"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

</definitions>

From the above example, we can conclude that definitions:

 It is a container of all the other elements.

 It specifies that this document is called HelloService.

 It specifies a targetNamespace attribute. The targetNamespace is a

convention of XML Schema that enables the WSDL document to refer

to itself. In this example, we have specified a targetNamespace of

http://www.examples.com/wsdl/HelloService.wsdl.

 It specifies a default namespace:

xmlns=http://schemas.xmlsoap.org/wsdl/. All elements without a

http://www.examples.com/SayHello/

E RESOURCES

205

namespace prefix, such as message or portType, are therefore

assumed to be a part of the default WSDL namespace.

 Which specifies numerous namespaces that are used throughout the

remainder of the document.

 A web service needs to define its inputs and outputs and how

they are mapped into and out of the service. WSDL <types> element takes

care of defining the data types that are used by the web service. Types are

XML documents or document parts.

 The types element describes all the data types used between the client

and the server.

 WSDL is not tied exclusively to a specific typing system.

 WSDL uses the W3C XML Schema specification as its default choice to

define data types.

 If the service uses only XML Schema built-in simple types, such as

strings and integers, then types element is not required.

 WSDL allows the types to be defined in separate elements so that the

types are reusable with multiple web services.

 Here is a piece of code taken from W3C specification. This code depicts

how a types element can be used within a WSDL.

<types>

 <schema targetNamespace="http://example.com/stockquote.xsd"

 xmlns="http://www.w3.org/2000/10/XMLSchema">

 <element name="TradePriceRequest">

 <complexType>

 <all>

 <element name="tickerSymbol" type="string"/>

 </all>

 </complexType>

E RESOURCES

206

 </element>

 <element name="TradePrice">

 <complexType>

 <all>

 <element name="price" type="float"/>

 </all>

 </complexType>

 </element>

 </schema>

 </types>

 Data types address the problem of identifying the data types and the

formats you intend to use with your web services. Type information is

shared between the sender and the receiver. The recipients of messages

therefore need access to the information you used to encode your data and

must understand how to decode the data.

5.4.2 MESSAGE ELEMENT

The <message> element describes the data being exchanged between the

web service providers and the consumers.

 Each Web Service has two messages: input and output.

 The input describes the parameters for the web service and the

output describes the return data from the web service.

 Each message contains zero or more <part> parameters, one for

each parameter of the web service function.

 Each <part> parameter associates with a concrete type defined in

the <types> container element.

Let us take a piece of code from the WSDL Example :

 <message name="SayHelloRequest">

E RESOURCES

207

 <part name="firstName" type="xsd:string"/>

 </message>

 <message name="SayHelloResponse">

 <part name="greeting" type="xsd:string"/>

 </message>

 Here, two message elements are defined. The first represents a

request message SayHelloRequest, and the second represents a response

message SayHelloResponse. Each of these messages contains a single part

element. For the request, the part specifies the function parameters

 We specify a single firstName parameter. For the response, the part

specifies the function return values; in this case, we specify a single greeting

return value.

5.4.3 PORTTYPE ELEMENT

 The <portType> element combines multiple message elements to form a

complete one-way or round-trip operation. For example, a <portType> can

combine one request and one response message into a single

request/response operation.

 This is most commonly used in SOAP services. A portType can define

multiple operations. Let us take a piece of code from the WSDL Example:

<portType name="Hello_PortType">

 <operation name="sayHello">

 <input message="tns:SayHelloRequest"/>

 <output message="tns:SayHelloResponse"/>

 </operation>

</portType>

E RESOURCES

208

 The portType element defines a single operation, called sayHello. The

operation consists of a single input message SayHelloRequest and an output

message SayHelloResponse.

Patterns of Operation WSDL supports four basic patterns of operation:

 One-way The service receives a message. The operation therefore has a

single input element. The grammar for a one-way operation is:

<wsdl:definitions > <wsdl:portType > *

 <wsdl:operation name="nmtoken">

 <wsdl:input name="nmtoken"? message="qname"/>

 </wsdl:operation>

 </wsdl:portType >

</wsdl:definitions>

 Request-response the service receives a message and sends a response.

The operation therefore has one input element followed by one output

element. To encapsulate errors, an optional fault element can also be

specified. The grammar for a request-response operation is:

<wsdl:definitions >

 <wsdl:portType > *

 <wsdl:operation name="nmtoken" parameterOrder="nmtokens">

 <wsdl:input name="nmtoken"? message="qname"/>

 <wsdl:output name="nmtoken"? message="qname"/>

 <wsdl:fault name="nmtoken" message="qname"/>*

 </wsdl:operation>

 </wsdl:portType >

</wsdl:definitions>

E RESOURCES

209

 Solicit-response The service sends a message and receives a response.

The operation therefore has one output element followed by one input

element. To encapsulate errors, an optional fault element can also be

specified. The grammar for a solicit-response operation is:

<wsdl:definitions >

 <wsdl:portType > *

 <wsdl:operation name="nmtoken" parameterOrder="nmtokens">

 <wsdl:output name="nmtoken"? message="qname"/>

 <wsdl:input name="nmtoken"? message="qname"/>

 <wsdl:fault name="nmtoken" message="qname"/>*

 </wsdl:operation>

 </wsdl:portType >

</wsdl:definitions>

Notification The service sends a message. The operation therefore has a

single output element. Following is the grammar for a notification operation:

<wsdl:definitions >

 <wsdl:portType > *

 <wsdl:operation name="nmtoken">

 <wsdl:output name="nmtoken"? message="qname"/>

 </wsdl:operation>

 </wsdl:portType >

</wsdl:definitions>

5.4.4 BINDING ELEMENT

 The <binding> element provides specific details on how a portType

operation will actually be transmitted over the wire.

