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 ALGEBRA - I  

UNIT - I -   GROUP THEORY                                                                 18hrs 

Another Counting Principle –Class Equation for Finite groups and its applications – Sylow‟s 

theorems [For theorem 2.12.1, Only First proof]. 

Chapter 2: Sections 2.11 and 2.12 [omit Lemma 2.11.3, 2.12.2, 2.12.5] 

2.11 ANOTHER COUNTING PRINCIPLE 

Definition: 

Let G be a group and if a, b ∈ G then b is said to be conjugate to a in G, there exists an element c 

∈ 𝐺 such that b = 𝑐−1𝑎𝑐. Symbolically a ~ c. 

Lemma  2.11.1: 

The above relation is an equivalence relation. 

  Or 

Conjugacy is an equivalence relation on G. 

Proof: 

Now we have to prove that the above relation is an equivalence relation. 

That is to prove that 

i). Reflexive: a ~ a 

ii). Symmetric: a ~ b → b ~ a 

iii). Transitive: a ~ b, b ~ c → a ~ c 

i). Reflexive: 

Since e ∈ G, a = 𝑒−1𝑎𝑒 

Therefore a ∈ 𝐺. 
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Hence a ~ a 

ii). Symmetric: 

Let a ~ b. 

Then b = 𝑐−1𝑎𝑐.  

Now cb𝑐−1 =  b =  𝑐−1𝑐𝑎𝑐 𝑐−1 

                             = e a e = a 

Therefore b ~ a. 

iii). Transitive: 

Let a ~ b and b ~ c. 

Then there exists an element x ∈ G such that b = x−1ax and also there exists an element y ∈ G 

such that c = y−1ay. 

Now  c  = y−1ay 

  =  y−1 (x−1ax ) y 

  =  (y−1 x−1)a (x y ) 

  = (𝑥𝑦)−1 a (xy) 

  = 𝑧−1a z 

Therefore, a ~ c. 

Hence the conjugacy relation is an equivalence relation. 

Hence the lemma. 

Definition: 

Let a in G. Then C(a) = { x ∈ G / x ~ a }={ x ∈ G / x = y−1ay, y ∈  G}where C(a) is called the 

conjugate class of a.  
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Definition: 

If a in G then N(a) is the normalize of a in G such that N(a) = { x ∈ G / ax = xa }. 

Lemma 2.11.2 

Prove that N(a) is a sub group of G. 

Proof: 

Given that g is a group. 

To prove that N(a) is a subgroup of G. 

It is enough to prove that N(a) satisfies 

i). Closure 

ii). Associative 

By definition of N(a), N(a) is a subset of G. 

Since e and a in G, ae = ea 

Hence e ∈ N(a). 

Therefore, N(a) is non-empty. 

Now to prove closure: 

Let x, y ∈ N(a). 

Then xa = ax and ya = ay. 

Consider, 

 (xy)a = x(ya) 

  = x(ay) 

  = (xa) y 
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  = (ax)y 

That is, (xy)a =a(xy) 

Therefore, xy ∈ N(a). 

Closure is satisfied. 

Now to prove the inverse: 

Let x ∈ N(a). 

Then xa = ax. 

Consider 

x
-1

 a = (x
-1

a)  (xx
-1

) 

 = ax
-1

 

Hence x
-1

  ∈ N(a). 

Thus inverse is satisfied. 

Therefore N(a) is a subgroup of G. 

Hence the lemma proved. 

Theorem 2.11.1 SECOND COUNTING PRINCIPLE 

If G is a finite group, then ca = O(G) / O(N(a)); in other words, the number of elements conjugate 

to a in G is the index of normalize of a in G. 

Proof: 

For a ∈ G, c(a)  = { x∈ G / x ~ a} 

   = { x∈ G / x = y
-1

ay, y ∈ G } 

Therefore c(a) consist exactly of all the elements x
-1

ax as x ranges over G. 
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Hence ca measures the number of distinct x
-1

ax‟s. 

Now to show that two elements in the same right coset of N(a) in G yield the same conjugate of a 

whereas two elements in different right cosets of N(a) in G give rise to different conjugates of a. 

In this way we shall prove that there exists a one-to-one correspondence between conjugates of a 

and right cosets of N(a). 

Suppose that x, y ∈ G are in the same right coset of N(a) in G. 

thus y = nx where n ∈ N(a). 

So na = an. 

Therefore, since y
-1

 = (nx)
-1

 = x
-1

n
-1

, y
-1

ay = x
-1

n
-1

anx = x
-1

ax. 

Thus we proved that two elements in the same right coset of N(a) in G yield the same conjugate 

of a. 

On the other hand, x and y are in different cosets of N(a) in G. 

We claim that x
-1

ax ≠ y
-1

ay. 

Let us assume that x
-1

ax = y
-1

ay. 

Then x ∈N(a) x and y ∈ N(a) y 

Now x
-1

ax = y
-1

ay. 

Pre-multiply by x and post multiply by y
-1

 we get, 

N(a)x = N(a) y,which is a contradiction. 

Hence  two elements in different right cosets of N(a) in G give rise to different conjugates of a. 

Thus we proved that one-to-one correspondence between conjugates of a and right cosets of 

N(a). 

Therefore ca = 
𝑂(𝐺)

𝑂(𝑁 𝑎 )
. 



7 
 

Hence the theorem. 

Corollary: CLASS EQUATION OF G 

  O(G) =  
𝑂(𝐺)

𝑂(𝑁 𝑎 )
 

where this sum runs over one element a in each conjugate class. 

Proof: 

By applying theorem 2.11.1, we have 

O(G) =  
𝑂(𝐺)

𝑂(𝑁 𝑎 )
 

Now consider ca, cb, ….. are distinct conjugate classes and also ca ∪ cb ∪ …. = G. 

Therefore,  𝑐𝑎  = O(G). 

Hence the equation O(G) =  
𝑂(𝐺)

𝑂(𝑁 𝑎 )
. 

Hence the corollary was proved. 

Sub Lemma 1: 

Prove that a ∈ Z if and only if N(a) = G. If G is finite, a ∈ Z and only if O(N(a)) = O(G). 

Proof: 

Necessary Part: 

Let a in Z(G). 

To prove that N(a) = G. 

By definition of N(a), N(a) is a subset of G. 

By lemma 2.11.1, N(a) is a subgroup of G. 

That is N(a) 𝐶 G ………………………………….. (1) 
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Now to show that G 𝐶 N(a). 

Let g in G. 

Then ag = ga. 

Therefore g is in N(a). 

Hence G 𝐶 N(a) ……………………………………(2) 

From equation (1) and (2), G = N(a). 

Sufficient Part: 

Let G = N(a). 

To prove that a in Z(G). 

Let x in G. 

Then xa = ax. 

Hence a in Z(G). 

Let G be a finite group. 

Let a in Z(G). 

Then N(a) = G. 

Hence O(N(a)) = O(G). 

Hence the lemma was proved. 

Theorem 2.11.2 

If O(G) = p
n
 where p is a prime number then Z(G) ≠ (e). 

Proof: 

Let G be a finite group. 
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given that O(G) = p
n
 where p is a prime number. 

To prove that Z(G) ≠ (e). 

Let a in G. 

Since N(a) is a subgroup of G and G is a finite group then by Langrange‟s theorem 
𝑂(𝐺)

𝑂(𝑁 𝑎 )
 

Hence  
𝑝𝑛

𝑂(𝑁 𝑎 )
. 

That is O(N(a)) = p
na

, where 1 ≤ 𝑎 ≤ n. 

If a is not in centre of G then by sub lemma 1 O(N(a)) = O(G). 

Therefore p
n
 = p

na
. 

Hence n = na. 

If a in Z(G) then na < n. 

Consider the class equation 

O(G)  =  
𝑂(𝐺)

𝑂(𝑁 𝑎 )
. 

  =  
𝑂(𝐺)

𝑂(𝑁 𝑎 )𝑎 𝑖𝑛  𝑍(𝐺)  +  
𝑂(𝐺)

𝑂(𝑁 𝑎 )𝑎 𝑛𝑜𝑡  𝑖𝑛  𝑍(𝐺)  

  = 
𝑝𝑛

𝑝𝑛𝑎
  +  

𝑂(𝐺)

𝑂(𝑁 𝑎 )𝑎 𝑛𝑜𝑡  𝑖𝑛  𝑍(𝐺)  

  = z +  
𝑂(𝐺)

𝑂(𝑁 𝑎 )𝑎 𝑛𝑜𝑡  𝑖𝑛  𝑍(𝐺)  

𝑝𝑛   = z +  
𝑝𝑛

𝑝𝑛𝑎𝑛<𝑛𝑎  

z = 𝑝𝑛  -  
𝑝𝑛

𝑝𝑛𝑎𝑛<𝑛𝑎  ………………………………………(1) 

p divides the R.H.S of (1). 

p divides the L.H.S of (1). 
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Therefore p divides z, which gives p is either 0 or integral power of p. 

Hence z is not equal to 0. 

Therefore z must be a integral power of p. 

Hence Z(G) ≠ (e). 

Corollary:  

If O(G)  = 𝑝2 where p is a prime number then G is abelian. 

Proof: 

Suppose O(G)  = 𝑝2 where p is a prime number  

Now to prove that G is abelian. 

It is enough to prove that G = Z(G) is abelian, where Z(G) = { x in G such that ax = xa for all x 

in G }. 

Since G is a finite group and Z(G) is a subgroup of G then by Lagrange‟s theorem, 
𝑂(𝐺)

𝑂(𝑍 𝐺 )
 

That is, 
𝑝2

𝑂(𝑍 𝐺 )
 ……………………………………….(1) 

that is O(Z(G)) = 1 or p or p
2
. 

By theorem 2.11.2, Z(G) ≠ (e). 

That is, O(Z(G) ≠1. 

Hence the possibilities are either p or p
2
. 

Suppose O(Z(G) = p. 

Then there exists an element a in G but not in Z(G). 

Since N(a) is a subgroup of G and G is a finite group again by lagrange‟s theorem 
𝑂(𝐺)

𝑂(𝑁 𝑎 )
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That is 
𝑝2

𝑂(𝑁 𝑎 )
. 

Hence O(N(a)) = 1 or p or p
2
 

Since N(a) is a subgroup of G, a and e in N(a) we have O(N(a)) ≠1. 

Thus either O(Na)) = p or p
2
 

let z in Z(G). 

Then az = za for all a in G. 

Hence Z(G) is a subset of N(a). 

Since a in N(a) and Z(G) is not equal to N(a) we have O(N(a)) ≠ p
2
. 

Therefore O(N(a)) = O(G) 

Hence a is in Z(G), which is a contradiction to our assumption that a does not belong to Z(G).  

Therefore Z(G) = G. 

Thus G is abelian. 

Example 2.11.1 

A group of order 121 is an abelian group. 

Solution: 

Let O(G) = 121 = 11
2
. 

By using above corollary, a group of order 121 is an abelian group. 

Theorem 2.11.3 CAUCHY 

If p is a prime number and p| O(G) then G has an element of order p. 

Proof: 

Suppose G is a finite group and p| O(G), where p is a prime number. 
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To prove G has an element of order p. 

To prove that there exists an element a ≠ e ∈ G such that a
p
 = e. 

That is to prove that O(a) = p. 

We prove this theorem by induction on O(G). 

Let O(G) = 1. 

Therefore O(G) = {e} and 𝑒1 = e. 

Thus O(e) = 1. 

Hence the theorem is true for O(G) = 1. 

Assume that the theorem is true for all group of order is less than q. 

Now we prove the theorem for O(G). 

Then there exists a subgroup H which is not equal to G such that p divides O(H). 

Hence the theorem is true for H because O(H) < OG). 

Therefore O(a) = p. 

Since a is in H, a is also in G, there exists an element a is in G such that O(a) = p.. 

Thus we may assume that p is not a divisor of any proper subgroup of G. 

Let Z(G) be the centre of G. 

Consider the class equation 

O(G) =  
𝑂(𝐺)

𝑂(𝑁 𝑎 )
. 

 =  
𝑂(𝐺)

𝑂(𝑁 𝑎 )𝑎 𝑖𝑛  𝑍(𝐺)  +  
𝑂(𝐺)

𝑂(𝑁 𝑎 )𝑎 𝑛𝑜𝑡  𝑖𝑛  𝑍(𝐺)  

            = O(Z(G)) +  
𝑂(𝐺)

𝑂(𝑁 𝑎 )𝑎 𝑛𝑜𝑡  𝑖𝑛  𝑍(𝐺)  
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O(Z(G)) = O(G) -   
𝑂(𝐺)

𝑂(𝑁 𝑎 )𝑎 𝑛𝑜𝑡  𝑖𝑛  𝑍(𝐺)  

Hence p divides O(Z(G)). 

Thus Z(G) is a subgroup of G whose order is divisible by p. 

But we may assume that p does not divide any proper subgroup of G. 

Hence Z(G) = G. 

Since Z is an abelian nd G is also an abelian group. 

Therefore by applying Cauchy theorem for abelian group, the theorem is true for O(G). 

Thus G has an element of order p. 

Lemma 2.11.3 

The number of conjugate classes in Sn, is p(n), the number of partitions of n. 

Proof: 

Let the permutation be (1 2 ) in Sn. There are ( n - 2 )!  

Also ( 1, 2 ) commutes with itself. 

This way we get 2(n-2)! elements in the group generated by (1 2) and the n(n-1)/2 transpositions 

and these are conjugates of (1,2). 

By counting principle 

𝑛(𝑛−1)

2
  = 

𝑂(𝑆𝑛 )

𝑟
 = 

𝑛 !

𝑟
 

Thus r = 2(n-2)!.  

That is the order of the normalize of (1,2) is 2(n-2). 

Now any n-cycle is conjugate to (1,2,…n) and there are (n-1)! distinct n-cycles in Sn. 
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Thus if u denotes the order of the normalize of(1,2,..n) in Sn, O(Sn) / u = number of conjugates of 

(1,2,…n) in Sn  = (n-1)! 

Therefore u = 
𝑛!

 𝑛−1 !
 = n. 

Hence the order of the normalize of (1,2,…n) in Sn is n. 

The powers of (1,2,…n) having given as n such elements. 

Hence the lemma was proved. 

Theorem 2.12.1 First part of Sylow’s Theorem 

If P is a prime number and P
α
|O(G) then G has a subgroup of order P

α
.  

Proof:  

Given P is a prime number and P
α
|O(G)  

==> O(G) = P
α
m  

We know that, nCk = n! 

k!(n−k)! 
---------(1) 

 

Let n = P
α
m  

Where P is a prime number and if P
α
|m but P

α∤m  

Take k = P
α 

substitute this in (1)  

We get, P
α
mCP

α 
= 

Pα
m!  

P
α
!(P

α
m−P

α
)!  

= P
α 

(P
α
m-1) (P

α
m-2)............(P

α
m-1).....(P

α
m-P

α
+1)  

P
α
(P

α
-1)..........(P

α
-i)......(P

α
m-P

α
+1)  

= P
α
m (P

α
m-1)..........(P

α
m-1).......(P

α
m-P

α
+1) P

α
(P

α
-1)......(P

α
-i)......3.2.1  

Now, we show that the power of P dividing (P
α 

m-i) in the numerator is the same  

as the power of P dividing (P
α

m-i) in the denominator.  

Let P
α
(P

α
-1) -----------(2)  

==>P
α
-i = aP

k 
where k≤α  

==> -i = aP
k
-P

α 
 

Add both sides by P
α
m,  

We get,  
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P
α
m-i = aP

k
-P

k
+P

α
m  

= aP
k
+P

α
(m-1)  

P
α
m-i= P

k
[a+P

α-k
(m-1)]  

==> P
k
|P

α
m-i  

Conversely,  

Let P
k 

divides P
α
m-i  

==>P
α
m-1 = aP

k
=P

α
-i  

==>aP
k 

= P
α
-i  

==>P
k
|P

α
-i  

Hence, all the powers of P cancel out except the power which divides m.  

Thus, P
r
|P

α
mCP

α 
but P

r+1∤Pα
mCP

α
.  

Let M be the set of all subsets of G which have P
α 

elements.  

Thus, M has P
α
mCPα elements. Given M1, M2 ∈ M. Since M is a subset of G having P

α 
elements on 

likewise M1 define M1~M2, if there exist an element g∈g such that m1=m2g. Now To prove the 

relation, „M‟ is an equivalence relation on M,  

1)Reflexive:  

Since M1=M1e ∴M1=M2. 

2)Symmetric:  

Let M1~M2 then M1=M2g where g∈G  

∴ M1g1 = M2                

∴there exist g
-1∈G such that M2=M2g-1 M2~M1  

3. Transitive:  

Let M1~M2 and M2~M3 ∴There exist g1∈G such that M1=M2g1 and 

g1∈G such that M2 =M3g2 =M3 
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M3g2g1 =M3(g2g1) =M3g ∴M1~M3 Hence the relation „~‟ is an equivalence relation.  

We claim that there is atleast on equivalent class of M such that the  

number of elements in the class is not a multiple of P
r+1 

for if P
r+1 

is a divisor of  

the size of each equivalence class then P
r+1 

is also a divisor of the number of  

elements in M, which is not possible.  

Since M has P
α
mCP

α 
elements and P

r+1 ∤Pα
mCP

α 
Let {M1, M2.....M n} be such an equivalence 

class in M where Pr+1 does  not divide n.  

By our definition of equivalence class in M, g∈G for each i=1,2,....n  

  Mig = Mi for some j, 1≤ j ≤ n  

Let H={g∈G/M1g=M1}  

Since g∈G, H is a subset of G  

To prove: H is a subgroup of G  

∴e∈H  

Hence H is non-empty.  

Let g1,g2∈H Then M1g1=M1 and M1g2=M1 

Now, M1(g1g2) =  M1g1)g2 = M1g2 = M1 

∴g1g2∈H  

∴ Closure is satisfied.  

Let g∈H then M1g=M1  

==>M1 = M1g-1  

==>g
-1∈H  

∴Inverse is also satisfied.  



17 
 

Hence H is a subgroup of G.  

Now we show that there exist a one-one correspondence between the  

equivalence class {M1,M2, ...............Mn} and the set of all right cosets of H in G={Hg/g∈H}.  

Let M1g1=M2g2  

<==>M1g1g2
-1

=M2  

<==>g1g2-1∈H  

<==>Hg1g2
-1

=H <==>Hg1=Hg2  

∴There exists a one-one correspondence between 

 thequivalence class and the set of all right coset of H in G.  

Hence G is a finite group and H is a subgroup of G.  

Then by Lagrange‟s theorem, o(G)
 
0(H)  

Again, by using 2
nd 

counting principle o(G)  

0(H) = the number of distinct right cosets
 
 

of H in G.  

Here the number of elements in the equivalence class in n,  

i.e, o(G) 0(H)
= 

n 

i.e, o(G)=n0(H)  

P
r+1∤Pα

mCPα and Pr+1∤n  

i.e, P
r+1∤ n0(H)  

It follows that P
α
| 0(H)  

==>0(H)≥ P
α
------------(3)  

Let if m1∈M1 and ∀ h∈H Then m1h∈H Thus, M1 has atleast order of H distinct element. However 

M1 is a subset containing P
α 

elements P
α
≥ 0(H)-----------(4)  

From equation (3) & (4)  

P
α
= 0(H)  

Hence, H is a subgroup of G having P
α 

elements.  

Hence the proof.  

COROLLARY: 

 If p
m

/o(G) and p
m+1

/o(G) then G has a subgroup of order p
m

. 

Proof: 
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     Suppose  p
m

/o(G)  p
m+1

/o(G)  

To prove : G has a subgroup of order p
m

. 

By using first part of sylow‟s theorem  

We get a subgroup of order p
m

. 

Definition: 

Let n(k) be defined by p
(k)

/p
(k)!  but p

n(k+1)
/p

(k)!. 

Definition : 

 subgroup of G of order p
m

 where p
m

/o(G)  but p
m+1

/o(G) is called a p sylow subgroup of G. 

Lemma 2.12.1  

 Prove that n(k) = 1+p+…….+ p
k-1 

Proof: 

         By the define of n(k), p
n(k)

/ p
(k)

  , but P
n(k)+1

/p
(k)

! 

          We know that 

    P! = 1.2……..(p-1)p 

Hence p/p! but p
2
 /p! if  k=1  then n(1) = 1 

Now p
(k)

 ! = 1.2…..2p….3p…..p
k-1

.p 

It is the expansion of p
(k)

! 

It is also the multiplies of p. 

Hence the powers of p dividing p
(k)

! 

N(k) must be the powers of p which divides (p) (2p) (3p)……(p
k-1

.p). 

(i.e) (p) (2p) (3p)…….. (p
k-1

.p) = p
i(k-1)

(p
k-1

j)! 

But n(k) = n(k-1) + p
k-1  

  

& also n(k-1) – n(k-2) = p
k-2 
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           N(k-2) – n(k-3) = p
k-3

 

            
 n(2) – n(1) = p

-1
 (i.e) n(1) =1. 

Adding these we get 

n(k)      =  p
k-1

 + p
k-2

 + …….+ 1 (i.e)  n(k) = 1 + p + ……..+p
k-1

 

 Hence the Lamma. 

Lemma 2.12.2 

Sp
k
 has a p-sylow subgroup 

proof: 

 If k=1 , then the element (1 2 ….p), is sp is of order p, so generated a subgroup of order p.  

since n(1)=1, suppose that the result is correct for k-1  

we  show that,it that must follow for k.Divide the integers 1,2,….,p
k
 into p. 

{1,2,….,p
k-1

},{p
k-1

+1,p
k-1

+2,….,2p
k-1

},….{(p-1)p
k-1 

+1,…p
k
}, 

The permutation 𝜍 defined by 𝜍 =(1,p
k-1

+1,2p
k-1

+1,…,(p-1)p
k-1

+1)…(j,p
k-1

+ j,2p
k-1

+j,…,(p-1)p
k-

1
+1,.. 

each pi is isomorphic to p1 so has order p
n(k-1)

 

 ∴ p=sylow subgroup of sp
k
. 

DEFINITION : 

                   Let G be a group,A,B two subgroups of G. if, x,y ∈ G defined x~ y if y = axb where 

a∈A,b∈B . 

 

Lemma : 2.12.3 

               The relation define above is an equivalence relation of G, the equivalence class x∈G is 

the set, AxB = { axb/a∈A,b∈B}. 
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Proof: 

           Here the set AxB is a double coset of a,b in G .Now to prove that the relation x~ y . 

    If  y=axb ,a∈A, b∈B is an equivalence relation. 

Reflextive : 

                  To prove x~x  

                   𝜌1∈ A , 𝜌2∈ B . We can write x as 𝜌1x𝜌2 

                     ∴ x ~ x. 

Symmetric : 

                 Let x ~ y 

To prove : y ~ x.  Here  x ~ y ,y can be written as y = axb ,a ∈A, b ∈ B 

a
-1 ∈ A, b

-1
 ∈ B,Now a

-1
yb

-1
 = a

-1
(axb)b

-1
 

                                               = (a
-1

a)x(bb
-1

) 

                                               = x. 

                    ∴ y ~ x. 

Transtive : 

                 Let x ~ y & y ~ z 

To prove : x ~ z 

             x ~ y 
.
  y = a1 x b1 

             y ~ z 
.
  z = a2 x b2,a1a2 ∈ A, b1b2 ∈ B 

                               = a2(a1 x b1) b2 

                               = (a2a1) x (b1b2) 

                               = c1 x c2 

               ∴ x ~ z. 

Here the given relation is an equivalence relation. 
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Definition : 

A subgroup of G of order p
m

 where p
m

/o(G)  but p
m+1

/o(G) is called a p sylow subgroup of G. 

Lemma:2.12.4: 

If A,B are finite subgroup of G then o(AxB)= o(A).o(B)/o(A∩xBx
-1

) 

proof;   

Given that Gis a finite group and A,B are finite subgroups of G. 

To  prove that : o(AxB)= o(a).o(b)/ o(A∩xBx
-1

) 

                       The set xBx
-1 

  is defined as 

xBx 
-1

={  xbx
-1

 /b ∈ B} 

                first we want to p.t xBx
-1

  is a subgroup  of G. 

              let xb1x
-1

,xb2x
-1

 ∈ xBx
-1

,b1,b2 ∈ B 

Now (xb1x
-1`

)(xb2x
-1

)  = xb1x
-1

,xb2x
-1

 

                                      = xb1(x
-1

x)b2x
-1 

 = xBx
-1 

[∴ b1b2∈B] 

 ∴ xBx
-1

 is a subgroup of G. 

Here, we get A and xBx
-1

 are two finite subgroup of G. 

Now, By using “First counting principle” 

“ If H & K are finite subgroup of G then o(HK) = o(H)o(K)/o(H∩K) 

we write, 

       o(AxBx
-1

)  = o(A).o(xBx
-1

)/ o(A∩xBx
-1

)  

(i.e) o(AxBx
-1

)  = o(A).o(B)/ o(A∩xBx
-1

)----------(1) [∴ o(xBx
-1

) = o(B)] 

Now to prove thato(AxBx
-1

) = o(AxB). 

consider the mapping f: AxB → AxBx
-1 

 such that f(axb) = axb
-1

, where a ∈ A,b ∈ B. 

To prove : f is ono-one and onto 

a1xb1,a2xb2 ∈ AxB 

To prove f is one-one and onto
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axb1,a2 xb2∈AxB 

  ∴ f(a1xb) = f(a2xb2) 

         a1xb1 = a2xb2 

f is one-one

Now to prove : f is onto

Let axbx
-1

 ∈ AxBx
-1

, where  a ∈ A, b ∈ 𝐵 a∈axb ∈AxB,

Here f(axb)=axbx
-1

Hence f is on to. 

Thus there is a onto corresponding between AxB & AxBx
-1 

                      ∴  o(AxB)=o(AxBx
-1)

 

Substituting in equation (1) we get , 

                o(AxBx
-1

)=[o(A).o(B)]/o(AՈxBx
-1

)→1 

                 o(AxB)=[o(A).0(B)]/o(AՈxB-1) 

            Hence proved. 

Lemma 2.12.5 

Let G be a finite group and suppose that G is a subgroup of the finite group M. suppose further 

that M has a sylow subgroup Q . Then G has a p-sylow subgroup p.In fact, p = G∩xQx
-1

 for 

some x ∈ M. 

Proof : 

suppose that p
m

/o(M) ,p
m+1∤o(M) , Q is a subgroup of M of order p

m. 

Let o(G) = p
n
t where p∤t   

By Lemma 2.12.4 
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p is a subgroup of G and has order p
n
 , the lemma is proved. 

THEOREM: 2.12.2 SECOND PART OF SYLOW’S THEOREM  

If G is a finite group, P is a prime and P
n
|O(G) but P

n+1
|O(G)then any two  

subgroup of G order P
n 

are conjugate.  

Proof:  

Let A,B be subgroup of G, each of order P
n 

where P
n
|O(G)  

but P
n+1∤O(G)-------(1)  

∴O(A) = O(B) = P
n 
 

To prove that A and B are conjugate in G.  

It is enough to prove that A=gBg
-1 

for some g∈G.  

Let if equation (1) is possible then A=xBx
-1 ∀x∈G  

Now we decompose G into double cosets of A and B.  

∴G can be written as G=∪AxB  

Now by using O(AxB) = O(A) O(B) ---------(2)  

O(A∩xBx
-1

) Here A and B are subgroups of G and O(A) = O(B) = P
n 

and also A∩xBx
-1 

is a  

proper subgroup of G if A≠ xBx
-1 ∀x∈G  

Then O(A∩xBx
-1

) = P
m 

where m<n  

∴ Equation (2) becomes O(AxB) = P
n
.P

m 
= P

2m-n 
 

P
m 

=P
n+(n-m) 

m<n  

==> n-m>0  

==> n-m≥1  
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The above relation P
n+1

|O(AxB) for every x.  

Since, O(G)=ΣO(AxB) which is a contradiction to our assumption that  

P
n+1∤O(G).  

Hence A=gBg
-1 

for some g∈G. Hence A and B are conjugate in G.  

Lemma 2.12.6 

The number of p-sylow subgroups in G equals o(G)/o(N(p)), Where p is any p-

sylow subgroup of G. In particular , this number is a divisor of o(G). 

Proof: 

      P-sylow  subgroups  for a given prime p, in G. 

Theorem: 2.12.3 THIRD PART OF SYLOW THEOREM: 

Prove that the number of p-sylow subgroups in G for a given prime is of the form 1+kp.

Proof:

Let p be a p.sylow subgroup of G

To prove that the number of p-sylow subgroup in G is of the form 1+kp where p is a p ime 

number .

Now, we decompose G is a double cosets of p and p .

Thus G=∪pxp 

By using theorem 2.12.14 

o(pxp)=[o(p).o(p)]/o(pՈxpx
-1

)----------(1) 

o(pxp)=(o(p))
2
/o(pՈxpx

-1
)------------------(2) 

Also o(G)  =  𝑜(pxp)------------------------(3)  [By eqn(1)] 

If p∩(xpx
-1

) ≠ p then p
n+1

/o(pxp0 
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where o(p) = p
n
--------------(4) 

Also, if x∈ N(p)  

then pxp = p(xp) 

              = p(px) = (pp)x 

(i.e) pxp = px. 

∴ u(pxp) = ∪px 

Since p < N(p),  𝑜(pxp𝑥∈𝑁(𝑝) ) = o(N(p)---------(5) 

eqn(5) becomes 

o(G) =  𝑜(pxp𝑥∈𝑁(𝑝) ) +  𝑜𝑥∉𝑁(𝑝) (pxp)-------(6) 

where each sum  runs over one element from each double cosets. 

If x∉N(p) then xpx
-1

 ≠ p 

   p∩xpx
-1

 < p 

  o(p∩xpx
-1

)/o(p) 

  o(p∩xpx
-1) 

= p
m

 where m<n 

Equation (3) becomes 

                      o(pxp)= p
n
p

m
/p

m
 where m<n, 

                      o(pxp)=p
n+(n-m) 

Since n-m> 0 𝑎𝑛𝑑 𝑛 − 𝑚 ≥ 1, if follows 

That p
n+1

/o (pxp) ∀x∉N(p) 

  P
n+1

/ 𝑜 𝑝𝑥𝑝 =𝑥∉𝑁(𝑝) p
n+1

. u  ---------(7) for some integer u 

              Using (5) and (7) in equation (6) we get 
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O(G)=o(N(p))+p
n+1

.u 

O(G)(o(N(p))=1+[p
n+1

.u]/o(N(p)) ----------(8) 

Since N(p) is subgroup of G and G is finite group 

By  Lagrange‟s theorem. 

o(G)/o(N(p)) and it is an integers. 

Since p is a p-sylow‟s subgroup of G and by defn p
n
/ o(G) and p

n+1
/ o(G) 

Hence p
n+1

 cannot divide o(N(p)). 

But, p
n+1

.u/o(N(p)) must be divisible by p. 

p
n+1

.u/o(N(p)) is of the form kp. 

where k is an integers. 

(i.e) p
n+1

.u/o(N(p)) = kp 

Eqn(8) becomes, 

o(G)/o(N(p)) = 1+ kp, 

Hence, the number of P- sylow‟s sub groups in G = 1+kp.     

UNIT II -    FIELDS, VECTORS SPACES, MODULES                                    18hrs                                        

Direct products – Finite abelian groups – Modules 

Chapter 2: Sections 2.13 and 2.14 [only theorem 2.14.1] 

Chapter 4: Section 4.5 

2.13 DIRECT PRODUCTS 

Section 2.13 GROUPS AND MODULES 

Introduction 
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             Let A and B be any two groups and consider the Cartesian product G = A × B of A and 

B.  

          G consist of all ordered pairs A,B. where a∈B,b∈B. In this way we define the product of  

(a1 ,b1) & (a2,b2) is (a1 ,b1) (a2,b2)= (a1 b1,a2b2).  Now we prove the Cartesian product G=A×B is a 

group. 

(i ) Closure 

     Let a1 ,b1 and a2 , b2 ∈ A×B =G Where a1 , a2  ∈ A and b1 , b2 ∈ B 

     Now , (a1 ,b1) . (a2 , b2) = (a1a2 b1b2) ∈ G  

                                          = A×B 

     Therefore closure is satisfied. 

(ii) Associative 

     Let (a1 ,b1) , (a2 , b2) , (a3 ,b3)  ∈ G = A×B 

  Consider,   (a1 ,b1)  [(a2 , b2) (a3 ,b3)] = (a1 ,b1) , (a2 a3 , b2 b3)= (a1a2 a3 ,b1b2 b3)------(1) 

 Similarly 

                [ (a1 ,b1) (a2 , b2) ]  (a3 ,b3) = (a1 a2 ,b1 b2) , ( a3 ,b3)= (a1a2 a3 , b1b2 b3)------(2) 

(iii) Identity 

         Let  e and f  be the identity elements of A and B respectively, 

     Now (a,b) (e,f) = (ae,bf) = (a,b) 

    Also (e,f) . (a,b) = (ea,fb) = (a,b) 

(iv) Inverse 

        Let   (𝑎1  ,b1) , (𝑎1
−1, 𝑏1

−1
)∈G 

Now    (𝑎1  ,b1) . (𝑎1
−1, 𝑏1

−1
)  =   (𝑎1 𝑎1

−1 . 𝑏1𝑏1
−1

)b 
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                                                = (e,f) 

Hence  G = A × B  is a group. 

Internal direct product 

      Let G be a group and N1,N2,N3…Nn   be the normal subgroups of G  such that, 

1) G = N1,N2,N3…Nn  .    

2) Given g∈G then g = m1,m2….mn where mi∈Ni in a unique way then we can say that G is 

the internal direct product of  N1,N2,N3…Nn . 

Result 

      If G is the internal direct product of the groups A and B then G is the internal direct product 

of  𝐴   and 𝐵   where 𝐴  ={(a,f)/a∈A} and {(e,b)/b∈B}. Here e and f are identity elements of A and 

B respectively. Also prove that , A ≅  𝐴  and B ≅ 𝐵     (or) 

If  G = A × B  then prove that,G= 𝐴   𝐵   

Proof: 

     Given ,  G = A × B 

 Where A and B are any two groups of G 

 To prove that,  A ≅  𝐴  and B ≅ 𝐵      

 Define a mapping ∅:A→ 𝐴   by ∅(a) = (a,f) for all a∈A 

Now to prove one to one , Let  ∅(a1)= ∅(a2) that is (a1,f) = (a2,f)  a1=a2  

Therefore   ∅ is one to one. 

Now to prove, ∅ is onto 

 Let, (a,f) ∈ 𝐴    a∈A  and f is the identity element of  𝐴   

Therefore ∅(a) = (a,f)  ,    Hence ∅ is onto 
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Now to prove, ∅ is homomorphism,  

Let, (a1,a2) ∈A then (i) (a1a2,f) = (a1,f) . (a2,f) that is ∅(a1,a2)= ∅(a1). ∅(a2) 

                                (ii) (a1+a2,f) = (a1,f) + (a2,f) that is ∅(a1+a2)= ∅(a1)+ ∅(a2) 

    Therefore  ∅  is homomorphism. Hence ,  A ≅  𝐴    

Similarly We can prove that  B ≅ 𝐵      

Next we want to prove that G is the internal direct product of  𝐴   and 𝐵   that is to prove that,                                      

  (i)  𝐴    is the normal subgroup of G and  𝐵    is the normal subgroup of G 
 

    (ii) Every element g∈ G can be written G=𝑎  𝑏  for all a∈A , b∈ 𝐵 ,𝑎 ∈ 𝐴 ,  𝑏   ∈ 𝐵  

Now to prove 𝐴  is the normal subgroup of G, Let  (a,f),(b,f) ∈ 𝐴  , 

 Now,  (a,f) . (b,f)
-1

 = (a,f) . (b
-1

,f) 

Therefore 𝐴   is a subgroup of G. since , 𝐴  ⊂ G=A × B and (a,f) ∈ 𝐴  that is (a,f) ∈G 

Therefore , 𝐴  ⊂ G   

Let, (a,b) ∈G and (a,f) ∈ 𝐴   

Now, (a,b) (a,f) (a,b)
-1

=(a,b) (a,f) (a
-1

b
-1

) 

                                   = (aaa
-1

, bfb
-1

)  

                                   = (ae, fbb
-1

) 

                                   = (a,f) ∈ 𝐴  

Therefore  𝐴   is normal subgroup of G 

Similarly 𝐵   is normal subgroup of G 

Hence we have an isomorphic copy  𝐴  of A and  𝐵   of B in G which is a normol subgroup of G. 
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Now we claim that G =𝐴   𝐵   for all g∈G is a uniquedecomposition in the form,  g = 𝑎  𝑏  . 

where, 𝑎  ∈ 𝐴  ,  𝑏 ∈ 𝐵   

Now, G= A × B 

 Let g∈ G , then g = (a,b), where  a∈A , b∈ 𝐵 

                              = (a,e).(f,b) 

Since, (a,e) ∈ 𝐴  and (f,b) ∈ 𝐵   

Therefore  g = 𝑎  𝑏   with 𝑎  =(a,e), 𝑏 =(f,b) that is  g  ∈ 𝐴 𝐵   

Now to prove, this representation is unique. 