E RESOURCES

210

 The bindings can be made available via multiple transports

including HTTP GET, HTTP POST, or SOAP.

 The bindings provide concrete information on what protocol is

being used to transfer portType operations.

 The bindings provide information where the service is located.

 For SOAP protocol, the binding is <soap:binding>, and the

transport is SOAP messages on top of HTTP protocol.

 You can specify multiple bindings for a single portType.

The binding element has two attributes:

 Name

 Type.

<binding name="Hello_Binding" type="tns:Hello_PortType">

 The name attribute defines the name of the binding, and the type

attribute points to the port for the binding, in this case the

"tns:Hello_PortType" port.

 SOAP Binding WSDL 1.1 includes built-in extensions for SOAP 1.1.

It allows you to specify SOAP-specific details including SOAP headers, SOAP

encoding styles, and the SOAPAction HTTP header. The SOAP extension

elements include the following:

 soap:binding

 soap:operation

 soap:body

Soap:Binding

 This element indicates that the binding will be made available via

SOAP. The style attribute indicates the overall style of the SOAP message

format. A style value of rpc specifies an RPC format. The transport attribute

indicates the transport of the SOAP messages. The value

http://schemas.xmlsoap.org/soap/http indicates the SOAP HTTP transport,

whereas http://schemas.xmlsoap.org/soap/smtp indicates the SOAP SMTP

transport.

E RESOURCES

211

Soap:Operation

 This element indicates the binding of a specific operation to a

specific SOAP implementation. The soapAction attribute specifies that the

SOAPAction HTTP header be used for identifying the service.

Soap:Body

 This element enables you to specify the details of the input and output

messages. In the case of HelloWorld, the body element specifies the SOAP

encoding style and the namespace URN associated with the specified

service.

Example

<binding name="Hello_Binding" type="tns:Hello_PortType">

 <soap:binding style="rpc"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="sayHello">

 <soap:operation soapAction="sayHello"/>

 <input>

 <soap:body

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 namespace="urn:examples:helloservice"

 use="encoded"/>

 </input>

 <output>

 <soap:body

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 namespace="urn:examples:helloservice"

E RESOURCES

212

 use="encoded"/>

 </output>

 </operation>

 </binding>

5.5 BULDING AND CONSUMING A WEB SERVICE

 Web services give developers the ability to utilize four open Web

standards:

HTTP – Hypertext Transfer Protocol

 The standard protocol used over Port 80, which traverses firewalls, and

is responsible for requesting and transmitting data over the Internet.

SOAP – Simple Object Access Protocol

 An XML-inherent protocol that encloses a set of rules for data description

and process. As a standard, this is the center-piece that complements the

other three standards mentioned here.

XML – Extensible Markup Language

 The most common markup language in which all this information is

written.

WSDL – Web Services Description Language

 An XML-based method used to identify Web Services and their access at

runtime. .NET provides a tool called WSDL.exe, which essentially makes it

quite easy to generate an XML Web service as an XML file.

 This contains all the methods and instructions the Web Service has, and

typically uses SOAP as its default. you create and consume a data-driven

.NET XML Web service in 5 quick and easy steps.

 NET data access, Web server controls, such a datagrid, and some object-

oriented programming concepts. If not, don’t worry too much.If you complete

the examples, and view the results, you should have no difficulty in keeping

up and observing the causes and effects of what this tutorial entails.

E RESOURCES

213

 There were other alternatives that could be used to access a Web

service, such as Microsoft’s MSXML component, which enabled you to

communicate with the given Web Service over HTTP POST. However, this

process, while acceptable, is just not .NET.

Step 1: Create the Web Service

 First we’ll create the Web service function or method that’ll you’ll call

(or ―expose‖) over the Internet as you would any object-oriented class. The

difference is that we’ll have to incorporate and import all the necessary Web

Services namespaces, syntax and attributes, as well as our data

namespaces, in this case.

 So go ahead and copy the code below to a file called suppliers.asmx.

Save it to your Inetpub/wwwroot folder, and then run it in your browser

using http://localhost/suppliers.

 By clicking the exposed method link, you’ll be presented with the three

main protocols that are available for your use. Just so you know, the file

with the .asmx extension is the actual Web Service file that enables the

ASP.NET runtime to return all pertinent exposed Web service methods and

information.

<%@ WebService Language="C#" Class="GetInfo" %>

using System;

using System.Data;

using System.Data.SqlClient;

using System.Web.Services;

[WebService(Description="My Suppliers List Web Service")]

public class GetInfo : WebService

{

 [WebMethod(BufferResponse=true)]

 public DataSet ShowSuppliers (string str)

E RESOURCES

214

 {

 SqlConnection dbConnection = new SqlConnection("server=(local);

 uid=sa;pwd=;database=Northwind;");

 SqlDataAdapter objCommand = new SqlDataAdapter("select

 ContactName, CompanyName, City, Phone from Suppliers

 where Country = '" + str + "' order by ContactName

 asc", dbConnection);

 DataSet DS = new DataSet();

 objCommand.Fill(DS);

 return DS;

 dbConnection.Close();

 dbConnection = null;

 }

 }

The <%@ WebService Language="C#" Class="GetInfo" %> directive sets up

the file as a Web Service, gives it a name and specifies the language it uses

Aside from your typical data namespace import, you also add the Web

Services namespace:

using System.Web.Services

In VB this would be:

Imports System.Web.Services

Here I've added the [WebService(Description="My Suppliers List Web

Service")], which gives a custom description. Next we create our class,

which, in order that it be exposed, and able to inherit the Webservice base

class, must be a public class.

public class GetInfo : WebService

E RESOURCES

215

{

 The method that’s to be exposed via the WebMethod attribute. Every

class that’s enclosed within a WebMethod will be exposed as a service. Also,

I boost performance by setting the BufferResponse to true.

[WebMethod (BufferResponse=true)]

 If you prefer to have the description right below the

exposed WebMethod link, you can achieve it like this in C#:

[WebMethod (Description="My Suppliers List Web

Service",BufferResponse=true)]

 The VB version would incorporate the description

and BufferResponse in one statement, namely WebMethod, that used angle

brackets. This is placed after the class creation and Web service inheriting

line, and on the same line with, but before the function, like so:

<WebMethod(Description:="My Suppliers List Web

Service",Buffer Response:=True)>

Public Function

ShowSuppliers (ByVal str As String) As DataSet

 If you’re really savvy you can pass this and other parameters with

the help of C# structs (scaled down classes) to enumerate your data value

types, and provide you with better memory allocation. But for now, we’ll

stick to the basics:

public DataSet ShowSuppliers (string str)

 The dataset method to return us exactly that. Lastly, we perform

typical data connection and access and return our results, and we’re done!

So far so good? After viewing this in your browser, the above code should to

start to make sense. Let’s go to Step 2.

E RESOURCES

216

STEP 2 : CONSUME THE WEB SERVICE SOURCE FILE

 Next, append ?WSDL to the Web services URI (Uniform Resource

Identifier) like so:

http://localhost/suppliers.asmx?WSDL

 This is the WSDL document that the client will use to access this

service.Even so, you don’t have to know much about this unreadable code to

produce results, which is where the WSDL.exe command-line tool comes

into play. Due to the open protocol nature of Web services, this tool enables

you to consume non-.NET Web Services as well.

You can bypass WSDL and test the XML results instantly through HTTP

GET protocol, by typing the following into your browser:

http://localhost/suppliers.asmx/ShowSuppliers?str=USA

 This passes USA as a parameter to the ShowSuppliers class method.

Note that if you’re using .NET SDK Beta 1.1 (v.1.1.4322), it seems to prefer

HTTP POST protocol, so invoke the Web Service through its exposed method

link. The XML results? A little crazy, huh?

 So, to create our proxy class sourcefile, make a batch file named

makeWS.bat and type in:

[C#]

wsdl.exe /l:CS /n:WService /out:bin/GetSuppliers.cs

http://localhost/suppliers.asmx?WSDL

[VB]

 wsdl.exe /l:VB /n:WService /out:bin/GetSuppliers.vb

 http://localhost/suppliers.asmx?WSDL

 Now locate your new batch file, and double-click on it to run it. Once

you've done this, you will have created, rather consumed, the proxy class or

source file GetSuppliers.cs right from the .asmx file. Have a look in your bin

folder.

E RESOURCES

217

STEP 3 : BUILD OUR OBJECT

 To invoke the .NET C# compiler (csc.exe) or VB compiler (vbc.exe) to

convert your source file into an assembly or DLL. Create a new .bat file

named makelib.bat and type in:

[C#]

csc /t:library /out:binGetSuppliers.dll binGetSuppliers.cs

 /reference:System.dll,System.Data.dll,System.Web.dll,

 System.Web.Services.dll,System.XML.dll /optimize

[VB]

vbc /t:library /out:binGetSuppliers.dll binGetSuppliers.vb

 /reference:System.dll,System.Data.dll,System.Web.dll,

 System.Web.Services.dll,System.XML.dll /optimize

 All this does is compile the source file from the bin folder to a DLL of set

name, to the bin folder.

 The /t:library instructs the compiler to create a dll (dynamic link library),

rather than an exe (executable) file, with /reference: importing the necessary

dll’s libraries that will be used in our Web service. Finally, we /optimize our

dll to produce smaller, faster, and more efficient output.

STEP 4 : PUT IT ALL TOGETHER

 Now copy and paste the code below to an .aspx .NET page and name it.

This code is for the page that will access the assembly/DLL in your bin

folder, and with all the Web server controls, pass the appropriate

parameters to the Web Service. Go ahead and run it

(http://localhost/Websrvce.aspx).