Let G = 𝑥  𝑦   , where  𝑥   = (x,e) and 𝑦  = (f,y) then, 

          g = (x,e) . (f,y) 

             =(xf,ey) 

             =(x,y)  

But   g = 𝑎  𝑏   , Therefore, a=x and b=y 

Hence G is the internal direct product of 𝐴  and  𝐵   . 

Lemma 2,13.1 

     Suppose that G is the internal direct product of N1,N2…Nn then for i≠ j, Ni∩ Nj={e} and if     

a ∈Ni ,b∈Nj  then  ab=ba. 

Proof: 

Given that , G is the internal direct product of  N1,N2…Nn. 

Therefore N1,N2…Nn 

Where,  N1,N2…Nn  are normal subgroup of G. 

If g∈G then by definition of internal direct product of  g = m1,m2…mn in a unique way. 



31 
 

Where, mi⊆ Ni 

Now to prove Ni ∩ Nj={e} for all i≠ j  

Suppose that, x∈Ni ∩ Nj  x∈Ni  and x∈Nj then we can write „x‟ as                                                                                                                         

x =e1,e2…ei-1x ei+1+…ej…en---------(I) 

Where et  = e ,viewing x as an element in Ni . 

Similarly We can write, x as x=e1,e2…ei…ej-1xej+1…en-----------(II) 

Where et = e, viewing x as an element in Nj,   But, x as a unique representation in the form 

m1,m2…mn, Where m1 ∈ N1, m2  ∈ N2…mn∈ Nn 

From the equations (I) and (II) 

 The two decomposition in these form for „x‟ must coincide, the entry from Ni in each must be 

equal. In our first decomposition(I). This entry is „x‟ in the 2
nd

 decomposition 

Hence, x = e, Thus Ni∩ Nj={e} for all i≠ j  

Suppose  a ∈Ni ,b∈Nj  and i≠ j then aba
-1∈Nj and since Nj is the normal subgroup of G. 

 Thus,   aba
-1

b
-1∈Nj  ,(since 

,
b∈Nj  ,  b

-1∈Nj) 

Similarly, a
-1∈ Ni , ba

-1
b

-1∈ Ni , where aba
-1

b
-1∈ Ni,  

But then aba
-1

b
-1∈ Ni∩ Nj={e} 

                               aba
-1

b
-1

=e 

                              ab(ba)
-1

=e 

                             ab=e(ba) Hence the proof. 

Lemma 2.131 

      Let G be a group and suppose that G is the internal direct product of N1,N2…Nn. 

 Let T= N1×,N2×…×Nn . then G and T are isomorphic. 
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Proof: 

    Given that, G is the group and also G is the internal direct product of  N1,N2…Nn. 

Also given that, T = N1×,N2×…×Nn  

To prove, G and T are isomorphic. Define the mapping, ψ: T→G by ψ (b1,b2…bn) = b1,b2...bn 

Where, each bi∈ Ni ,i=1,2,…n.  We claim that ψ is the isomorphic of T onto G. 

Now to Prove , ψ is one to one. 

Let, x,y ∈ T then x = (a1,a2,…an) and y = (b1,b2…bn) such that, ψ (x) = ψ(y) 

                        ψ (a1,a2,…an) = ψ (b1,b2…bn) 

                         (a1,a2,…an) = (b1,b2…bn) 

                       xi = yi 

                         x = y  

        Therefore ψ is one to one. 

Now to prove , ψ is onto 

   Since ,G is the internal direct product of  N1,N2…Nn  and if x∈G then x = (a1,a2,…an) for some 

a1∈N1 , a2∈ N2,…an∈Nn. But then, 

              ψ (a1,a2,…an) = a1,a2,…an = x  ,Therefore ψ is onto 

   The mapping ψ is one to one by uniqueness of the representation of every element as a product 

of element of the form,  N1,N2…Nn  . For if, ψ (a1,a2,…an) = c1,c2,…cn. Where, ai∈ Ni, ci∈Ni . for  i 

= 1,2,…n.  

Then by definition of ψ , a1,a2,…an = c1,c2,…cn. 

                                                                            ai = ci ,     i=1,2…n.  

                                                 Thus ψ is one to one 
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Now to show that, ψ is a homomorphism of T onto G.  

If x (a1,a2,…an) , y = (b1,b2…bn) are the elements of T.  

            Then,  ψ (xy) = ψ [(a1,a2,…an)  (b1,b2…bn)] 

                                  = ψ (a1b1,a2b2,…anbn) 

                                  = a1b1,a2b2,…anbn            by lemma(2.13.1) 

                            aibj = bjai for i≠j 

 This gives, a1b1 . a2b2 …anbn =  a1a2…an . b1b2…bn 

   Therefore ψ (xy) = a1a2…an . b1b2…bn 

                                             = (a1,a2,…an)  (b1,b2…bn) 

                              = ψ (x).ψ (y) 

      That is  ψ (xy) = ψ (x).ψ (y) 

              Ψ is homomorphism. 

Hence, ψ is an isomorphism of  T onto G. 

Therefore G and T are isomorphic. 

2.14 FINITE ABELIAN GROUPS 

       A finite abelian group is a group satisfying the following equivalent conditions. 

(i) It is isomorphic to a direct product of finitely many finite cyclic groups. 

(ii) It is isomorphic to a direct product of abelian groups of prime power order. 

(iii) It is isomorphic to a direct product of cyclic groups of prime power order. 

Theorem 2.14.1 

Statement 
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          Every finite abelian group is the direct product of cyclic groups 

Proof: 

     Every finite abelian group G is finitely generated 

  Hence it is generated by the finite set consisting of all its elements. 

  Therefore Applying this theorem,  

Let R be a Euclidean Ring, then any finitely generated R-Module, M is the direct sum  of the finite 

number of cyclic sub-modules. 

Proof: 

Let M be the finitely generated R-Module. To prove that the theorem for ring of integers. Since the ring 

of integers is also a Euclidean ring. Hence we assume that M is an abelian group which has a finite 

generating set. 

Now we prove the theorem by the induction on the rank of M. 

Step-1: If the rank of M is one. Then M is generated has a single element. 

∴ M is cyclic, Hence the theorem is proved for rank one. 

Step-2: Let us assume that the theorem is proved for all abelian group of rank less than q. 

That is the result is true for all abelian groups of rank for r-1, Hence any R-Module where rank is q-1 is 

the direct sum of finite number of cyclic sub-module. 

Step-3: Now we prove the theorem for rank M = q. Let a1, a2…. aq be the minimal generating set of M.  

If any relation of the form r1a1+r2a2+….+rqaq = 0. Where r1, r2…. rq are integers then r1a1 = 0, r2a2 = 

0….rqaq = 0. Hence M is the direct sum of  M1, M2… Mq, where each Mi is the cyclic sub-

Module generated by ai. 

Step-4: Let us assume that given any minimal generating set b1, b2…. bq of M must be integers r1, 

r2…. rq such that r1b1+r2b2+….+rqbq = 0 and in which not all r1a1, r2a2,….,rqaq are zero. 
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Among all possible such relations for all minimal generating set, there is a smallest possible +ve 

integers occurring as coefficient. Let this integer be s1 and let the generating set for which if 

occurs be a1, a2…. aq thus  s1a1+s2a2+….+sqaq = 0.--------(1) 

We claim that if r1a1+r2a2+….+rqaq = 0. ------------(2)  

if  not r1 = ms1 + t ------------(3) where 0≤t≤s1. 

Now (1) multiplying by m and subtracting from eqn. (2) we get 

(2)-(1)Xm    (r1-ms1)a1 +……+(rq-msq)aq = 0. 

That is ta1+(r2-ms2)a2 +……+(rq-msq)aq = 0. Since t<s1 and s1 is the smallest possible +ve integer in such 

a relation. We must have t=0. 

∴eqn.(3) becomes r1 = ms1, therefore s1/n. 

Now we claim that s1/si for I = 1,2….q 

Suppose not then s1 does not divide s2, therefore s2 = m2s1 + t ---------(A), where 0≤t<s1 . 

Now a1
1
 = a1+m2a2, a2, a3, …. aq is also generated by m. Hence  we have from eqn. (1) 

s1a1+s2a2+….+sqaq = 0 

i.e., s1(a1
1
-m2a2)+s2a2+….+sqaq = 0 

i.e., s1a1
1
-s1m2a2+s2a2+…..+sqaq = 0 

i.e., s1a1
1
-(s2-s1m2)a2+….+sqaq = 0 

i.e., s1a1
1
 +ta2+……+sqaq = 0 (by using (4)) 

Thus t occurs us a coefficient in some relation among elements of a minimal generating set. ∴ 

By the very choice of s1 that t = 0. Hence s2 = m2s1   s1/s2. 

Similarly for the other si, hence we write si = ms1 and also s1/si , i=1,2,3….q 

Consider the elements a1
*
= a1+m2a2+m3a3+….+mqaq, a2,…,aq where a2,a3,…,aq generate M. 

Moreover, s1a1
*
= s1a1+ s1m2a2+ s1m3a3+….+ s1mqaq = s1a1+s2a2+….+sqaq . 
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If r1 a1
*
+r2a2+…..+rqaq = 0. Substitute for a1

*
, we get 

r1( a1+m2a2+m3a3+….+mqaq )+r2a2+…..+rqaq = 0. r1a1+(r1m2+r2)a2+…..+(r1mq+rq)aq = 0. 

Therefore the coefficient of a1 is r1, hence r1a1
*
 = 0. 

If M1 is the cyclic sub-module generated by a1
*
 and M2 is the sub-module  of M generated by a2, 

a3,…,aq. We have  M1∪M2 = {e} and M1+M2
 
= M. since a1

*
,a2,a3,…,aq generate M and M is the 

direct sum of M1 and M2. Since M2 is the sub-module generated by a2,a3,…,aq and its rank is 

atmost q-1. Hence by induction hypothesis M2 is the direct sum of cyclic sub-modules. 

Since M1 is the cyclic sub-modules generated by a1
*
 and hence M is the direct sum of cyclic 

sub-modules M1 & M2 whose rank is q. Now the proof can be modified to the Euclidean ring R 

as follows. Instead of taking s1, let us take the elements of the ring R, whose value is maximal 

and whenever we take of t , where r1 = ms1+t either t=0 or d(t)<d(s) 

Hence the Euclidean ring  R-Module is the direct sum of finite number of cyclic sub-module. 

We get any finite abelian group is the direct product of cyclic group. 

Section 4.5 

Modules 

    Let R be any ring. A non-empty set M is said to be an R-Module over R. If M is an abelian 

group under the operation „+‟ such that for every r∈ 𝑅 ,  m∈ 𝑀 there exist an element rm in M 

subject to  

(i) r(a+b) = r(a) + r(b) 

(ii) r(sa) = (rs)a    

(iii) (r+s)a = ra +sa      for all a,b ∈ M,  r,s ∈ R 

Unital R-Module: 

      If R has a unit element one and if 1.m = m for every element m in M. Then M is called a 

unital R-Module. 

Definition: 
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    An additive subgroup A of the R-Module is called sub-module of M, if whenever r∈ 𝑅, a∈ 𝐴, 

ra∈ 𝐴. 

Examples: 

(i) Every abelian group G is a module over the ring of integers. 

(ii) Let R be any ring and let M be the left idle of R. Then M is an R-Module. 

Definition: 

     If M is an R-Module and if M1,  M2, …. Ms are the sub-module of M, then M is said to be 

the direct sum of M1,  M2, …. Ms 

 i.e.,  M = M1⊕  M2⊕ ….⊕ Ms, if every element m∈ 𝑀 can be written in a unique manner as  

m1+m2+ …. +ms, where m1∈M1, m2∈M2 ….. ms∈Ms. 

Definition: 

      An R-Module is said to be cyclic if there is an element m0∈M, such that every m∈M is of the 

form m = rm0 where r∈ 𝑅. 

Definition: 

     An R-Module is said to be finitely generated if there exist elements a1, a2, …..an ∈M, such 

that every M is of the form r1a1+r2a2+….+rnan . 

 Definition: 

    If M is finitely generated R-Module. Then a generating set having a few elements as possible is called 

the minimal generating set. 

Definition: 

    The number of elements in a minimal generating set is called rank of M. 

Result: 

Prove that the intersection of two sub-Modules is again a Sub-Module. 

Proof: 
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    Let M be an R-Module and s1 and s2 be the sub-modules of M. 

To prove that s1∩s2 is a subset of M, we have, s1∩s2 ≠ ∅. 

We know that s1∩s2  is a additive subgroup of M. (since the number of two subgroups is again a 

subgroup)  

Let a,b ∈ s1∩s2   a ∈ s1  , a∈ s2 and b ∈ s1  , b∈ s2. 

Therefore (a,b)  ∈ s1  ∩ s2 

Therefore (s1, +) & (s2, +) is a additive subgroup. 

Let r ∈R and s ∈ s1∩s2   r ∈ R   and s ∈ s1  and s∈ s2. 

      rs ∈ s1   and rs ∈ s2. 

      rs ∈ s1∩s2, Therefore  s1∩s2 is sub-module. 

Theorem:4.5.1: Fundamental theorem on finitely generated R-Module. 

   Let R be a Euclidean Ring, then any finitely generated R-Module, M is the direct sum  of the finite 

number of cyclic sub-modules. 

Proof: 

Let M be the finitely generated R-Module. To prove that the theorem for ring of integers. Since the ring 

of integers is also a Euclidean ring. Hence we assume that M is an abelian group which has a finite 

generating set. 

Now we prove the theorem by the induction on the rank of M. 

Step-1: If the rank of M is one. Then M is generated has a single element. 

∴ M is cyclic, Hence the theorem is proved for rank one. 

Step-2: Let us assume that the theorem is proved for all abelian group of rank less than q. 

That is the result is true for all abelian groups of rank for r-1, Hence any R-Module where rank is q-1 is 

the direct sum of finite number of cyclic sub-module. 
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Step-3: Now we prove the theorem for rank M = q. Let a1, a2…. aq be the minimal generating set of M.  

If any relation of the form r1a1+r2a2+….+rqaq = 0. Where r1, r2…. rq are integers then r1a1 = 0, r2a2 = 

0….rqaq = 0. Hence M is the direct sum of  M1, M2… Mq, where  each  Mi is the cyclic sub-

Module generated by ai. 

Step-4: Let us assume that given any minimal generating set b1, b2…. bq of M must be integers r1, 

r2…. rq such that r1b1+r2b2+….+rqbq = 0 and in which not all r1a1, r2a2,….,rqaq are zero. 

Among all possible such relations for all minimal generating set, there is a smallest possible +ve 

integers occurring as coefficient. Let this integer be s1 and let the generating set for which if 

occurs be a1, a2…. aq thus  s1a1+s2a2+….+sqaq = 0.--------(1) 

We claim that if r1a1+r2a2+….+rqaq = 0. ------------(2)  

if  not r1 = ms1 + t ------------(3) where 0≤t≤s1. 

Now (1) multiplying by m and subtracting from eqn. (2) we get 

(2)-(1)Xm    (r1-ms1)a1 +……+(rq-msq)aq = 0. 

That is ta1+(r2-ms2)a2 +……+(rq-msq)aq = 0. Since t<s1 and s1 is the smallest possible +ve integer in such 

a relation. We must have t=0. 

∴eqn.(3) becomes r1 = ms1, therefore s1/n. 

Now we claim that s1/si for I = 1,2….q 

Suppose not then s1 does not divide s2, therefore s2 = m2s1 + t ---------(A), where 0≤t<s1 . 

Now a1
1
 = a1+m2a2, a2, a3, …. aq is also generated by m. Hence  we have from eqn. (1) 

s1a1+s2a2+….+sqaq = 0 

i.e., s1(a1
1
-m2a2)+s2a2+….+sqaq = 0 

i.e., s1a1
1
-s1m2a2+s2a2+…..+sqaq = 0 

i.e., s1a1
1
-(s2-s1m2)a2+….+sqaq = 0 

i.e., s1a1
1
 +ta2+……+sqaq = 0 (by using (4)) 
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Thus t occurs us a coefficient in some relation among elements of a minimal generating set. ∴ 

By the very choice of s1 that t = 0. Hence s2 = m2s1   s1/s2. 

Similarly for the other si, hence we write si = ms1 and also s1/si , i=1,2,3….q 

Consider the elements a1
*
= a1+m2a2+m3a3+….+mqaq, a2,…,aq where a2,a3,…,aq generate M. 

Moreover, s1a1
*
= s1a1+ s1m2a2+ s1m3a3+….+ s1mqaq = s1a1+s2a2+….+sqaq . 

If r1 a1
*
+r2a2+…..+rqaq = 0. Substitute for a1

*
, we get 

r1( a1+m2a2+m3a3+….+mqaq )+r2a2+…..+rqaq = 0. r1a1+(r1m2+r2)a2+…..+(r1mq+rq)aq = 0. 

Therefore the coefficient of a1 is r1, hence r1a1
*
 = 0. 