<%@ Page Language="C#" Explicit="true" Strict="true" Buffer="true"%>

<%@ Import Namespace="System.Data" %>

E RESOURCES

218

<%@ Import Namespace="System.Data.SqlClient" %>

<%@ Import Namespace="WService" %>

<html>

<script language="C#" runat="server">

void Page_Load(Object sender, EventArgs e)

{

 Response.Flush();

}

void SubmitBtn_Click (object src, EventArgs e)

{

int RcdCount;

string Catg = DropDown1.SelectedItem.Text;

 //Instantiate DLL

 GetInfo supInfo = new GetInfo();

 //Pass parameter into DLL function

 DataSet MyData = supInfo.ShowSuppliers(Catg);

 MyDataGrid.DataSource = MyData.Tables[0].DefaultView;

 MyDataGrid.DataBind();

 RcdCount = MyData.Tables[0].Rows.Count;

 if (RcdCount <= 0)

 {

 Message.InnerHtml = "No results were found for <FONT

 Color=Red><i>"+ Catg +"</i>";

 MyDataGrid.Visible = false; //Hide Results until needed

E RESOURCES

219

 }

 else

 {

 Message.InnerHtml = "<i>" + Catg +

 "</i> has " + RcdCount + " local suppliers";

 MyDataGrid.Visible = true;

 }

}

</script>

<body style="font: 10pt verdana">

<h4>Accessing Data with Web Services</h4>

<form runat="server">

<asp:DropDownList id=DropDown1 runat="server">

<asp:ListItem>Australia</asp:ListItem>

<asp:ListItem>Brazil</asp:ListItem>

<asp:ListItem>Canada</asp:ListItem>

<asp:ListItem>Denmark</asp:ListItem>

<asp:ListItem>Finland</asp:ListItem>

<asp:ListItem>France</asp:ListItem>

<asp:ListItem>Germany</asp:ListItem>

<asp:ListItem>Italy</asp:ListItem>

<asp:ListItem>Japan</asp:ListItem>

<asp:ListItem>Netherlands</asp:ListItem>

<asp:ListItem>Norway</asp:ListItem>

E RESOURCES

220

<asp:ListItem>Singapore</asp:ListItem>

<asp:ListItem>Spain</asp:ListItem>

<asp:ListItem>Sweden</asp:ListItem>

<asp:ListItem>UK</asp:ListItem>

<asp:ListItem>USA</asp:ListItem>

</asp:DropDownList>

<asp:button text="Submit" OnClick="SubmitBtn_Click" runat=server/>

<p>

<p>

<ASP:DataGrid id="MyDataGrid" runat="server"

AutoGenerateColumns="True"

Width="100%"

BackColor="White"

Border="1"

BorderWidth="1"

CellPadding="1"

CellSpacing="1"

Font-Size="10pt"

HeaderStyle-BackColor="White"

HeaderStyle-ForeColor="Blue"

AlternatingItemStyle-BackColor="White"

AlternatingItemStyle-ForeColor="Black"

ShowFooter="false"

E RESOURCES

221

/>

</form>

</body>

<%@ Import Namespace="WService" %>

We then instantiate it or reference our object:

[C#]

GetInfo supInfo = new GetInfo();

[VB]

Dim supInfo As New WService.GetInfo()

This is our Web Service class. We then retrieve our dropdown list parameter,

and pass it to our ShowSuppliers constructor method like so:

[C#]

string Catg = DropDown1.SelectedItem.Text; DataSet MyData =

supInfo.ShowSuppliers(Catg);

[VB]

Dim Catg As String = DropDown1.SelectedItem.

5.6 WEB APPLICATION DEPLOYMENT

There are two categories of ASP.NET deployment:

 Local deployment : In this case, the entire application is contained

within a virtual directory and all the contents and assemblies are

contained within it and available to the application.

 Global deployment : In this case, assemblies are available to every

application running on the server.

There are different techniques used for deployment, however, we will

discuss the following most common and easiest ways of deployment:

 XCOPY deployment

E RESOURCES

222

 Copying a Website

 Creating a set up project

XCOPY Deployment

 XCOPY deployment means making recursive copies of all the files to the

target folder on the target machine. You can use any of the commonly used

techniques:

 FTP transfer

 Using Server management tools that provide replication on a remote

site

 MSI installer application

XCOPY deployment simply copies the application file to the production

server and sets a virtual directory there. You need to set a virtual directory

using the Internet Information Manager Microsoft Management Console

(MMC snap-in).

Copying a Website

 The Copy Web Site option is available in Visual Studio. It is available

from the Website -> Copy Web Site menu option. This menu item allows

copying the current web site to another local or remote location. It is a sort

of integrated FTP tool.

Using this option, you connect to the target destination, select the desired

copy mode:

 Overwrite

 Source to Target Files

 Sync UP Source And Target Projects

Then proceed with copying the files physically. Unlike the XCOPY

deployment, this process of deployment is done from Visual Studio

E RESOURCES

223

environment. However, there are following problems with both the above

deployment methods:

 You pass on your source code.

 There is no pre-compilation and related error checking for the files.

 The initial page load will be slow.

Creating a Setup Project

 In this method, you use Windows Installer and package your web

applications so it is ready to deploy on the production server. Visual Studio

allows you to build deployment packages. Let us test this on one of our

existing project, say the data binding project.

Open the project and take the following steps:

Step (1) : Select File -> Add -> New Project with the website root directory

highlighted in the Solution Explorer.

Step (2) : Select Setup and Deployment, under Other Project Types. Select

Setup Wizard.

Step (3) : Choosing the default location ensures that the set up project will

be located in its own folder under the root directory of the site. Click on

okay to get the first splash screen of the wizard.

E RESOURCES

224

Step (4) : Choose a project type. Select 'Create a setup for a web

application'.

Step (5) : Next, the third screen asks to choose project outputs from all the

projects in the solution. Check the check box next to 'Content Files from...'

E RESOURCES

225

Step (6) : The fourth screen allows including other files like ReadMe.

However, in our case there is no such file. Click on finish.

Step (7) : The final screen displays a summary of settings for the set up

project.

E RESOURCES

226

Step (8) : The Set up project is added to the Solution Explorer and the

main design window shows a file system editor.