If M1 is the cyclic sub-module generated by a1
*
 and M2 is the sub-module  of M generated by a2, 

a3,…,aq. We have  M1∪M2 = {e} and M1+M2
 
= M. since a1

*
,a2,a3,…,aq generate M and M is the 

direct sum of M1 and M2. Since M2 is the sub-module generated by a2,a3,…,aq and its rank is 

atmost q-1. Hence by induction hypothesis M2 is the direct sum of cyclic sub-modules. 

Since M1 is the cyclic sub-modules generated by a1
*
 and hence M is the direct sum of cyclic 

sub-modules M1 & M2 whose rank is q. Now the proof can be modified to the Euclidean ring R 

as follows. Instead of taking s1, let us take the elements of the ring R, whose value is maximal 

and whenever we take of t , where r1 = ms1+t either t=0 or d(t)<d(s) 

Hence the Euclidean ring  R-Module is the direct sum of finite number of cyclic sub-module. 

Corollary: Fundamental theorem on finite abelian groups: 

Statement: 

    Any finite abelian group is the direct product of cyclic groups. 

Proof: 

    Every finite abelian group G is finitely generated. Hence it is generated by the finite set 

consisting of all its elements. Therefore applying the theorem of Fundamental theorem on finitely 

generated  R-Module. Hence Any finite abelian  group is the direct product of cyclic groups. 
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UNIT - III - LINEAR TRANSFORMATIONS            18hrs    

Solvability by Radicals - Galois groups over the Rationals  

Chapter 5: Sections: 5.7 and 5.8 

5.7 Solvability by radicals: 

Solvable: 

    A graph G is said to be solvable if we can find a finite chain of subgroups N0 ⊃N1 ⊃N2 … 

⊃Nk = {e} where Ni is a normal subgroup of Ni-1 and such that every factor group 
𝑁𝑖−1

𝑁𝑖
 is 

abelian. 

Result: 

Prove that abelian group is solvable. 

Proof: 

Let G be am abelian group . To prove that G is solvable. 

We take N0=G and N1={e} such that G= N0 ⊃N1 = {e}. To prove N1 is a normal subgroup N0 = 

G. Let g∈G, Now geg
-1

 = (gg
-1

)e = ee= e ∈G. Therefore gg
-1∈N1.  

Hence N1 is a normal subgroup of N0=G. Now to prove 
𝑁0

𝑁1
  is abelian. Here the factor group 

𝑁0

𝑁1
 = 

𝐺

{𝑒}
    = {ex=xe/x∈G}. Since G is abelian, 

𝑁0

𝑁1
 is abelian. Hence G is solvable. 

Every abelian is solvable. 

Definition: 

    Let G be a group and the elements a,b∈G, then the commutator of a and bis the elements  

a
-1

, b
-1

, ab. 

Definition: 

    The commutator subgroup G‟of G is the subgroup of G generated by all the commutators in G. 

Result: 

Prove that the commutator subgroup G‟ is a subgroup of G. 

Proof: 

Let G be a group and S = { a
-1

b
-1

ab such that a,b∈G} the commutator subgroup 
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G‟ = {S1, S2 …. Sm   / Si ∈G}, M is arbitrary.  Let s∈S then  S =  a
-1

 b
-1

 ab for some a,b∈G. 

Consider  (a
-1

 b
-1

 ab)
-1

 = b
-1

 a
-1

 ba ∈S 

No to prove G‟ is a subgroup of G, Let x,y ∈G‟ then x = S1, S2 …. Sm,  Si ∈S, m is arbitrary and 

y = S1‟, S2‟ …. Sn‟,  Si‟ ∈S, n is arbitrary. 

Consider, xy
-1

=  (S1, S2 …. Sm)( S1‟, S2‟ …. Sn‟)
-1

 = (S1, S2 …. Sm)( S1‟
-1

, S2‟
-1

 …. Sn‟
-1

) 

Therefore  xy
-1

 is a finite product of finite number of elements of S. 

Therefore xy
-1

 is a finite product of finite number of elements of G. 

∴ xy
-1∈G‟, Hence G‟ is a subgroup of G. 

Result: 

Prove that the commutator subgroup  G‟ is a normal subgroup of G. 

Proof: 

 Let G be a group and G‟ be the commutator subgroup of G. Let x∈G and a∈G‟ 

Consider, xax
-1

 = (xax
-1

)(a
-1

a) 

                         = (xax
-1

 a
-1

)a ∈G‟ 

By lemma(1), xax
-1

 a
-1∈S and s∈G‟ 

Hence G‟ is a normal subgroup of G. 

Result: 

    Let G be a group and G‟ be a commutator subgroup of G, then  

(i) G/G‟ is abelian 

(ii)If H is any normal subgroup of G such that G/H is a abelian than G‟ϹH. 

Proof: 

    Given G is a group and G‟ is the commutator subgroup of G. 

i) To prove: G/G‟ is abelian. since G‟ is normal in G, G/G‟ is a factor group and G/G‟: 

{aG‟/a∈G}. 

Let aG‟,bG‟∈
𝐺

𝐺′
, where a,b∈G 
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Now, aG‟.bG‟ = abG‟, bG‟.aG‟= baG‟  --------(1) 

Now consider ( ab)
-1

ba ∈G‟ 

      ( ab)
-1

ba G‟= G‟→ baG‟ = G‟(ab) →  baG‟ = abG 

Therefore  bG‟.aG‟= aG‟.bG‟ 

Hence G/G‟ is abelian. 

ii) Let G/H is a abelian 

To prove G‟ ⊂H 

since G/H is a abelian 

aH .bH=bH.aH   → abH = baH → (ba)
-1

 (ab) H = H 

→ (ba)
-1

 (ab) H ∈H 

∴a
-1

b
-1

ab∈H 

therefore H contains all the elements of the form a
-1

b
-1

a. 

Hence G‟ ⊂H. 

Lemma-5.7.1: 

G is solvable ↔ G
(k)

 = {e} for some integer k. 

Proof: 

Necessary part: 

Let G
(k)

 = {e} 

To prove G is solvable 

Let N0 = G, N1 = G
1
, N2= G

(2)
 ….. Nk = G

(k)
 = {e} we have

 
 G=N0 ⊂N1  ⊂ N2 …..⊂ Nk = {e} 

where each Ni is normal in G. By lemma (2) G
(i+1) 

 is a normal subgroup of G
(i)

  . Therefore 
𝑁𝑖+1

𝑁𝑖
 

= 
𝐺(𝑖−1)

𝐺(𝑖)
 =  

𝐺(𝑖−1)

𝐺(𝑖−1)1  

By lemma 3, 
𝐺(𝑖)

𝐺(𝑖+1) is an abelian group. 

Hence G is solvable. 
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Sufficient part: 

Let G be a solvable group, To prove G
(k)

 = {e} 

Since G is solvable there exist a chain G= N0 ∁ N1  ∁ N2 …..∁ Nk = {e} and Ni is a normal 

subgroup Ni-1 and also  
𝑁𝑖−1

𝑁𝑖
 is abelian. But then commutator subgroup (Ni-1)‟ must be contained  

in Ni. 

i.e., Ni-1 ⊂Ni. 

Thus, NiכN0‟ 

N2  כ  N1‟ = (G‟)‟ = G
(2)

 …… Nk      כNk-1 = G
(k)

 -------(1) 

Also Nk = {e} Eqn (1) which implies G
(k)

 = {e}. 

Hence the theorem. 

Corollary: 

    If G is a solvable group and 𝐺  is homomorphism image of G, then 𝐺  is solvable. Prove that 

homomorphic image of solvable group is solvable.  

Proof: 

Let ∅:G→ 𝐺  be a onto homomorphism 

Let S = { a
-1

b
-1

ab/  a,b∈G} and G‟ = { s1 , s2 …. sm / si∈S, m is arbitrary} 

Let 𝑆  = {𝑎 −1𝑏 −1𝑎 𝑏  / 𝑎 𝑏  ∈ 𝐺 } 

𝐺 ‟ = {𝑠1 , 𝑠2 ….𝑠𝑛 / 𝑠𝑖 ∈ 𝑆  , 𝑛 is arbitrary} 

To prove: ∅(S) = 𝑆  

Let s∈S, then S = a
-1

b
-1

ab where a,b∈G 

Now, ∅(S) = ∅( a
-1

b
-1

ab) 

                   = ∅(a
-1

) ∅(b
 -1

) ∅(a) ∅(a) 

                   = (∅(a
-1

))
-1 (∅(b

 -1
))

-1∅(a) ∅(b) 

                   = 𝑎 −1𝑏 −1𝑎 𝑏   

∅(S) ∈ 𝑆        --------  (1) 
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Let  (𝑎)   −1(𝑏 )−1𝑎 𝑏  ∈ 𝑆 , where 𝑎 𝑏  ∈ 𝐺  

since  ∅ is onto there exist a,b ∈G such that  ∅(a) = 𝑎 , ∅(b) = 𝑏  

Now(𝑎)   −1(𝑏 )−1𝑎 𝑏  = (∅(a
-1

))
-1 (∅(b

 -1
))

-1∅(a) ∅(b) 

                                = ∅( a
-1

b
-1

ab) ∈ ∅(S) 

∴ 𝑆  ∁ ∅(S) --------(2) 

From (1) and (2)   ∅(S) = 𝑆  

Now to prove ∅(G‟) = 𝐺 ′ 

Let s1 , s2 …. sm ∈G‟,  si ∈S, m is arbitrary. 

Now ∅( s1 , s2 …. sm) = ∅(s1 ) ∅(s2 )…. ∅(sm) 

                                   = 𝑠1 , 𝑠2 ….𝑠𝑚    ∈ 𝐺 ′ 

∅(G‟)  ⊂ 𝐺 ′  --------(3) 

Now to prove 𝐺 ′  ∁ ∅(G‟) 

Let 𝑥 =  𝑠1 , 𝑠2 ….𝑠𝑚    ∈ 𝐺 ′ 

since ∅ is onto there exist si∈S, such that ∅(si)= 𝑠𝑖 , 

Let x = s1 , s2 …. sm ∈G‟ 

∅(x) = ∅( s1 , s2 …. sm) = 𝑠1 , 𝑠2 ….𝑠𝑚     

𝐺 ′  ⊃ ∅(G‟) --------- (4) 

From (3) and (4) ∅(G‟)  =  𝐺 ′ 

Hence 𝐺 ′ is a homomorphic image of  G
(1)

. implies that (𝐺 ′)‟ is a homomorphic image of 

G
(2)

….(𝐺   (𝑘−1))‟is a homomorphic image of G
(k)

 

Also (G
(k)

)‟ = {𝑒 } where 𝑒  is the identity element of 𝐺  

A group G is solvable G
(k)

 = {e}. Here  𝐺  is a homomorphic image of G and also 𝐺 (k)
 is the 

image of G
(k)

. 

Hence  𝐺  is solvable. 
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Result: 

Prove that subgroup of a solvable group is solvable. 

Proof: 

Let G be a solvable group and H its subgroup. 

To prove that H is solvable 

Since G is solvable, then by definition of solvable group 

(i) G =  G= N0 ⊃N1 …. ⊃Nk= {e} 

(ii) Ni is normal subgroup of Ni-1 

(iii)   
𝑁𝑖−1

𝑁𝑖
 is an abelian group, here G =  G= N0 ⊃N1 …. Ͻ⊃k= {e} 

Now, H∩G = H∩N0 ⊃H∩N1 …. ⊃H∩Nk = {e} 

i.e., H = H0 ⊃H1 …. ⊃Hk = {e} 

Let H∩Ni = Hi ∀ i, we know that Ni is a normal subgroup of Ni-1, then H∩Ni  is a normal 

subgroup of H∩Ni-1. 

Implies that Hi is a normal subgroup of Hi-1. 

Now, let us define the mapping F: Hi→
𝑁𝑖−1

𝑁𝑖
, f(x) = xNi+1, ∀ x∈Hi 

To prove F is well defined 

Here Hi = H∩Ni ⊂ Ni, ∴ Hi  ⊂Ni. 

Let x∈Hi implies that x∈Ni. 

Therefore xNi+1∈
𝑁𝑖

𝑁𝑖+1
, 

∴ f is well defined. 

Now to prove f is homomorphism 

Let x,y ∈ Hi 

i) f(x+y) = (x+y) Ni+1 = x Ni+1 +y Ni+1 = f(x) +f(y). 

ii) f(xy) = (xy) Ni+1 = (x Ni+1)(y Ni+1) = f(x)f(y). 

Now to prove f is onto  

xNi+1∈
𝑁𝑖

𝑁𝑖+1
  x∈Ni. 
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                       x∈H∩Ni     x∈Hi. 

∴ f(x) = xNi+1 

Now to prove kerf = Hi+1 , ∀i 

We know that kerf = {  x∈Hi/ f(x) = Ni+1 } 

Let x∈kerf ⇔  f(x) = Ni+1 ⇔ xNi+1 = Ni+1 ⇔ x∈Ni+1 ⇔ x∈H∩ Ni+1 

                  ⇔ x∈Hi+1 ⇔ kerf = Hi+1 

Hence f is a onto homomorphism. 

i.e.,f:Hi →onto 
𝑁𝑖

𝑁𝑖+1
, homomorphism with kerf = Hi+1, By using fundamental theorem of 

homomorphism 
𝐻𝑖

𝐻𝑖+1
≅

𝑁𝑖

𝑁𝑖+1
, Here 

𝑁𝑖

𝑁𝑖+1
 and  

𝐻𝑖

𝐻𝑖+1
 is an abelian group. 

Hence H is an solvable group. 

Lemma 5.7.2: 

Prove that if G = Sn, where n≥5 then G
(k)

 for k =1,2…. Contains every  3- cycle of Sn. 

Proof: 

Let G = Sn, n≥5, to prove G
(k)

 for k =1,2…. Contains every  3 cycle of Sn. 

We know that if N‟ is a normal subgroupof G then N‟ must also be a normal subgroup of G. 

Step-1: 

We claim that if N is a normal subgroup of G = Sn , where  n≥5  which contains evry 3-cycle 

in Sn. 

Suppose a= (1,2,3),  b = (1,4,5) are in N. Then  a
-1

 =     1   2    3    =       3    2    1 

                                                                                         3   1    2  

Also b =     1    4    5          b
-1

  =     1     4    5 

                   4    5    1                       5     4    1 

Then,  a
-1

b
-1

ab   =     1     2     3           1    4     5               1     2    3              1    4     5 

                                      3     1     2           5    1     4               2     3    1              4    5     1 

                              =      1    2    3    4    5            =     1    4    2     is  a commutators of elements   
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                                      4    1    3    2    5           

Of  N must be in N‟. since N‟ is a normal subgroup of G equal to Sn for any 𝜋 ∈ Sn, 

 𝜋−1(1   4   2)𝜋 must also be in N‟. 

∴ 𝜋−1(1   4   2)𝜋 ⊂N‟. Now let i1, i2, i3 be three distinct integer in the range from i=1,2,3…. n.  

To prove i1, i2, i3 ∈ 𝑁‟,  i.e., To prove  𝜋−1(1   4   2)𝜋 = (i1, i2, i3) is in N‟.  

Since i1, i2, i3 are 3-cycle in Sn. Choose 𝜋 ∈Sn such that 𝜋(1) = i1, 𝜋(4) = i2, 𝜋(2) = i3, where (i1, 

i2, i3) are 3 distinct ineger range from i = 1,2,3 ….. 

Step-2: 

Let G = Sn which is normal in G and contains all the 3-cycle in G. Also we have N‟ = G‟, N‟ 

contains every 3-cycle of Sn, we have G‟ also contains every 3-cycle of Sn. 

Now , (G‟)
(1)

 = G
(2)

 contains every 3-cycle of Sn.  Since G
(2)

 is normal in G, G
(2)

 containing 

every 3-cycle of Sn. Also, (G
(2)

)
(1)

 = G
(3)

 is normal in G, G
(3)

 containing in this way we get G
(k) 

 

contains every 3-cycle of Sn  for arbitrary k. 

Theorem: 5.7.1: 

Prove that Sn is not solvable for n≥5. 

Proof: 

Let G = Sn, where  n≥5,  

Then by using lemma 5.7.2 ,  G
(k) 

 contains every 3-cycle of Sn    

Hence G = Sn is not solvable for n≥5. 

SECTION 5.8 GALOIS GROUPS OVER THE RATIONALS 

In Theorem, Let )()( xFxf  be of degree 1n . Then there is an E of F of degree at most n! in 

which f(x) has n roots. We saw that given a field F and a polynomial p(x) over F has degree at 

most n! over F. In the preceding section we saw that this upper limit of n! is indeed, taken on for 

some choice of F and some polynomial p(x) of degree n over F. In fact, if F0 is any field and if F 



49 
 

is the field of rational functions in the variables a1, a2,…..an over F0, it was shown that the 

splitting field K, of the polynomial p(x) = x
n
 + a1x

n-1
 + ….+an over F has degree exactly n! over 

F. Moreover, it was shown that the Galois group of K over F is Sn, the symmetric group of 

degree n. This turned out to be the basis for the fact that the general polynomial of degree n, with 

5n , is not solvable by radicals. 

We shall make use of the fact that polynomials with rational coefficients have their roots in the 

complex field  

Theorem 5.8  

Let q(x) is an irreducible polynomial of degree p, p a prime, over the field Q of rational 

numbers. Suppose that q(x) has exactly two non real roots in the field of complex numbers then 

the Galois group of q(x) over Q is Sp, the symmetric group of degree p. Thus the splitting field of 

q(x) over Q has degree p over Q 

Proof: Let K be the splitting field of the polynomial q(x) over Q 

If  is a root of q(x) in K, since q(x) is irreducible over 2, then by theorem 5.1.3 [Q( ) : Q] = p 

Since QQK  )(  and according to theorem 5.1.1 

[K : Q] = [K : Q( )] [Q( ) : Q] = [K : Q( )]p 

By theorem 5.6.4 O(G) = [K : F]. Thus  p / O(G) 

Hence by Cauchy‟s theorem, G has an element  of order p to this point we have not used our 

hypothesis that q(x) has exactly two non real roots. We use it now 21, are these non-real roots, 

then 1221 ,    where the bar denotes the complex conjugate. 