Step (9) : Next step is to build the setup project. Right click on the project

name in the Solution Explorer and select Build.

E RESOURCES

227

Step (10) : When build is completed, you get the following message in the

Output window:

Two files are created by the build process:

 Setup.exe

 Setup-databinding.msi

You need to copy these files to the server. Double-click the setup file to

install the content of the .msi file on the local machine.

5.7 KEY TERMS

XmlWriter The XML representation of the DataSet can be written to a file,

a stream, an XmlWriter .

WriteSchema Writes the current contents of the DataSet as XML data with

the relational structure as inline XML Schema.

https://docs.microsoft.com/en-us/dotnet/api/system.data.dataset
https://docs.microsoft.com/en-us/dotnet/api/system.data.dataset

E RESOURCES

228

DiffGram Writes the entire DataSet as a DiffGram, including original and

current values. For more information, see DiffGrams

Hidden The column is not written in the XML output.

SOAP SOAP is an XML-based protocol for accessing web services over

HTTP. It has some specification which could be used across all applications.

WSDL web service description language WSDL breaks down web services

into three specific, identifiable elements that can be combined or reused

once defined.

Data types: The data types to be used in the messages are in the form of

XML schemas.

 Message: It is an abstract definition of the data, in the form of a message

presented either as an entire document or as arguments to be mapped to a

method invocation.

Port type: It is an abstract set of operations mapped to one or more end-

points, defining the collection of operations for a binding.

Binding: It is the concrete protocol and data formats for the operations and

messages defined for a particular port type.

 Port: It is a combination of a binding and a network address, providing the

target address of the service communication.

Documentation: This element is used to provide human-readable

documentation and can be included inside any other WSDL element.

Import: This element is used to import other WSDL documents or XML

Schemas. WSL parts are usually generated automatically using web

services-aware tools.

Soap:Binding This element indicates that the binding will be made

available via SOAP. The style attribute indicates the overall style of the SOAP

message format.

https://docs.microsoft.com/en-us/dotnet/api/system.data.dataset
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/dataset-datatable-dataview/diffgrams

E RESOURCES

229

Soap:Operation This element indicates the binding of a specific operation

to a specific SOAP implementation.

Soap:Body This element enables you to specify the details of the input and

output messages.

HTTP – Hypertext Transfer Protocol The standard protocol used over Port

80, which traverses firewalls, and is responsible for requesting and

transmitting data over the Internet.

SOAP – Simple Object Access Protocol.

XML – Extensible Markup Language. The most common markup language

in which all this information is written.

XCOPY Deployment XCOPY deployment means making recursive copies

of all the files to the target folder on the target machine.

5.7.1 2 MARKS QUESTION AND ANSWER

1.Define XML

 An XML representation of a DataSet, with or without its schema. If schema

information is included inline with the XML, it is written using the XML

Schema definition language (XSD).

2. What is meant by Dataset?

 DataSet is written as XML data, the rows in the DataSet are written in

their current versions. The DataSet can also be written as a DiffGram so

that both the current and the original values of the rows will be included.

3. Define XML Element.

 This is the default. The column is written as an XML element where the

ColumnName is the name of the element and the contents of the column are

written as the text of the element.

4.Define Attributes

https://docs.microsoft.com/en-us/dotnet/api/system.data.dataset
https://docs.microsoft.com/en-us/dotnet/api/system.data.dataset
https://docs.microsoft.com/en-us/dotnet/api/system.data.dataset
https://docs.microsoft.com/en-us/dotnet/api/system.data.dataset

E RESOURCES

230

 The column is written as an XML attribute of the XML element for the

current row where the ColumnName is the name of the attribute and the

contents of the column are written as the value of the attribute.

5. How to create the User Interface

 The user interface for this application consists of the following:

 A DataGridView control that displays the contents of the XML file as

data.

 A TextBox control that displays the XML schema for the XML file.

 Two Button controls.

 6. What is SOAP?

 SOAP is an XML-based protocol for accessing web services over HTTP.

It has some specification which could be used across all applications. SOAP

was developed as an intermediate language so that applications built on

various programming languages could talk easily to each other and avoid

the extreme development effort.

7. Define SOAP Message Structure

 SOAP messages are normally auto-generated by the web service when it

is called.Whenever a client application calls a method in the web service, the

web service will automatically generate a SOAP message which will have the

necessary details of the data which will be sent from the web service to the

client application.

8. What is web service language?

 WSDL breaks down web services into three specific, identifiable elements

that can be combined or reused once defined. The three major elements of

WSDL that can be defined separately are Types,Operations and Binding.

9. Define Message Element

 The <message> element describes the data being exchanged between the

web service providers and the consumers each Web Service has two

messages input and output. The input describes the parameters for the web

service and the output describes the return data from the web service.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.datagridview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.button

E RESOURCES

231

10.What is PortType element?

 The <portType> element combines multiple message elements to form a

complete one-way or round-trip operation.

11. What is Binding Element?

 The <binding> element provides specific details on how a portType

operation will actually be transmitted over the wire. The bindings can be

made available via multiple transports including HTTP GET, HTTP POST, or

SOAP. The binding element has two attributes: Name and Type.

12. Define Soap Operation

 This element indicates the binding of a specific operation to a

specific SOAP implementation. The soapAction attribute specifies that the

SOAPAction HTTP header be used for identifying the service.

13. Define HTTP

 Hypertext Transfer Protocol The standard protocol used over Port 80,

which traverses firewalls, and is responsible for requesting and transmitting

data over the Internet.

14. Define WSDL

 Web Services Description Language(WSDL) An XML-based method

used to identify Web Services and their access at runtime. .NET provides a

tool called WSDL.exe, which essentially makes it quite easy to generate an

XML Web service as an XML file.

15. What is Local deployment?

 The entire application is contained within a virtual directory and all

the contents and assemblies are contained within it and available to the

application.

5.7.2 5 MARKS QUESTIONS

1. How to write Dataset content as XML data?

2. Explain how to create the XML document and load the data string.

E RESOURCES

232

3. Write the steps how to read XML data into dataset?

4. Explain the Remote the Method call using XML.

5. Explain Building Block of SOAP .Write some advantage of SOAP ?

5.7.3 10 MARK QUESTIONS

1. Explain WSDL and write some features of WSDL.

2. List out the port type and messaging element in WSDL.

3. Describe Web Application Deployment in detail.

 4. Explain the consuming a web service in detail.

5. How to create the web service in WSDL?

Multiple Choice Question With Answer

1. What does XML stand for?

A. eXtra Modern Link

B. eXtensible Markup Language

C. Example Markup Language

D. X-Markup Language

Ans: B

2. What is the correct syntax of the declaration which defines the XML

version?:

A. <xml version="A.0" />

B. <?xml version="A.0"?>

C. <?xml version="A.0" />

D. None of the above

Ans: B

3. Which statement is true?

A. All the statements are true

B. All XML elements must have a closing tag

C. All XML elements must be lower case

D. All XML documents must have a DTD

Ans: B

E RESOURCES

233

4. Is it easier to process XML than HTML?

A. Yes

B. No

C. Somtimes

D. Cant say

Ans: A

5. Which of the following programs support XML or XML applications?:

A. Internet Explorer 5.5

B. Netscape D.7

C. RealPlayer.

D. both A and B

Ans: D

6. Kind of Parsers are

A. well-formed

B. well-documented

C. non-validating and validating

D. none of the above

Ans: C

7. Well formed XML document means

A. it contains a root element

B. it contain an element

C. it contains one or more elements

D. must contain one or more elements and root element must contain all

other elements

Ans: D

8. Comment in XML document is given by

A. <?-- -->

B. <!-- --!>

C. <!-- -->

E RESOURCES

234

D. </-- -- >

Ans: C

9. When processing an output XML, "new line" symbols

A. are copied into output "as is", i.e. "CR+LF" for Windows, CR for

Macintosh, LF for Unix.

B. are converted to single LF symbol

C. are converted to single CR symbol

D. are discarded

Ans: B

10. Which of the following strings are a correct XML name?

A. _myElement

B. my Element

C. #myElement

D. None of the above

Ans: A

11. Which of the following strings are a correct XML name?

A. xmlExtension

B. xslNewElement

C. XMLElement#123

D. All

Ans: B

12. Which of the following XML fragments are well-formed?

A. <?xml?>

B. <?xml version="A.0"?>

C. <?xml encoding="JIS"?>

D. <?xml encoding="JIS" version="A.0"?>

Ans: B

E RESOURCES

235

13. What are the predefined attributes

A. xml:lang

B. xml:space

C. both

D. none.

Ans: C

14. Kind of Parsers are

A. well-formed

B. validating

C. non-validating

D. Both B & C

Ans: D

15. Valid XML document means (most appropriate)

A. the document has root element

B. the document contains atleast one or more root element

C. the XML document has DTD associated with it & it complies with that

DTD

D. Each element must nest inside any enclosing element property

Ans: C

16. XML uses the features of

A. HTML

B. XHTML

C. VML

D. SGML

Ans: D

17. XML document can be viewed in

A. IE C.0

B. IE B.0

E RESOURCES

236

C. IE 6.0

D. IE X.0

Ans: C

18. There is a way of describing XML data, how?

A. XML uses a DTD to describe the data

B. XML uses XSL to describe data

C. XML uses a description node to describe data

D. Both A and C

Ans: D

19. What does DTD stand for?

A. Direct Type Definition

B. Document Type Definition

C. Do The Dance

D. Dynamic Type Definition

Ans: B

20. DTD includes the specifications about the markup that can be used

within the document, the specifications consists of all EXCEPT

A. the browser name

B. the size of element name

C. entity declarations

D. element declarations

Ans: A

21. Which of the following XML documents are well-formed?

A. <firstElement>some text goes here

<secondElement>another text goes here</secondElement>

</firstElement>

B. <firstElement>some text goes here</firstElement>

<secondElement> another text goes here</secondElement>

C. <firstElement>some text goes here

E RESOURCES

237

<secondElement> another text goes here</firstElement>

</secondElement>

D. </firstElement>some text goes here

</secondElement>another text goes here

<firstElement>

Ans: B

22. Which of the following XML fragments are well-formed?

A. <myElement myAttribute="someValue"/>

B. <myElement myAttribute=someValue/>

C. <myElement myAttribute=’someValue’>

D. <myElement myAttribute="someValue’/>

Ans: A

23. How can we make attributes have multiple values:

A. <myElement myAttribute="value1 value2"/>

B. <myElement myAttribute="value1" myAttribute="value2"/>

C. <myElement myAttribute="value1, value2"/>

D. attributes cannot have multiple values

Ans: D

24. Which of the following XML fragments are well-formed?

A. <myElement myAttribute="value1 <= value2"/>

B. <myElement myAttribute="value1 & value2"/>

C. <myElement myAttribute="value1 > value2"/>

D. None of the above

Ans: C

25. The use of a DTD in XML development is:

A. required when validating XML documents

B. no longer necessary after the XML editor has been customized

C. used to direct conversion using an XSLT processor

D. a good guide to populating a templates to be filled in when generating an

E RESOURCES

238

XML document automatically

Ans: A

26. Parameter entities can appear in

A. xml file

B. dtd file

C. xsl file

D. Both 1 and 2

Ans: B

27. Attribute standalone="no" should be included in XML declaration if a

document:

A. is linked to an external XSL stylesheet

B. has external general references

C. has processing instructions

D. has an external DTD

Ans: D

28. In XML

A. the internal DTD subset is read before the external DTD

B. the external DTD subset is read before the internal DTD

C. there is no external type of DTD

D. there is no internal type of DTD

Ans: A

29. Disadvantages of DTD are

(i)DTDs are not extensible

(ii)DTDs are not in to support for namespaces

(iii)there is no provision for inheritance from one DTDs to another

A. (i) is correct

B. (i),(ii) are correct

C. (ii),(iii) are correct

E RESOURCES

239

D. (i),(ii),(iii) are correct

Ans: D

30. To use the external DTD we have the syntax

A. <?xml version=‖A.0‖ standalone=‖no‖?>

<! DOCTYPE DOCUMENT SYSTEM ―order.dtd‖?>

B. <?xml version=‖A.0‖ standalone=‖yes‖?>

<! DOCTYPE DOCUMENT SYSTEM ―order.dtd‖?>

(3)<?xml version=‖A.0‖ standalone=‖no‖?>

<! DOCTYPE DOCUMENT ―order.dtd‖?>

D. <?xml version=‖A.0‖ standalone=‖yes‖?>

<! DOCTYPE DOCUMENT SYSTEM ―order.dtd‖?>

Ans: A

31. To add the attribute named Type to the <customer> tag the syntax will

be

A. <customer attribute Type=‖exelent‖>

B. <customer Type attribute =‖exelent‖>

C. <customer Type attribute_type=‖exelent‖>

D. <customer Type=‖ exelent‖ >

Ans: D

32. The syntax for parameter entity is

A. <! ENTITY % NAME DEFINITION>

B. < ENTITY % NAME DEFINITION>

C. <! ENTITY $ NAME DEFINITION>

D. < ENTITY % NAME DEFINITION>

Ans: A

33. You can name the schema using the name attribute like

A. <schema attribute=‖schema1‖>

B. <schema nameattribute=‖schema1‖>

C. <schema nameattri=‖schema1‖>

E RESOURCES

240

D. <schema name=‖schema1‖>

Ans: D

34. The default model for complex type, in XML schemas for element is

A. textOnly

B. elementOnly

C. no default type

D. both 1 & 2

Ans: B

35. Microsoft XML Schema Data types for Hexadecimal digits representating

octates

A. UID

B. UXID

C. UUID

D. XXID

Ans: C

36. A schema describes

(i) grammer

(ii) vocabulary

(iii) structure

(iv) datatype of XML document

A. (i) & (ii) are correct

B. (i),(iii) ,(iv) are correct

C. (i),(ii),(iv) are correct

D. (i),(ii),(iii),(iv) are correct

Ans: D

37. Microsoft XML Schema Data Type ― boolean‖ has values

A. True ,False

B. True ,False or 1,0

E RESOURCES

241

C. 1,0

D. any number other then zero and zero

Ans: C

38. Simple type Built into Schema ― data’ represent a data in

A. MM-DD-YY

B. Dd-MM-YY

C. YY-MM-DD

D. YYYY-MM-DD

Ans: D

39. In simple Type Built into XML schema Boolean type holds

A. True, False

B. 1,0

C. both A. & B.

D. True/False and any number except 0

Ans: C

40. In simple type built into XML schema type flat has single precision of

________ floating point

A. 16 bit

B. 32 bit

C. 8 bit

D. 4 bit

Ans: C

41. The XML DOM object is

A. Entity

B. Entity Reference

C. Comment Reference

D. Comment Data

Ans: B

E RESOURCES

242

42.Attribute of the document interface in DOM is/are

(i)doctype

(ii)implementation

(iii)documentElement

which are read only attributes

A. (i) only

B. (ii) only

C. (ii),(iii) only

D. all

Ans: D

43. The default model for complex type, in XML schemas for element is

A. textOnly

B. elementOnly

C. no default type

D. both a & b

Ans: B

44. To create a choise in XML schemas, we use the

A. <xsd:select> element

B. <xsd:multi> element

C. <xsd:choise> element

D. <xsd:single> element

Ans: C

45. The XML DOM object is

A. Entity

B. Entity Reference

C. Comment Reference

D. Comment Data

Ans: B

E RESOURCES

243

46. To create a data island we use the _____________HTML element

A. <XML>

B. <dataisland>

C. <Island>

D. <XMLIsland>

Ans: A

47. To Bind the HTML elements with DSO we use _________ attribute

A. DATASOURCE

B. DATAFIELD

C. DATASRC

D. DATAFLD

Ans: A,C

48. To bind the HTML element <INPUT> Type in text with the datasource ―

dsoCustomer‖ we use

A. <INPUT TYPE=‖TEXT‖ DATAFIELD=‖#dsoCustomer‖>

B. <INPUT TYPE=‖TEXT‖ DATASRC=‖ dsoCustomer‖>

C. <INPUT TYPE=‖TEXT‖ DATASRC=‖ #dsoCustomer‖ >

D. <INPUT TYPE=‖TEXT‖ DATAFLD=‖ #dsoCustomer‖>

Ans: C

49. XML DSOs has the property for the number of pages of data the

recordset contains

A. count

B. number

C. pageCount

D. pageNumber

Ans: C

50. Whats so great about XML?

A. Easy data exchange

E RESOURCES

244

B. High speed on network

C. Only B.is correct

D. Both A. & B.

Ans: D

51. Which of the following object is not an ASP component?

A. LinkCounter

B. Counter

C. AdRotator

D. File Access

Ans: LinkCounter

52. The first event triggers in an aspx page is.

A. Page_Init()