If p ,.......3 are the other roots since they are real 3,1  ii   

Thus the complex conjugate mapping takes K into itself, is an automorphism  of K over Q and 

interchanges 21, leaving the other roots of q(x) fixed. 

Now the elements of G take roots of q(x) into roots of q(x). So induces permutations of 

p ,....., 21   

In this way we imbed G in Sp. The automorphism  described above is the transposition (1, 2) 

Since 3,)( and,)(,)( 1221  iii     

What about the element G . Which we mentioned above has order p? As an element of Sp. 

has order p, but the only elements of order p in Sp are p cycles. Thus S must be a p cycles 
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Therefore G has a subgroup of Sp contains a transposition and p cycles 

To prove that any transposition and only p cycles in Sp generates Sp. Thus   and  genetrates Sp, 

but since they are in G, the group generated by    and  must be in G. G = Sp 

In otherwords, the Galois group of q(x) over Q indeed Sp 

 

UNIT - IV - LINEAR TRANSFORMATIONS                                                   18hrs      

Linear Transformations: Canonical forms- Triangular form -Nilpotent transformations. 

-Jordan form 

Chapter 6: Sections 6.4, 6.5, 6.6  

SECTION 6.4 

CANONICAL FORM AND TRIANGULAR FORM 

Definition: Linear Transformation 

 Let V be a vector space over a field F a mapping VVT : is called a Linear 

transformation. If it satisfies the following conditions 

(i) )()()( 2121 vTvTTvv   

(ii) )()( TvvT    

Note: Hom(V, V) is the set of all homomorphism of V into itself and Hom(V, V) is a vector space 

and it is denoted by A(V) and it is the set of all linear transformation from V to V 

Definition: Matrices 

 Let V be an n-dimensional vector space over a field F. Let },.......,{ 21 nvvv be a basis of V 

over F. If )(VAT  then T is determined by any vectors depends on the basis of V. Since 

)(VAT  , )(......),(),( 21 nvTvTvT  are belonging to V 

FvvvvT

vvvvT

vvvvT

ijnnnnnn

nn

nn













 where,.......)(.

..........

.......)(

.......)(

2211

22221212

12121111
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This system of linear equation can be written as nivvT
n

j

jiji .....,2,1,)(
1




 . Then the matrix 

of T is the basis },.......,{ 21 nvvv is written as 























nnnn

n

n

Tm







....

.....

....

....

)(

21

22221

11211

 

Invariant: Let W be the subspace of a vector V over F. Suppose W is invariant under the 

transformation )(VAT   if  WTW )(  

Invertible (or) Regular: An element )(VAT   is said to be invertible (or) regular. If there exist 

an element )(VAS  such that ST = TS = 1 

Similar Linear Transformation: The Linear transformation )(, VATS  is said to be similar 

transformation if there exist an invertible element )(VAC such that 
1CSCT  then we say 

that S and T are similar to each other 

Similar matrices: Let nF  be the set of all nxn matrices over F. The matrices nFBA ,  are said 

to similar if there exist an invertible matrix nFC  such that 
1CACB  

Minimal Polynomial: Let V be a n-dimensional vector space over F than for any element 

)(VAT   there exist a non-trivial polynomial )()( xFxq  such that q(T) = 0 

A non-trivial polynomial of lowest degree satisfying this property is called the minimal 

polynomial of T over F 

Result: If p(x) is the minimal polynomial of T and if T satisfies )()( xFxh  then p(x) is the 

divisor of h(x) 

Proof: Given that p(x) is the minimal polynomial of T. 

Therefore p(x) is the least degree polynomial of T and p(T) = 0. Also given that T satisfies h(x) 

Therefore h(T) = 0 

Since )()(),( xFxhxp  there exist )()(),( xFxrxq  such that )()()()( xrxqxpxh   

either r(x) = 0 (or) deg r(x) < deg p(x) since h(T) = 0 

 )()()()( TrTqTpTh    

Now r(T) = 0 we get )()()( xqxpxh  p(x) / h(x) 
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Hence p(x) is a divisor of h(x) 

Lemma: 6.4.1 

If VW  is invariant under T then T induces a linear mapping WVT /on  defined by 

WvTTWv  )( . If T satisfies the polynomial )()( xFxq   then so does T  (or) 

If )(1 xp is the minimal polynomial for T  over F and if p(x) is that for T then )(1 xp / p(x) 

Proof: 

Given that VW  is invariant under T  WTW )(  

Define the mapping 
W

V

W

V
T :  by WvTTWv  )(  

(i) To prove T is well defined 

Let 
W

V
WvWv  21 ,  such that WvWv  21  

 WvvWWvv  2121  

 WWTTvv  )( 21  

WWTvTv  21  

      WWTvWTv  )()( 21  

      )()( 21 WTvWTv   

     TWvTWv )()( 21   

     Therefore T  is well defined. 

(ii) To Prove T  is a linear transformation 

(1) 
TWvTWv

WTvTvTWvWv

)()(

)(

21

2121




 

(2) 
TWvWvT

WvTTWv

)(

)()(








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     Therefore T is a linear transformation V / W 

    Let us take 
m

mxxxq   ......)( 1 be minimal polynomial for T and its satisfy q(T) = 0 

    Now q(T ) = 0 

    Consider, 
222

1 )()( TWvWvTTWv   

    
22 )(TT   

Similarly we can prove 
kk TT )(  

Now consider WTvqTqWv  )()()(  

)......)((

)(......)()(

)(......)()(

)......(

1

1

1

1

m

m

m

m

m

m

m

m

TTWv

TWvTWvWv

WvTWvTWv

WTTv

























 

)()()()()()( TqTqTqWvTqWv   

Therefore for any )()( xFxq   with q(T) = 0, Since 0 is the 0 transformation on V / W and have 

0)()(  TqTq  

T  satisfies the minimal polynomial )()( xFxq  then by using the result “ If p(x) is the minimal 

polynomial of T and if T satisfies h(x) then p(x) is the divisor of h(x)” 

We get p1(x) / q(x) 

Therefore p(x) is the minimal polynomial for T over F then p(T) = 0 hence p(T ) = 0 

Again by using the result p1(x) / p(x) 

Definition: If FVAT  &)(  is called a characteristic root (or) Eigen value of T then T is 

singular 

Definition: The matrix A is called triangular if all the entries of above the main diagonal (or) 

above the main diagonal are zero 
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Definition: If T is linear transformation on V over F then matrix of T in the basis },.......,{ 21 nvvv

if triangular if  

nnnnnn vvvTv

vvTv

vTv













.......

.........

2211

2221212

1111

 

Theorem: 6.4.1 

If )(VAT  has all its characteristic root in F then there is a basis of V in which the matrix of T is 

triangular 

Proof: 

We shall prove this theorem by induction on n, where n is the dimension of V over F that is 

nVF dim  

Step 1: 

Let 1dim VF then V has the basis with 1 element. Therefore m(T) is a one by one matrix. 

Hence the theorem is true for n = 1 

Step 2: 

Assume that the theorem is true for all vector spaces over F of dimension n – 1 

Step 3: 

Let V be of dimension n over F 

To prove the matrix of T is triangular in the basis of V over F 

Let F1 be the characteristic root of T then there exist a non-zero vector 1v such that 

111 vTv  ….(1) 

Since by the property of characteristic root )(, VATF  then 0,  vvvT   

Let }/{ 1 FvW   …….(2) 

Here W is a one-dimensional subspace of V 

To prove W is invariant under T 
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That is to prove WTW )(  

Let wTTv 1  

WvTv  111 )( by equation(1) 

Therefore WTW )(  

Hence W is invariant under T 

Let 1dimdimdim,  nWVV
W

V
V  

By lemma 6.4.1, T induces in linear transformation T  on V whose minimal polynomial over F 

divides the minimal polynomial of T over F 

Thus all the roots of the minimal polynomial of T being the roots of the minimal polynomial of 

T, must be lie in F 

T  on V satisfies the hypothesis of the theorem, since V is n – 1 dimensional over F, our 

induction hypothesis there is a basis nvvv ,....., 32 over F such that 

nnnnnn vvvTv

vvTv

vTv













.......

.........

3322

3332323

2222

 

Let },......,{ 32 nvvv
be the elements of V into nvvv ,....., 32  respectively 

To prove },......,,{ 321 nvvvv
forms a basis of V over F 

That is to prove that (i) 
},......,,{ 321 nvvvv

are linearly independent (ii) Any element 
Vv is a 

linear combination of },......,,{ 321 nvvvv
 

Let 
Fvvv inn   ,0......2211 …………….(3) 

Now to prove all constants 
0i  

Equation (3) implies 
Wvvv nn  1122 ...... 
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Wvv

WWvWv

nn

nn









........

)(......)(

22

22

 

Since nvvv ,....., 32 is a basis of V / W and 0.....,........ 3222  nnn Wvv 
 

Therefore eqn(3) becomes 
000 1111  vv   

Let Vv then V
W

V
Wvv  ………(4) 

Let 



n

i

iivv
2

  

WWvv

WvWv

n

i

ii

n

i

ii













2

2





 

nn

n

i

ii

vvvv

vvv







 


.......2211

2

11
 

Hence any element Vv is a linear combination of },......,,{ 321 nvvvv
 

Now to prove the matrix of T is triangular in the basis 
},......,,{ 321 nvvvv

 

Now by (1) 111111 vvTv  
 

2221212

2222

2222

2222

vvTv

WWvTv

WWvTv

vTv

















 

3332321313 vvvTv    

Similarly we can prove that nnnnnn vvvTv   ......2211  
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Hence 



























nnnnn

Tm









....

.....

0..

0....0

0....00

)(

321

333231

2221

11

 

Therefore m(T) is triangular 

Alternate form of theorem 6.4.1: 

If the matrix nFA  has all its characteristic roots in F then there is a matrix nFC such that 

1CAC  is triangular 

Theorem 6.4.2: 

If V is an n-dimensional vector space over F and if )(VAT  all has its characteristic roots in F 

then T satisfies the polynomial of degree n over F 

Proof: Let V be an n-dimensional vector space over F 

Suppose that )(VAT  has all its characteristic roots in F then by theorem 6.4.1, we can find a 

basis },......,,{ 321 nvvvv
 of V over F such that 

111111 vvTv  
 

2221212 vvTv  
 

3332321313 vvvTv    

Here the above can be rewritten as  

0)( 11

111









Tv

vTv

……(1) 

Also 12122 )( vTv   ……(2) 

Similarly we can write 112211 .......)(  nnnnnnn vvvTv   

Also ))(())(( 1221   TTTT  
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Continuing in this way, we get 

0)).......()(( 21  nTTT   

Multiplying both side by )( 1T in eqn(2) we get 

0)())(( 1121122   TvTTv  

Proceeding in this manner we get  

0)).......(( 1   TTv nn  

Let )).......()(( 21 nTTTS   which satisfies  

0,......0,0 21  SvSvSv n  

Hence S = 0, 0iv , i = 1, 2,3,…..n 

0)).......()(( 21  nTTT   

Therefore T is satisfies the polynomial ][)).......()(( 21 xFxxx n   of degree n 

Hence T satisfies the polynomial of degree n over F 

 

Section 6.5 

Canonical Transformation – Nilpotent Transformation 

Lemma: 6.5.1 

     If  V  =  v1 ⨁ v2⨁  ……⨁vk where each subspace vi is of dimension ni and is invariant under 

T, then a basis of  V can be found so that, the matrix of T in this basis if of the form,  

 

𝐴1 0… 0
0
⋮

 
𝐴2 …
⋮

0
⋮

0 0… 𝐴𝑘

  

Where each Ai is ni× mi matrix and the linear transformation induced by T on vi.   

Proof: 
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  Choose a basis V as follows: 

{v1
(1)

, v2
(1)

….. vn1
(1)

} is a basis of V1 

{v1
(2)

, v2
(2)

….. vn2
(2)

} is a basis of V2…… 

{v1
(n)

, v2
(n)

….. vnk
(n)

} is a basis of Vk 

Since each Vi is invariant under T, vj
(i)

 T∈  Vi,  i = 1..k and so it is a linear combination of v1
(i)

, 

v2
(i)

….. vni
(i)

. thus the matrix of T this basis is the desired form. 

ie, the matrix of T, in this basis is of the form ni ×ni 

Let this matix be Ai. ie, each Aiis a matrix of Ti and Ti is the linear transformation induced by T 

on Vi 

Hence we get, the matrix of T in the above basis of V as  

 

𝐴1 0… 0
0
⋮

 
𝐴2 …
⋮

0
⋮

0 0… 𝐴𝑘

  

 

Hence the theorem. 

Definition of Nilpotent: 

    An element T ∈ A(V) is said to be an invertable then there exist an element S ∈ A(V) such 

that ST = TS = 1 

Lemma: 6.5.2. 

If T ∈ A(V) is nilpotent then ∝0. ∝0+ ∝1 𝑇 +⋯ .∝𝑚 𝑇𝑚  where the ∝𝑖∈ F is invertable ∝0 ≠ 0. 

Proof: 

Suppose that T is nilpotent, the definition of nilpotent have exist an integer  r such that ∝𝑟  = 0. 

To prove  ∝0+ ∝1 𝑇 +⋯ .∝𝑚 𝑇𝑚  is invertible if ∝0 ≠ 0. 
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Let S =  ∝0+ ∝1 𝑇 +⋯ .∝𝑚 𝑇𝑚 .  Now to prove  ∝0+  𝑆 is invertible.  

Consider, S
r
 = (∝1 𝑇 +⋯ .∝𝑚 𝑇𝑚)𝑟  

                     = (T(∝1+⋯ .∝𝑚 𝑇𝑚 )𝑟 ) 

                      =T
r(∝1+⋯ .∝𝑚 𝑇𝑚 )𝑟  

                       = 0 (T
r
 = 0) 

Consider, (∝0+  𝑆) =  
1

∝0
−

𝑆

∝0
2 +

𝑆2

∝0
3 +⋯ . +

(−1)𝑟−1𝑠𝑟−1

∝0
𝑟   

                               = 1- 
𝑆

∝0
+…..+

(−1)𝑟−1𝑠𝑟−1

∝0
𝑟−1  +

𝑆

∝0
−

𝑆2

∝0
2+….+

(−1)𝑟−1𝑠𝑟

∝0
𝑟  

                                = 1+ 
 −1 𝑟−1𝑠𝑟

∝0
𝑟  

                                = 1 (since S
r
 = 0) 

Hence ∝0+  𝑆 is invertible. ∝0+ ∝1 𝑇 +⋯ .∝𝑚 𝑇𝑚  is invertible if ∝0 ≠ 0. 

 

Definition: 

If  T∈ A(V) is nilpotent then k is called the index of nilpotent of T.  If T
k
 = 0 but T

k-1  ≠ 0. 

Theorem 6.5.1: 

If  T∈ A(V) is nilpotent, of index of nilpotent n1 then a basis of  V can be found such that the 

matrix of T in this basis of the form    

 

𝐴1 0… 0
0
⋮

 
𝐴2 …
⋮

0
⋮

0 0… 𝐴𝑘

  

Where n1≥n2≥……….nr  and where n1+…..+nr = dimF V 

Proof: 
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Given that T∈ A(V) is nilpotent. T
n
 = 0 

Also given that, T is of index of nilpotents n1.  T
n1

 =0 but T
n1 -1

 ≠ 0.----(1) 

Now we can find a vector v ∈ 𝑉 such that v T
n1 -1

 ≠ 0. 

We claim that the vectors v, v T…. v T
n1 -1

 are linearly independent over F 

Suppose that the above vectors are not linearly independent then  

∝1 𝑣 + ∝2 𝑣𝑇 +⋯ .∝𝑛1 v T
n1 -1 

= 0 where ∝𝑖  ∈ F, here all the ∝‟s are not zero.  Let ∝‟s be the 

first non zero coefficient of the above equation. 

∝s v T
s -1

+…..+∝n1 v T
n1-1 

= 0 

v T
s -1

(∝s +…..+∝n1 T
n1 -s 

)= 0 ----------(2) 

since ∝s ≠ 0 by using lemma 6.5.2 , we get(∝s +∝sT+…..+∝n1 T
n1 –s

) is invertible. 

Equation (2) becomes 

vT
s-1

 I = 0 

vT
s-1

 I I
-1

 = 0 I
-1

 =0 

vT
s-1

  = 0 . Which is a contradiction to vT
n1-1

 ≠  0 for s <n1. 

Hence v, vT, …. vT
n1-1

 are lineary independent .   Let v1 be the subspace of V spanned by 

v1 = v, v2 = vT …..vn1 = vT
n1-1

 

v1T ⊂ V.  Hence v1 is invariant under T  

Thus in this bais the linear transformation induced by T on v1 has the matrix Mn1 

       Mn1   =    

0 1… 0
0
⋮

 
0…
⋮

0
⋮

0 0… 1

  

Now to prove the rest of the theorem we need the following lemma‟s 
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Lemma: 6.5.3. 

If u∈V1 is such that u vT
n1- k

 = 0 where 0<k≤n1 then u = uoT
k
 some uo∈ V1 

Proof: 

Given that u∈V1 and V1 is a subspace of V spanned by v,vT,… vT
n1-1

.  Also given that 

u T
n1- k

 = 0.-----(3) 

  Then u = ∝1 𝑣 + ∝2 𝑣𝑇 +⋯ .∝𝑛1 v T
n1 -1

 

u T
n1- k

 = (∝1 𝑣 + ∝2 𝑣𝑇 +⋯ .∝𝑛1 v T
n1 -1

) T
n1-k

 

            = ∝1 𝑣𝑇
𝑛1−𝑘 + ∝2 𝑣𝑇

𝑛1−𝑘+1 +⋯ .∝𝑛1 v 𝑇2𝑛1−𝑘−1 

             =0  

𝑣𝑇𝑛1−𝑘 ,…… v 𝑇2𝑛1−𝑘−1are linearly independent 

Hence ∝1= ∝2= ⋯ . =∝𝑘= 0 

u = ∝(k+1)vT
k
+…..+∝n1𝑇𝑛1−1 = uoT

k
 

uo = ∝(k+1)v+…..+∝n1𝑇𝑛1−𝑘−1 ∈ V1 

Lemma: 6.5.4. 

There exist a subspace W of V, invariant under T such that V = v1 ⨁ w 

Proof: 

Let w be a subspace of v which is the largest possible such that  

(i) V1∩ W = {0} 

(ii) W is invariant under T 

To show that V = V1 + W.  where V1 is the subspace of V which is invariant under T 
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Suppose not V ≠ V1 + W.  Then there exist an element z ∈ V such that z does not belongs to 

V1 + W.   since T
n1

 = 0 , there exist an integer k , o< k≤n1 such that zT
k ∈ V1 + W and such 

that zT
i 𝑑oes not belongs to V1 +W, for i <k ----------(4) 

Thus zT
k =u + w  where u ∈ V1& w∈ W --------(5) 

zT
n1

 = 0 

(zT
k
) T

n1-k
 = 0 

(u+w)T
n1-k

 = 0 

u T
n1-k

 + w T
n1-k

 = 0 -------(6) 

Since W is invariant under T, uT ∈ V1, wT ∈ 𝑊 

u T
n1-k∈ V1 & w T

n1-k∈ 𝑊 

Equation (6) becomes 

     u T
n1-k

 + w T
n1-k ∈ V1∩ W = {0} 

        u T
n1-k

  = - w T
n1-k ∈ V1∩ W = {0} 

u T
n1-k

  = 0 

Now by using lemma 6.5.3. 

There exist an integer uo ∈ V1 Show that u = uoT
k
 

Equation (5) becomes 

zT
k
 = u+w 

      = uoT
k
 +w 

     zT
k
 = uoT

k
  =w 

T
k
(z – uo) = w ∈W 

Let u1 = z –uo then T
k
uo = w∈W 
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Since W is invariant under T, wT⊂W 

u.T
k
 T ∈ W 

u1T
m

 ∈ W, m>k 

on the other hand if i > k then, 

u1T
1
 = (z – uo) T

i
 

          = (zT
i
 - uo T

i 
) 

Does not contains V1+W 

For otherwise u1T
i∈ V1+W.  Which is a contradiction to equation (4) 

Let W be the subspace of V spanned by W & z1, z1T…. z1T
k-1

 

Since w ∈ W and W⊂w1  Then dim W < dim w1 

dim w1 must be larger than that of W  

Since z1T
k∈ W 

If W is invariant under T, w1 must be invariant under T 

To prove w1T ∈ W1 Where w1 ∈ W1.  Here w1 = w0+ ∝1z1T+…+∝𝑘  z1T
k-1

 ----(7) 

w1T = w0T+ ∝1z1T
2
+…+∝𝑘  z1T

k
 

w0T ∈ W & z1T
k∈ W 

w1T ∈ W1 

hence W1 is invariant under T.  We have V1∩  W1 ≠ {0}, otherwise this will affect the 

maximum matrix of W.  There exist an element w0 ∈ W is of the form, ∝0+ ∝1z1+…+∝𝑘  

z1T
k
 ≠ 0 ---(8)  in V1∩ W have all the scalars ∝1 … .∝𝑘  are non- zero.  But w0 ∈ W ⊂ W1 

w0  ≠ 0 , which is a contradiction to our assumption that V1∩ W1 = {0}, 

Let ∝s be the first non –zero coefficient of equation (7) 
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   w0 +∝1z1 +…..+∝𝑘z1T
k-1≠ 

0 ∈ V1 

w0 +z1T
s-1

 (∝s+…..+∝𝑘z1T
k-s

) ∈ V1 

Since ∝s ≠ 0 by using lemma 6.5.2., we get 

∝ s+∝ s+1T +…..+∝k z1T
k-s 

 = 
1

𝑅
----(9) 

 Equation (9) becomes w0 +z1T
s-1

= 
1

𝑅
∈ V1 

       ie) w0R +z1T
s-1∈ V1R⊂V1 

       ie)  z1T
s-1∈ V1+W, since s-1<k which is impossible. 

    Our assumption that V1 +W ≠V.   V = V1 +W.  Already we have V1∩ W  = {0}.  Hence we 

get, V = V1 ⨁W.  

Proof the main theorem, here V = V1 ⨁W.   Where W is invariant under T, Then by using 

lemma 6.5.1., the matrix of T in the basis v1,v2,….vn  has the form  
𝑀𝑛1 0

0 𝑛2
 .  Where  A2 is the 

matrix of T2 & T2 is the linear transformation induced by T on W.  since T
n1

 = 0, T
n2

 = 0 for 

some n2 ≤ n1 repeating the above argument used for T on V for T2 on W.  Hence we get a basis 

of V in which the matrix of is the form  

 

𝑀𝑛1 0… 0
0
⋮

 
𝑀𝑛2 …
⋮

0
⋮

0 0… 𝑛𝑟

  

Where n1≥ n2≥…….≥ nr.  Since the size of the matrix is n × n.  Hence we have,  

n1+n2+……+nr = dim V 

(ie) dim V = n 

Hence the Theorem 

Definition – 1: 

The integer n1,n2,……nr are called the invariants of T 
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Definition – 2: 

If T∈ A(V) is nilpotent, the subspace M of V is of dimension m which is invariant under T is 

called cyclic with respect to T.  If (i) MT
m

 = 0, MT
m-1≠ 

0 

(ii)There is an element z∈M such that z, zT,…ZT
m-1

form a basis of M. 

Lemma: 6.5.5. 

If M is of dimension m is cyclic with respect to T.  Then the dimension of MT
k
 is m-k for all 

h⊆M 

Proof: 

Given that M is cyclic with respect to T and M is of dimension m. 

To prove that dim MT
k
 = m-k, for all k≤m. 

Since M is cyclic with respect to then by definition of cyclic 

(i) MT
m

 = 0, MT
m-1≠ 

0 

(ii)There is an element z∈M such that z, zT,…ZT
m-1

form a basis of M. 

Claim: 

z, zT, ……zT
m-1

 of M leads to a basis zT
k
,zT

k+1
,…zT

m-1
of mT

k
.  

First we want to prove, zT
k
, zT

k+1
....zT

m-1
 are linearly independent 

Let ∝1zT
k
+∝2zT

k+1
+…+∝m-kzT

m-1
= 0 

0.z+0.zT+…..∝1zT
k
+∝2zT

k+1
+…+∝m-kzT

m-1
= 0 

∝I = o for all i 

{zT
k
,zT

k+1
,…zT

m-1
} is linearly independent 

Now to
 
prove every element of mT

k
 is linear combination of {zT

k
,zT

k+1
,…zT

m-1
}.  Let x∈M 

ie) x = ∝1z+∝2zT
k
+…+∝mzT

m-1 
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xT
k 

 = ∝1zT
k
+∝2zT

k+1
+…+∝mzT

m+k-1 

xT
k∈ MT

k
 

Every element of MT
k
 is a linear combination of {zT

k
,zT

k+1
,…zT

m-1
} form a basis of MT

k
. 

dim MT
k
 = m- k 

Hence the lemma. 

Theorem: 6.5.2. 

Two nilpotent linear transformation are similar iff they have the sae invariants. 

Proof: 

Necessary Part: 

    Let T& S be to similar nilpotent linear transformations. 

 To prove that, T & S have the same invariants 

Given that T is a nilpotent linear transformation.  By using 6.5.1.  theorem, we can find a 

integers n1≥  n2≥…….≥  nr  and subspaces v1,v2,…vr of V cyclic with respect to T and of 

dimensions n1, n2,..nr respectively such that V =. v1⨁v2⨁…⨁vr   

Again given that s is a nilpotent linear transformation then by using theorem 6.5.1. 

We can find another integer, m1≥m2≥…..ms and subspaces u1,u2,….us of cyclic with respect to S 

and such of dimensions m1,m2,...ms respectively such that that V = U1 ⨁U2 ⨁…⨁Us 

Claim: 

r = s, n1=m1, n2=m2….nr=ms.  Let us assume that the above one is not true.  (ie) there exist atleast 

one integer k such that nk ≠ mk. 

Let I be the first integer such that ni ≠ mi, where n1=m1, n2=m2….ni-1=mi-1 without loss of 

generality, let mi < ni.  Since V = v1⨁v2⨁…⨁vr  Now  VT
mi 

= v1T
mi

 ⨁v2T
mi⨁…⨁vrT

mi
 

dim (VT
mi

) = dim v1T
mi

+……+dim vrT
mi 
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     ≥ (n1 – mi)+ (n2 – mi)+…+ (nr – mi) also V = U1 ⨁U2 ⨁…⨁Us 

Now  VT
mi

 = U1 T
mi

 ⨁U2 T
mi

 ⨁…⨁Us T
mi

 

dim (VT
mi

) = dim U1T
mi

+……+dim UsT
mi

 

≥ (m1 – mi)+ (m2 – mi)+…+ (ms – mi), I is n1=m1, n2=m2….ni=mi = 1 

Where VT
mi

  = (n1 – mi)+ (n2 – mi)+…+ (ni-1 – mi) 

Which is contradiction to dimension of , dim(VT
mi

) ≥ (ni – mi)…. (nr – mi) 

Thus there is a unique set of integer, n1≥ n2≥…….≥  nr .  Such that V is the direct sum of 

subspaces, cyclic with respect to T of dimensions n1,n2,….nr thus they have the same invariants. 

Sufficient Part: 

Assume that two nilpotent linear transformation T & S have the same invariant.  To prove that T 

& S are similar. 

Let the invariants T & S be n1≥ n2≥…….≥  nr, then by theorem 6.5.1. , there exist a basis  

{v1,v2..vn} and {w1,w2,..wn} of V.  Such that the matrix of T and the matrix of S are equal 

M(T)  =    

𝑀𝑛1 0… 0

0

⋮
 
𝑀𝑛2 …
⋮

0

⋮
0 0… 𝑀𝑛𝑟

  

But if A is a linear transformation defined on V by viA = wi.  Then S = ATA
-1

(Since by using the 

result.  Let T & S be linear transformation defined on V such that the matrix of T in one basis is 

equal to the matrix of S in another basis.  Then a transformation A on B such that T = ASA
-1

) 

Thus T and S are similar linear transformations. 

6.6  Canonical Forms:  A Decomposition of 𝑽:  Jordan Form 

Lemma 6.6.1 

     Suppose that  𝑉 = 𝑉1  ⊕ 𝑉2, where  𝑉1 and  𝑉2 are subspaces of 𝑉 invariant under 𝑇. 
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Let  𝑇1 and  𝑇2 be the linear transformations induced by 𝑇 on  𝑉1 and  𝑉2 respectively.  If the  

minimal polynomial of T1 over F is p1(x) while that of  T2 is p2 x , then the minimal polynomial 

for  T over F is the least common multiple of p1(x) and  p2 x . 

Proof: 

     Given that  𝑉 = 𝑉1  ⊕ 𝑉2, where  𝑉1 and  𝑉2 are subspaces of 𝑉 invariant under 𝑇. 

     Let  𝑝 𝑥  be the minimal polynomial for 𝑇 over F. Then 𝑝 𝑇 = 0. 

                                    Therefore, 𝑝 T1 = 0 and 𝑝 T2 = 0. 

     Since p1(x) is a minimal polynomial of T1, we have  p1 T1 = 0, which implies p1 x |𝑝 𝑥 . 

Similarly, p2(x) is a minimal polynomial of T2, we have  p2 T2 = 0, which implies p2 x |𝑝 𝑥 .  

        Hence, the L.C.M of p1 x  and p2 x  must divide 𝑝 𝑥 . 

        Let 𝑞 𝑥  be the L.C.M of  p1 x  and p2 x  then 𝑞 x |𝑝 𝑥     _________(1) 

        Since 𝑞 𝑥  is the L.C.M of  p1 x  and p2 x ,  we have  p1 x |𝑞 𝑥 . 

        ⟹ 𝑞 𝑥 = p1 x 𝑕 𝑥    where  𝑕 𝑥 ∈ 𝐹 𝑥 . 

       Also,  𝑞 T1 = p1 T1 𝑕 T1  ⟹ 𝑞 T1 = 0,    (since p1 T1 = 0) 

Consider,  𝑣1 ∈ 𝑉1, then 𝑣1𝑞 𝑇 =  𝑣1𝑞 T1 ,  

                                                     =  𝑣1p1 T1 𝑕 T1  = 0,  (since p1 T1 = 0). 

Similarly, 𝑣2 ∈ 𝑉2, then 𝑣2𝑞 𝑇 =  𝑣2𝑞 T2 ,  

                                                     =  𝑣2p2 T2 𝑕 T2  = 0,  (since p2 T2 = 0). 

Let  𝑣 ∈ 𝑉, then 𝑣1 + 𝑣2 = 𝑣, 𝑣1 ∈ 𝑉1 and 𝑣2 ∈ 𝑉2 

Now,       𝑣𝑞 𝑇 =  𝑣1 + 𝑣2 𝑞(𝑇) 

                            =  𝑣1𝑞 T + 𝑣2𝑞 T  
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                 𝑣𝑞 𝑇  = 0  ⟹ 𝑞 𝑇 = 0                                  _________________(2) 

From (1) and (2), 

      𝑞(𝑥) is the minimal polynomial of 𝑇 which is the L.C.M of   p1 x  and p2 x . 

Corollary: 

       If  𝑉 = 𝑉1  ⊕ 𝑉2 ⊕…⊕𝑉𝑘 , where 𝑉𝑖  is invariant under 𝑇 and if  pi x  is the minimal 

polynomial over 𝐹 of Ti, the linear transformation induced by 𝑇 on 𝑉𝑖 , then the minimal 

polynomial of 𝑇 over 𝐹 is the least common multiple of p1 x , p2 x … , pk x . 

Proof: 

      We prove this result by induction on 𝑘. 

       For  𝑘 = 1, the result is obvious. 

       For 𝑘 = 2 then 𝑉 = 𝑉1  ⊕ 𝑉2. 

       ∴ By using previous theorem, we get the result. 

       Assume that, the result is true for 𝑘 − 1, then by induction hypothesis the minimal 

polynomial pi x  of Ti is the L.C.M of p1 x , p2 x … , p𝑘−1 x . 

       Now, 𝑇 = Ti + Tk , then by using previous lemma, 

       The minimal polynomial of  𝑇 over 𝐹 is the L.C.M of  p1 x , p2 x … , p𝑘−1 x . 

Theorem: 6.6.1 [Jordan Theorem] 

        For each 𝑖 = 1,2, …𝑘, 𝑉𝑖 ≠ (0) and 𝑉 = 𝑉1  ⊕ 𝑉2 ⊕…⊕𝑉𝑘 . The minimal polynomial of  

Ti is qi(x)li .   (OR)  Let T ∈ A(V) and p x = q1(x)l1 . q2(x)l2 …qk(x)lk , where   qi(x)li  are 

distinct irreducible polynomial over F be the minimal polynomial for T over F then  𝑉 = 𝑉1  ⊕

𝑉2 ⊕…⊕𝑉𝑘 , where each  𝑉𝑖 ≠ (0) and 𝑇 𝑉𝑖 ⊆ 𝑉𝑖 is a subspace of 𝑉 is invariant under 𝑇.  

Then the minimal polynomial for Ti is the linear transformation induced by T on 𝑉𝑖  is qi(x)li . 

Proof:  
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Claim 1 

     To prove, each 𝑉𝑖  is invariant under 𝑇. 

      If 𝑘 = 1, then 𝑉 = 𝑉1 and 𝑝 𝑥 = q1 x 
l1 . 

      Then, p T = q1(T)l1 = 0. 

      ⟹  V is the subspace and T is the minimal  𝑝 𝑥 , a power of the irreducible polynomial.  

       ∴ The theorem is true for k = 1. 

       Let k > 1, then p x = q1(x)l1 . q2(x)l2 …qk(x)lk . 

       Let      𝑉1 =  𝑣 ∈ 𝑉|𝑣q1 T 
l1 = 0  

                  𝑉2 =  𝑣 ∈ 𝑉|𝑣q2 T 
l2 = 0  

                  ⋮  

                  𝑉𝑖 =  𝑣 ∈ 𝑉|𝑣qi T 
li = 0   

                  ⋮ 

                  𝑉𝑘 =  𝑣 ∈ 𝑉|𝑣qk T 
lk = 0  

     Clearly,   𝑉1, 𝑉2, … 𝑉𝑘  are subspaces  of 𝑉. Also if  𝑣 ∈ 𝑉𝑖  then 𝑣qi T 
li = 0. 

     To prove 𝑣𝑇 ∈ 𝑉𝑖  for  𝑣 ∈ 𝑉𝑖 ,       i.e. To prove, 𝑣Tqi T 
li = 0. 

      Now,  𝑣Tqi T 
li = 𝑣(qi T 

li )T =0 

                        ∴ 𝑉𝑖  is invariant under T. 

Claim 2     

Now,   𝑕1 𝑥 = q2(x)l2 . q3(x)l3 …qk(x)lk      

           𝑕2 𝑥 = q1(x)l1 . q3(x)l3 …qk(x)lk      

           ⋮       

           𝑕𝑖 𝑥 =  qj(x)lj
𝑗≠0  

           ⋮ 
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           𝑕𝑘 𝑥 = q1(x)l1 . q3(x)l3 …qk−1(x)lk−1  

           Since 𝑝 𝑥  is the minimal polynomial for 𝑇, we have 𝑝 𝑇 = 0. 

            Also 𝑑𝑒 𝑔  𝑕𝑖 𝑥  < 𝑑𝑒𝑔 (𝑝 𝑥 ) 

            ⟹  𝑕𝑖 𝑇 ≠ 0, ∀𝑖 = 1,2,…𝑘 

             ∴ ∂𝑣𝑖 ∈ 𝑉 such that 𝑣𝑖𝑕𝑖 𝑇 ≠ 0 

             Let 𝑤𝑖 = 𝑣𝑖𝑕𝑖 𝑇 , then 

                   𝑤𝑖qi(T)li = (𝑣𝑖𝑕𝑖 𝑇 )qi(T)li  

                                    =  𝑣𝑖𝑝(𝑇) 

                    𝑤𝑖qi(T)li = 0,  (∵ 𝑝 𝑇 = 0) 

        ⟹ 𝑤𝑖 ≠ 0 ∈ 𝑉𝑖,  also 𝑣𝑕𝑖 𝑇 ≠ 0 and for which 𝑣𝑕𝑖 𝑇 ∈ 𝑉𝑕𝑖 𝑇            

         i.e., 𝑣𝑕𝑖 𝑇 qi T 
li = 𝑣𝑝 𝑇 = 0 

         But  𝑣𝑕𝑖 𝑇 ≠ 0 ∈ 𝑉𝑖 , we have  𝑣𝑗𝑕𝑖 𝑇 = 0, 𝑖 ≠ 𝑗. 