B. Page_Load()

C. Page_click()

Ans: Page_Init()

53. Difference between Response.Write() andResponse.Output.Write().

A. Response.Output.Write() allows you to buffer output

B. Response.Output.Write() allows you to write formatted output

C. Response.Output.Write() allows you to flush output

D. Response.Output.Write() allows you to stream output

Ans: Response.Output.Write() allows you to write formatted output

53. Which of the following method must be overridden in a custom control?

A. The Paint() method

B. The Control_Build() method

C. The default constructor

D. The Render() method

Ans: The Render() method

E RESOURCES

245

54. How do we create a FileSystemObject?

A. Server.CreateObject(―Scripting.FileSystemObject‖)

B. Create(―FileSystemObject‖)

C. Create Object:‖Scripting.FileSystemObject‖

D. Server.CreateObject(―FileSystemObject‖)

Ans: Server.CreateObject(―Scripting.FileSystemObject‖)

55. Which of the following tool is used to manage the GAC?

A. RegSvr.exe

B. GacUtil.exe

C. GacSvr32.exe

D. GacMgr.exe

Ans: GacUtil.exe

56. What class does the ASP.NET Web Form class inherit from by default?

A. System.Web.UI.Page

B. System.Web.UI.Form

C. System.Web.GUI.Page

D. System.Web.Form

Ans: System.Web.UI.Page

57. Can we use view state in MVC ?

A) Yes

B) No

C) Both A & B

D) None

Ans: B

58. Which web server is developed by Microsoft?

a) Apache Tomcat

b)Caudium

c) Internet Information Services

E RESOURCES

246

d) WEBrick

Ans: C

59.Which Commands is used to specify setting of an .aspx file?

a) Class

b) Directives

c) Events

d) Validation

Ans: B

60. Which of the following is the common property of webserver controls

that assign a small piece of text when a mouse pointer is held over the

control for a short period of time?

a) Access key

b) Tooltip

c) SkinID

d) TabIndex

Ans: B

61. The method used to change styles of the element in ASP.NET Webpage is

called

a)Master Page

b)Child Page

c) cascading style sheet

d)UTF-8

Ans:C

E RESOURCES

247

62. Which webserver control is used to display advertisement in ASP.Net

Web page?

a)Image

b) Image Map

c) Panel

d) AdRotator

Ans: D

63. Which of the following control shows data in tabular format and allow

sorting, Paging, edit, delete each record?

a)Listbox

b)Gridview

c) Repeater

d) None of these

Ans: b

64. Which of the following web server controls used as a container for other

server controls in ASP .Net Web page?

a) PlaceHolder

b) Table

c) Panel

d) ImageMap

Ans:C

65. By using which of the following attribute, HTML elements are

transformed to HTML Server Control?

a) runat=‖client‖

b) runat=‖server‖

E RESOURCES

248

c)runat=‖browser‖

d) runat=‖host‖

Ans: B

66. Which of the following validation control is used to ensure that an

user does not skip a form entity field?

a) CompareValidator

b) RegularExpressionValidator

c)RangeValidator

d) RequiredFieldValidator

Ans: D

67. ASP.NET is built on the _____________ which allows the programmers

to execute its code using any .NET language

A) Common Language Runtime.

B) Custom Language Runtime.

C) Custom Language Repository.

D) Common Language Repository.

Ans: A

68. ______________is the process of removing unwanted resources when

they are no longer required.

A) Common Language Runtime.

B) Common Type System.

C) Exception Handler.

D) Garbage Collection.

Ans: D

69. What is used to validate complex string patterns like an e-mail

address?

A) Extended expressions

E RESOURCES

249

B) Basic expressions

C) Regular expressions

D) Irregular expressions

Ans: C

70. File extension used for ASP.NET files.

A) .Web

B) .ASP

C) .ASPX

D) None of the above

Ans: C

 71. A project cannot contain which one of the following content files:

A) Page file (.aspx)

B) User control (.ascx)

C) Web service (.asmx)

D) All the above

Ans : D

72._______________ is the directive used to specify the default

programming language for a page

A) Import directive

B) Page directive

C) Code declaration block

D) Code Render block

Ans: B

 73. Which of the following is not ASP.NET Page Life cycle Event?

A) PreInt

B) Int

C) Load

D) DisLoad

Ans : D

E RESOURCES

250

74. Validator that evaluates the value of an input control against

another input control on the basis of specified operator

A) Range Validator

B) Compare Validator

C) RequireField Validator

D) RegularExpression Validator

Ans: B

75. Validator that is used to make a control required

A) Range Validator

B) Compare Validator

C) RequireField Validator

D) RegularExpression Validator

Ans: C