         Thus,   qj(𝑥)lj |𝑕𝑖 𝑥 .  

Claim 3 

         𝑉 = 𝑉1  ⊕ 𝑉2 ⊕…⊕𝑉𝑘  

         We know that,  𝑕1 𝑥 , 𝑕2 𝑥 , … 𝑕𝑘 𝑥  are distinct irreducible polynomials. Therefore, they 

are relatively prime. 

          Hence, we can find a polynomial 𝑎1 𝑥 , 𝑎2 𝑥 ,… 𝑎𝑘 𝑥 ∈ 𝐹 𝑥 , such that 

          𝑎1 𝑥 𝑕1 𝑥 + 𝑎2 𝑥 𝑕2 𝑥 + ⋯+ 𝑎𝑘 𝑥 𝑕𝑘 𝑥 = 1 

     ⟹ 𝑎1 𝑇 𝑕1 𝑇 + 𝑎2 𝑇 𝑕2 𝑇 + ⋯+ 𝑎𝑘 𝑇 𝑕𝑘 𝑇 = 1 

          Now for 𝑣 ∈ 𝑉, we have 

          𝑣(𝑎1 𝑇 𝑕1 𝑇 + 𝑎2 𝑇 𝑕2 𝑇 +⋯+ 𝑎𝑘 𝑇 𝑕𝑘 𝑇 ) = 1. 𝑣 

          𝑣𝑎1 𝑇 𝑕1 𝑇 + 𝑣𝑎2 𝑇 𝑕2 𝑇 + ⋯+ 𝑣𝑎𝑘 𝑇 𝑕𝑘 𝑇 = 𝑣 

          Now, each 𝑣𝑎𝑖 𝑇 𝑕𝑖 𝑇 ∈ 𝑉𝑕𝑖 𝑇  and also each 𝑣 = 𝑣1 + 𝑣2 +⋯+ 𝑣𝑘 , where each 

𝑣𝑖 = 𝑣𝑎𝑖 𝑇 𝑕𝑖 𝑇  is in 𝑉𝑕𝑖 𝑇 . 
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           Thus, 𝑉 = 𝑉1 + 𝑉2 + ⋯+ 𝑉𝑘  

         Suppose that, 𝑉1 + 𝑉2 +⋯+ 𝑉𝑘 = 0 for each 𝑉𝑖 ∈ 𝑉. 

         Now,   𝑉1 + 𝑉2 +⋯+ 𝑉𝑘 𝑕1 𝑇 = 0 

          Let 𝑣 ∈ 𝑉 then 𝑣 = 𝑣1 + 𝑣2 +⋯+ 𝑣𝑘 , then 

           𝑣1 + 𝑣2 +⋯+ 𝑣𝑘 𝑕1 𝑇 = 0 

             𝑣1𝑕1 𝑇 + 𝑣2𝑕1 𝑇 + ⋯+ 𝑣𝑘𝑕1 𝑇 = 0 

          Which implies that,  𝑣1𝑕1 𝑇 = 0,   [∵ 𝑣𝑗𝑕𝑖 𝑇 = 0, 𝑓𝑜𝑟 𝑖 ≠ 𝑗] 

           Also, 𝑣𝑖𝑞𝑖 𝑇 
𝑙1 = 0 and 𝑕1 𝑥 , 𝑞1 𝑥 

𝑙1  are relatively prime, we get 𝑝1 = 0. 

           By the same procedure we get, 𝑣2 = 0, 𝑣3 = 0,… , 𝑣𝑘 = 0 

           Hence, 𝑉 = 𝑉1  ⊕ 𝑉2 ⊕…⊕𝑉𝑘 . 

Claim 4 

           The minimal polynomial for 𝑇𝑖  is the linear transformation induced by 𝑇 on 𝑉𝑖  is 𝑞𝑖 𝑥 
𝑙𝑖  

on 𝑉𝑖 . 

            By 𝑉𝑖𝑞𝑖 𝑇 
𝑙𝑖 = 0 ⟹ 𝑞𝑖 𝑇 

𝑙𝑖 = 0 

                                         ⟹ 𝑇𝑖 satisfies the polynomial 𝑞𝑖 𝑥 
𝑙𝑖   

                                         ⟹ The minimal polynomial for  𝑇𝑖 must be the divisor of 𝑞𝑖 𝑥 
𝑙𝑖  

                                               Of the form 𝑞𝑖 𝑥 
𝑓𝑖  where 𝑓𝑖 ≤ 𝑙𝑖  

           By the Corollary 6.6.1, we get , 

           The minimal polynomial of 𝑇 over 𝐹 is the L.C.M of  𝑞1 𝑥 
𝑓1 , 𝑞2 𝑥 

𝑓2 , … 𝑞𝑘 𝑥 
𝑓𝑘 . 

             ∴ 𝑞1 𝑥 
𝑙1𝑞2 𝑥 

𝑙2 …𝑞𝑘 𝑥 
𝑙𝑘 = 𝑞1 𝑥 

𝑓1𝑞2 𝑥 
𝑓2 …𝑞𝑘 𝑥 

𝑓𝑘  

                                    ⟹ 𝑙1 = 𝑓1, 𝑙2 = 𝑓2, … 𝑙𝑘 = 𝑓𝑘 

            Thus the minimal polynomial for 𝑇𝑖  is  𝑞𝑖 𝑥 
𝑙𝑖 . 

Corollary: 

            If  all the distinct characteristic root 𝜆1, 𝜆2, … 𝜆𝑘  of  𝑇 lie in 𝐹 then 𝑉 can be written as 

𝑉 = 𝑉1  ⊕ 𝑉2 ⊕…⊕𝑉𝑘  where 𝑉𝑖 =  𝑣 ∈ 𝑉/𝑣(𝑇 − 𝜆𝑖)
𝑙𝑖 = 0  and where 𝑇𝑖  has only one 

characteristic root 𝜆𝑖  on 𝑉𝑖 . 
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Proof: 

          By the above Theorem 6.6.1,  

we have proved that for the minimal polynomial, 

          𝑝 𝑥 = 𝑞1 𝑥 
𝑙1 , 𝑞2 𝑥 

𝑙2 , … 𝑞𝑘 𝑥 
𝑙𝑘  , 𝑉 = 𝑉1  ⊕ 𝑉2 ⊕…⊕𝑉𝑘  where 

        𝑉𝑖 =  𝑥 ∈ 𝑉/𝑣𝑞𝑖(𝑇)𝑙𝑖 = 0 . 

         We know that, the characteristic roots of 𝑇 are the roots of the minimal polynomial 𝑝 𝑥 , 

the characteristic roots lies in 𝐹, the factorization of 𝑝 𝑥  becomes, 

          𝑝 𝑥 = (𝑥 − 𝜆1)𝑙1 (𝑥 − 𝜆2)𝑙2 …(𝑥 − 𝜆𝑘)𝑙𝑘  

         Where 𝜆1, 𝜆2, … 𝜆𝑘  are distinct characteristic roots of 𝑇. 

          ∴ The irreducible factors, 

                                     𝑞𝑖 𝑥 = 𝑥 − 𝜆𝑖  

                                      𝑞𝑖 𝑇 = 𝑇 − 𝜆𝑖   

             ∴  𝑇𝑖   has only one characteristic root 𝜆𝑖  on 𝑉𝑖 . 

Definition: (Jordan Form) 

        The matrix 

 

 
 

𝜆 1    0 … 0
0 𝜆    … … …

⋮ …    … … …

⋮ …    … … 1
0 …    … … 𝜆 

 
 

 with 𝜆′𝑠 on the diagonal,  1′𝑠 on the superdiagonal and 

0′𝑠 elsewhere, is a basic Jordan Block belonging to 𝜆. 

Theorem: 6.6.2 

       Let 𝑇 ∈ 𝐴𝐹(𝑉) have all its distinct characteristic roots, 𝜆1, 𝜆2, … 𝜆𝑘  in  𝐹.   Then a basis of  𝑉 

can be found in which the matrix  𝑇 is of the form  

𝐽1
𝐽2⋱

𝐽𝑘

  where each 

 𝐽𝑖 =  

𝐵𝑖1
𝐵𝑖2⋱

𝐵𝑖𝑟𝑖

  and where 𝐵𝑖1, 𝐵𝑖2,…𝐵𝑖𝑟𝑖  are basic Jordan blocks belonging to 𝜆𝑖 . 

Proof:   
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     Let 𝑇 ∈ 𝐴𝐹(𝑉) have all its distinct characteristic roots, 𝜆1, 𝜆2, … 𝜆𝑘  in  𝐹. 

     To prove,  A basis of 𝑉can be found in which the matrix of 𝑇 is of the form  

𝐽1
𝐽2⋱

𝐽𝑘

 , 

where 𝐽𝑖 =  

𝐵𝑖1
𝐵𝑖2⋱

𝐵𝑖𝑟𝑖

 . 

     Since 𝑇 has all its distinct roots in 𝐹. 

    By the Corollary 6.6.1,  𝑉 can be written as,  

              𝑉 = 𝑉1  ⊕ 𝑉2 ⊕…⊕𝑉𝑘 , where   𝑉𝑖 =  𝑣 ∈ 𝑉/𝑣(𝑇 − 𝜆𝑖)
𝑙𝑖 = 0 ____________(1) 

    And 𝑇𝑖   has only one characteristic root 𝜆𝑖  on 𝑉𝑖 . 

    Again by using Lemma 6.5.1, 

    The matrix of 𝑇,  𝑚 𝑇 =  

𝐽1 0   ⋯ 0
0 𝐽2    ⋯ 0
⋮ ⋯   ⋯ ⋯

0 ⋯   ⋯ 𝐽𝑘

  

     We know that,  𝑣𝑖 𝑇 − 𝜆𝑖 = 0,     (by  (1))  

     Which implies that,  𝑇 − 𝜆𝑖  is nilpotent.  

      By using Theorem 6.5.1, 

        𝑚 𝑇 − 𝜆𝑖 =  

𝑀𝑖1 0   ⋯ 0
0 𝑀𝑖2   ⋯ 0
⋮ ⋯   ⋯ ⋯

0 ⋯   ⋯ 𝑀𝑖𝑟𝑖

  

     Now 𝑇 can be written as,  

                     𝑇 = 𝜆𝑖𝐼 + (𝑇 − 𝜆𝑖) 

            ∴ 𝑚(𝑇) = 𝜆𝑖𝑚(𝐼) + 𝑚(𝑇 − 𝜆𝑖) 

                          = 𝜆𝑖  

1 0   ⋯ 0
0 1   ⋯ 0
⋮ ⋯   ⋯ ⋯

0 ⋯   ⋯ 1

 +  

𝑀𝑖1 0   ⋯ 0
0 𝑀𝑖2   ⋯ 0
⋮ ⋯   ⋯ ⋯

0 ⋯   ⋯ 𝑀𝑖𝑟𝑖
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                          =   

𝜆𝑖 0   ⋯ 0
0 𝜆𝑖    ⋯ 0
⋮ ⋯   ⋯ ⋯

0 ⋯   ⋯ 𝜆𝑖

 +  

𝑀𝑖1 0   ⋯ 0
0 𝑀𝑖2   ⋯ 0
⋮ ⋯   ⋯ ⋯

0 ⋯   ⋯ 𝑀𝑖𝑟𝑖

          

                          = 

𝐵𝑖1 0   ⋯ 0
0 𝐵𝑖2   ⋯ 0
⋮ ⋯   ⋯ ⋯

0 ⋯   ⋯ 𝑏𝑖𝑟𝑖

  

            ∴ 𝑚 𝑇 =  

𝐽1 0   ⋯ 0
0 𝐽2    ⋯ 0
⋮ ⋯   ⋯ ⋯

0 ⋯   ⋯ 𝐽𝑘

 =  

𝐽1
𝐽2⋱

𝐽𝑘

 . 
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Canonical Forms - Rational Canonical Form – Hermitian, Unitary, Normal transformations - 

Real Quadratic Forms. 

 

Chapter 6: Sections6.7, 6.10 and 6.11[Omit 6.8 and 6.9] 

.6.7 Canonical Forms: Rational Canonical Form                          

DEFINITION: (Companion Matrix) 

     If 𝑓 𝑥 = 𝛾0 + 𝛾1𝑥 +⋯+ 𝛾𝑟−1𝑥
𝑟−1 + 𝑥𝑟  is in 𝐹 𝑥 , then the 𝑟 × 𝑟 matrix 

 

 
 

 
0
0

 

⋮
0
−𝛾0

      

 
1
0

 

⋮
0
−𝛾1

        

 
0
1

 

⋮
0
⋯

         

 
⋯
⋯ 

⋮
⋯
⋯

         

 
0
0

 

⋮
1

−𝛾𝑟−1 

 
 

 is called the companion matrix of 𝑓 𝑥 .  We write it as 

𝐶 𝑓 𝑥  . 
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THEOREM 6.7.1 

     If  𝑇 ∈ 𝐴𝐹(𝑉) has as minimal polynomial 𝑝 𝑥 = 𝑞(𝑥)𝑒 , where 𝑞(𝑥) is a monic, irreducible 

polynomial in 𝐹 𝑥 , then a basis of 𝑉 over 𝐹 can be found in which the matrix of 𝑇 is of the form  

 

𝐶(𝑞(𝑥)𝑒1 )

𝐶 𝑞 𝑥 𝑒2 

⋱ 𝐶 𝑞 𝑥 𝑒𝑟 

  where,  𝑒1 ≥ 𝑒2 ≥ ⋯ ≥ 𝑒𝑟 . 

Proof: 

     Since 𝑉, as a module over 𝐹 𝑥 , is finitely generated and since 𝐹 𝑥  is Euclidean, we can 

decompose  𝑉 = 𝑉1  ⊕ 𝑉2 ⊕…⊕𝑉𝑟 , where the 𝑉𝑖   are cyclic modules. 

     The 𝑉𝑖  are thus invariant under 𝑇.  

     If 𝑇𝑖  is the linear transformation induced by 𝑇 on 𝑉𝑖 , its minimal polynomial must be a divisor 

of 𝑝 𝑥 = 𝑞(𝑥)𝑒  so is of the form 𝑞 𝑥 𝑒𝑖  where  𝑒𝑖 < 𝑒, (𝑖 = 1,2, … 𝑟). 

                           ∴ 𝑒1 ≥ 𝑒2 ≥ ⋯ ≥ 𝑒𝑟  

     To prove,  𝑒1 = 𝑒: 

    Now  𝑞(𝑇)𝑒1  annihilates each 𝑉𝑖 . 

     i.e., 𝑞(𝑇)𝑒1  annihilates 𝑉,  whence 𝑞(𝑇)𝑒1 = 0,  𝑇 satisfies this polynomial 𝑞(𝑥)𝑒 . 

          ⟹ 𝑞(𝑥)𝑒 |𝑞(𝑥)𝑒1   

         ⟹ 𝑒 ≤ 𝑒1             __________   (1) 

     We have,  𝑒1 ≤ 𝑒       ___________ (2) 

      From  (1) and  (2), we get  

                        𝑒1 = 𝑒 

     Since 𝑉𝑖  is a cyclic module , there exist 𝑞(𝑥)𝑒𝑖  is the minimal polynomial for 𝑇𝑖  on 𝑉𝑖 . 

     

     By Lemma 6.7.1, 

            There is a basis of  𝑣𝑖  in which the matrix of 𝑇𝑖  is 𝐶 𝑞 𝑥 𝑒𝑖 . 

     By Lemma 6.6.1, 

            We get the basis of 𝑉 and with respect to the basis of 𝑇 we have,  
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𝑚 𝑇 =  

𝐶(𝑞(𝑥)𝑒1 )

𝐶 𝑞 𝑥 𝑒2 

⋱ 𝐶 𝑞 𝑥 𝑒𝑟 

 . 

THEOREM  6.7.2 

     Let 𝑉 and 𝑊 be two vector spaces over 𝐹 and suppose that 𝜓 is a vector space isomorphism 

of 𝑉 onto 𝑊.  Suppose that 𝑆 ∈ 𝐴𝐹(𝑉) and  𝑇 ∈ 𝐴𝐹(𝑊) are such that for any 𝑣 ∈ 𝑉,  𝑣𝑆 𝜓 =

 𝑣𝜓 𝑇.  Then 𝑆 and 𝑇 have the same elementary divisors. 

Proof:  

Claim 1 

     𝑆 and 𝑇 have the same minimal polynomial. 

     By hypothesis, for any 𝑣 ∈ 𝑉, 

                              𝑣𝑆 𝜓 =  𝑣𝜓 𝑇 

                            𝑣𝑆2 𝜓 =   𝑣𝑆 𝑆 𝜓 

                                         =  ( 𝑣𝑆 𝜓)𝑇 

                                         =  ( 𝑣𝜓 𝑇)𝑇 

                            𝑣𝑆2 𝜓  =    𝑣𝜓 𝑇2 

                             ⋮ 

                            𝑣𝑆𝑚 𝜓  =    𝑣𝜓 𝑇𝑚  

     If 𝑓 𝑥 ∈ 𝐹 𝑥 , for any  𝑣 ∈ 𝑉, 

                           𝑣𝑓(𝑠) 𝜓 =  𝑣𝜓 𝑓(𝑇) 

     If 𝑓 𝑠 = 0 then   𝑣𝜓 𝑓 𝑇 = 0. 

     Since 𝜓 maps 𝑉 onto 𝑊, 𝑓 𝑇 = 0. 

     Conversely,  If 𝑔 𝑥 ∈ 𝐹 𝑥 , for any 𝑣 ∈ 𝑉, then 

                            𝑣𝑔(𝑠) 𝜓 =  𝑣𝜓 𝑔(𝑇) 

     If  𝑔 𝑇 = 0, then for any 𝑣 ∈ 𝑉 we have  𝑣𝑔(𝑠) 𝜓 = 0. 

     Since 𝜓 is an isomorphism, 
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                   𝑣𝑔 𝑠 = 0  

                      𝑔 𝑠 = 0    

     Thus 𝑆 and 𝑇 satisfies the same set of minimal polynomial in 𝐹 𝑥 . 

           ∴ 𝑆 and 𝑇 have the same minimal polynomial. 

Claim 2 

     Let  𝑝 𝑥 = 𝑞1(𝑥)𝑒1 , 𝑞2(𝑥)𝑒2 , … 𝑞𝑘(𝑥)𝑒𝑘  be the minimal polynomial for both 𝑆 and 𝑇. 

     If 𝑣 is a subspace of 𝑉 invariant under 𝑆, then 𝑣𝜓 is a subspace of 𝑊 invariant under 𝑇. 

                                                 ∴    𝑣𝜓 𝑇 = 𝑣𝑆𝜓 ⊂ 𝑣𝜓       

     Let 𝑆1 be the linear transformation induced by 𝑇 on 𝑣𝜓. 

     Now the minimal polynomial 𝑆 on 𝑉 is  𝑥 = 𝑞1(𝑥)𝑒1 , 𝑞2(𝑥)𝑒2 , … 𝑞𝑘(𝑥)𝑒𝑘 . 

      As we have seen in Theorem 6.7.1 and its Corollary, 

            We take as the 1
st
  elementary divisor of  𝑆 as the polynomial 𝑞1(𝑥)𝑒1  and we can find a 

subspace 𝑉1 of 𝑉, which is invariant under 𝑆. 

In terms of  𝑺: 

1.  𝑉 = 𝑉1 ⊕𝑀, where 𝑀 is invariant under 𝑆. 

2. The only elementary divisor of 𝑆1 the linear transformation induced on 𝑉1by 𝑆 is 𝑞1(𝑥)𝑒1 . 

3.  The other elementary divisors of 𝑆 are those of linear transformation 𝑆2 induced by 𝑆 on 

𝑀.  

 In terms of 𝑻: 

1. 𝑊 = 𝑊1 ⊕𝑁, where 𝑊1 = 𝑉1𝜓 and 𝑁 = 𝑀𝜓 are invariant under 𝑇. 

2. The only elementary divisor of 𝑇1 the linear transformation induced by 𝑇 on 𝑊1 is 

𝑞1(𝑥)𝑒1 . 

3. The other elementary divisor of 𝑇 are those of the linear transformation 𝑇2 induced by 

𝑇 on 𝑁. 

      Since   𝑁 = 𝑀𝜓,  𝑀 and 𝑁  are isomorphic vector spaces over 𝐹 under the isomorphic 𝜓2 

induced by  𝜓.  

      If 𝑢 ∈ 𝑀, then 𝑢 𝑆2 𝜓2 =  𝑢𝑆 𝜓 =  𝑢𝜓 𝑇 =  𝑢𝜓2 𝑇2. 

                 ∴ 𝑆2 and 𝑇2 are in the same relation vis-à-vis 𝜓2 as 𝑆 and 𝑇 were vis-à-vis 𝜓. 
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     By induction on dimension 𝑆2 and 𝑇2 have the same elementary divisors. 

                 ∴ 𝑆  and 𝑇 have the same elementary divisors.  

THEOREM: 6.7.3   

     The elements 𝑆 and 𝑇  in 𝐴𝐹(𝑉) are similar in 𝐴𝐹(𝑉)   if and only if they have the same 

elementary divisors. 

Proof: 

Necessary Part: 

    Suppose 𝑆 and 𝑇 have the same elementary divisors.  Then there are two bases  

 𝑣1, 𝑣2 , … 𝑣𝑛 ×  𝑤1, 𝑤2, …𝑤𝑛  of 𝑉 over 𝐹 such that matrix  𝑆 in  𝑣1, 𝑣2, … 𝑣𝑛  equals the matrix 

of canonical form  

𝑅11 0   ⋯ 0
0 𝑅12    ⋯ 0
⋮ ⋯   ⋯ ⋯

0 ⋯   ⋯ 𝑅1𝑖

   (∵ 𝐵𝑦 𝐶𝑜𝑟𝑜𝑙𝑙𝑎𝑟𝑦 6.7.1) 

     We know that, if  𝑉 is a finite dimensional vector space over 𝐹, then any two bases of 𝑉 have 

the same number of elements. 

 𝑅𝑖 =  

𝐶(𝑞𝑖(𝑥)𝑒𝑖1 )

𝐶 𝑞𝑖 𝑥 
𝑒𝑖2 

⋱ 𝐶 𝑞𝑖 𝑥 
𝑒𝑖𝑟𝑖  

 , where each 𝑒𝑖 = 𝑒𝑖1 ≥ 𝑒𝑖2 ≥ ⋯𝑒𝑖𝑟𝑖 . 

By the result, 

     “Let 𝑆 and 𝑇 be linear transformation defined on 𝑉.  If the matrix on 𝑇 in of   𝑣1, 𝑣2 , … 𝑣𝑛  is 

equal to the matrix of 𝑆  in  𝑤1, 𝑤2, …𝑤𝑛 .  Then there exist a linear transformation 𝐴  on 𝑉 

defined by 𝑉𝑖𝐴 = 𝑤𝑖 , ∀ 𝑖 , such that 𝑇 = 𝐴𝑆𝐴−1  (or) 𝑆 = 𝐴𝑇𝐴−1   which gives 𝑆 and 𝑇  are 

similar”. 

Sufficient Part: 

    Suppose that, 𝑆 and 𝑇  are similar there exist a linear transformation 𝐴 on 𝑉  such that 𝑇 =

𝐴𝑆𝐴−1 (or) 𝑆 = 𝐴𝑇𝐴−1. 

    ∴ 𝑇 and 𝑆 are same minimal polynomial. 

    Without loss of generality, We may assume that the minimal polynomial of 𝑇 is 𝑞(𝑥)𝑒 , where  

𝑞(𝑥) is irreducible in 𝐹[𝑥] of degree ′𝑑′ . 
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     “ The rational canonical form” states that we can decomposed 𝑉 as 𝑉 = 𝑉1  ⊕ 𝑉2 ⊕…⊕𝑉𝑟  , 

where 𝑉𝑖  is invariant under 𝑇 then the linear transformation induced by 𝑇 on 𝑉𝑖  as the matrix 

𝑞(𝑥)𝑒𝑖 ,  where 𝑒1 ≥ 𝑒2 ≥ ⋯𝑒𝑟 . 

      i.e. 𝑞(𝑥)𝑒1 . 𝑞(𝑥)𝑒2 …𝑞(𝑥)𝑒𝑟  are the elementary divisors of 𝑇  _______ (A) 

     If 𝑉 = 𝑉1  ⊕ 𝑉2 ⊕…⊕𝑉𝑠 ,  where the subspace 𝑉𝑗  is invariant under 𝑆,  then the linear 

transformation induced by 𝑆 on 𝑉𝑗  as the matrix 𝑞(𝑥)𝑓𝑗  where  𝑓1 ≥ 𝑓2 ≥ ⋯ ≥ 𝑓𝑠 

     i.e. 𝑞(𝑥)𝑓1𝑞(𝑥)𝑓2 …𝑞(𝑥)𝑓𝑠  are the elementary divisor of 𝑆  __________ (B) 

     From (A) and (B), we get 

                                   𝑟 = 𝑠, 𝑒1 = 𝑓1 , 𝑒2 = 𝑓2, … 𝑒𝑟 = 𝑓𝑠    

     Claim 

        𝑟 = 𝑠, 𝑒1 = 𝑓1 , 𝑒2 = 𝑓2, … 𝑒𝑟 = 𝑓𝑠    

       Suppose that,  𝑒𝑖 ≠ 𝑓𝑖  

       Then there exist a first inter 𝑚, such that   𝑒𝑚 ≠ 𝑓𝑚 , where  

                                   𝑒1 = 𝑓1, 𝑒2 = 𝑓2 , … 𝑒𝑚−1 = 𝑓𝑚−1.    

       Suppose that 𝑒𝑚 = 𝑓𝑚 , now 𝑞(𝑇)𝑓𝑚  annihilates 𝑈𝑚 , 𝑈𝑚+1, … , 𝑈𝑠 . 

       i.e. 𝑉1𝑞(𝑇)𝑓𝑚 = 0     

       Consider,  𝑉𝑞(𝑇)𝑓𝑚 = (𝑉1  ⊕ 𝑉2 ⊕…⊕𝑉𝑚−1)𝑞(𝑇)𝑓𝑚  

                                         = 𝑉1𝑞(𝑇)𝑓𝑚  ⊕ 𝑉2𝑞(𝑇)𝑓𝑚 ⊕…⊕𝑉𝑚−1𝑞(𝑇)𝑓𝑚  

                  𝑑𝑖𝑚 𝑈𝑞(𝑇)𝑓𝑚 = 𝑑𝑖𝑚𝑈1𝑞(𝑇)𝑓𝑚 + 𝑑𝑖𝑚𝑈2𝑞(𝑇)𝑓𝑚 +⋯+ 𝑑𝑖𝑚𝑈𝑚−1𝑞(𝑇)𝑓𝑚  

                          ∵  𝑑𝑖𝑚𝑈𝑖 = 𝑑𝑓𝑖  𝑎𝑛𝑑 𝑑𝑖𝑚 𝑞(𝑇)𝑓𝑚 = 𝑑𝑓𝑚  , 𝑓𝑜𝑟 𝑖 ≤ 𝑚   

                 𝑑𝑖𝑚(𝑈𝑖𝑞(𝑇)𝑓𝑚 ) = 𝑑(𝑓𝑖 − 𝑓𝑚 )   _____________  (1) 

        𝑑𝑖𝑚  𝑈𝑞 𝑇 𝑓𝑚  = 𝑑 𝑓1 − 𝑓𝑚  + 𝑑 𝑓2 − 𝑓𝑚  + ⋯+ 𝑑 𝑓𝑚−1 − 𝑓𝑚    

        But,         𝑉𝑞(𝑇)𝑓𝑚 > 𝑉1𝑞(𝑇)𝑓𝑚  ⊕ 𝑉2𝑞(𝑇)𝑓𝑚 ⊕…⊕𝑉𝑚𝑞(𝑇)𝑓𝑚    

       Consider, 𝑉𝑞(𝑇)𝑓𝑚 = (𝑉1  ⊕ 𝑉2 ⊕…⊕𝑉𝑟)𝑞(𝑇)𝑓𝑚  

                                        = 𝑉1𝑞(𝑇)𝑓𝑚  ⊕ 𝑉2𝑞(𝑇)𝑓𝑚 ⊕…⊕𝑉𝑟𝑞(𝑇)𝑓𝑚        
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                     𝑑𝑖𝑚𝑉𝑞(𝑇)𝑓𝑚 = 𝑑𝑖𝑚𝑉1𝑞(𝑇)𝑓𝑚  ⊕ 𝑑𝑖𝑚𝑉2𝑞(𝑇)𝑓𝑚 ⊕…⊕𝑑𝑖𝑚𝑉𝑟𝑞(𝑇)𝑓𝑚  

                        [∵  𝑑𝑖𝑚𝑉𝑖𝑞 𝑇 
𝑓𝑚  ≥ 𝑑 𝑒𝑖 − 𝑓𝑚  , 𝑓𝑜𝑟 𝑖 ≤ 𝑚] ________ (2) 

      ∴ By our choice of 𝑒𝑚 , 𝑒1 = 𝑓1, 𝑒2 = 𝑓2 , … 𝑒𝑚−1 = 𝑓𝑚−1. and 𝑒𝑚 > 𝑓𝑚  

      Substituting in (1), we have 

        dim 𝑉𝑞 𝑇 𝑓𝑚  ≥ 𝑑 𝑓1 − 𝑓𝑚  + 𝑑 𝑓2 − 𝑓𝑚  + ⋯+ 𝑑 𝑓𝑚−1. − 𝑓𝑚     

     This is necessary and sufficient to the equality of (1). 

     Which is a contradiction to our assumption. 

                              Hence, 𝑟 = 𝑠, 𝑒𝑖 = 𝑓𝑖 , ∀𝑖 

               Thus 𝑇 and 𝑆 have same elementary divisors. 

COROLLARY:6.7.3 

     Suppose the two matrices 𝐴 and 𝐵 in 𝐹𝑛  are similar in 𝐾𝑛  where 𝐾 is an extension of 𝐹.  Then 

𝐴 and 𝐵 are already similar in 𝐹𝑛 . 

Proof: 

     Suppose that 𝐴, 𝐵 ∈ 𝐹𝑛  are similar in 𝐾𝑛  such that 𝐵 = 𝐶−1𝐴𝐶 with 𝐶 ∈ 𝐾𝑛 . 

     Consider, 𝐾(𝑛) is the vector space of 𝑛 −tuples over 𝐾.  Since 𝐾 is an extension of 𝐹. 

                                                   ∴  𝐹(𝑛) ≤ 𝐾(𝑛) 

      𝐹(𝑛) is a vector space over 𝐹 but not over 𝐾. 

      ∴ The image of   𝐹 𝑛  is a subset of  𝐾 𝑛 . 

      Now, 𝐹(𝑛)𝐶  is a subset of 𝐾 𝑛 . 

      Let 𝑉 be the vector space 𝐹 𝑛  over 𝐹 and  𝑊 be the vector space 𝐹(𝑛)𝐶  over 𝐹. 

      For any 𝑣 ∈ 𝑉, let 𝑣𝜓 = 𝑣𝐶. 

      Now, 𝐴 ∈ 𝐴𝐹(𝑉) and  𝐵 ∈ 𝐴𝐹(𝑊) and for any 𝑣 ∈ 𝑉, 

             𝑣𝐴 𝜓 = 𝑣𝐴𝐶 = 𝑣𝐶𝐵 = (𝑣𝜓)𝐵, (∵ 𝐴 = 𝐶𝐵𝐶−1 ⟹ 𝐴𝐶 = 𝐶𝐵) 

      (whence the conditions of Theorem 6.7.3 are satisfied) 

     Thus 𝐴 and 𝐵 have the same elementary divisors. 
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      Therefore by Theorem 6.7.3, 𝐴 and 𝐵 are similar in 𝐹𝑛 . 

TRACE AND TRANSPOSE 

TRACE: 

     Let 𝐹 be a field and let 𝐴 be a matrix in 𝐹𝑛 .  Then the trace of 𝐴 is the sum of the elements on 

the main diagonal of 𝐴. We can write the trace of 𝐴 as 𝑡𝑟 𝐴. Let   𝐴 =  𝛼𝑖𝑗  ∈ 𝐹  then 𝑡𝑟 𝐴 =

 𝛼𝑖𝑖
𝑛
𝑖=1 , where 𝐴 =  𝛼𝑖𝑗  =  

𝛼11

𝛼21

⋮
𝛼𝑛1

      

𝛼12

𝛼22

⋮
𝛼𝑛2

        

⋯
⋯
⋮
⋯

        

𝛼1𝑛

𝛼2𝑛

⋮
𝛼𝑛𝑛

 . 

LEMMA 6.8.1 

     For 𝐴, 𝐵 ∈ 𝐹𝑛  and 𝜆 ∈ 𝐹, 

1. 𝑡𝑟 𝜆𝐴 = 𝜆 𝑡𝑟 𝐴. 

2. 𝑡𝑟  𝐴 + 𝐵 = 𝑡𝑟 𝐴 + 𝑡𝑟 𝐵.  

3. 𝑡𝑟  𝐴𝐵 = 𝑡𝑟  𝐵𝐴 . 

Proof: 

    Let  𝐴 =  𝛼𝑖𝑗  , 𝐵 =  𝛽𝑖𝑗   then 𝐴𝐵 =  𝛾𝑖𝑗   where  𝛾𝑖𝑗 =  𝛼𝑖𝑘𝛽𝑘𝑗
𝑛
𝑘=1  

1. To prove 𝑡𝑟 𝜆𝐴 = 𝜆 𝑡𝑟 𝐴 

Let 𝐴 =  𝛼𝑖𝑗  . Then  

𝑡𝑟  𝐴    =  𝛼𝑖𝑖
𝑛
𝑖=1        

𝑡𝑟  𝜆𝐴  =  (𝜆𝛼𝑖𝑖)
𝑛
𝑖=1      

               = 𝜆  (𝛼𝑖𝑖)
𝑛
𝑖=1  

  ∴ 𝑡𝑟  𝜆𝐴 = 𝜆 𝑡𝑟 𝐴    

2. To prove 𝑡𝑟  𝐴 + 𝐵 = 𝑡𝑟 𝐴 + 𝑡𝑟 𝐵 

Let 𝐴 =  𝛼𝑖𝑗  , 𝐵 =  𝛽𝑖𝑗  . Then 

     𝐴 +  𝐵 =  𝛼𝑖𝑗  +  𝛽𝑖𝑗   

     𝑡𝑟 (𝐴 +  𝐵) =  (𝛼𝑖𝑖
𝑛
𝑖=1 + 𝛽𝑖𝑖) 

                         =  𝛼𝑖𝑖
𝑛
𝑖=1 +  𝛽𝑖𝑖

𝑛
𝑖=1    

                  ∴ 𝑡𝑟 (𝐴 +  𝐵)   =  𝑡𝑟 𝐴 + 𝑡𝑟 𝐵    

4. To prove 𝑡𝑟  𝐴𝐵 = 𝑡𝑟  𝐵𝐴 . 

Let  𝐴𝐵 =  𝛾𝑖𝑗   where  𝛾𝑖𝑗 =  𝛼𝑖𝑘𝛽𝑘𝑗
𝑛
𝑘=1  and let 𝐵𝐴 =  𝜇𝛾𝑖𝑗   where 

 𝜇𝑖𝑗 =  𝛽𝑖𝑘𝛼𝑘𝑗
𝑛
𝑘=1 .  Thus,  

                        𝑡𝑟  𝐴𝐵 =  𝛾𝑖𝑖 =  ( 𝛼𝑖𝑘𝛽𝑘𝑖
𝑛
𝑘=1 )𝑛

𝑖=1
𝑛
𝑖=1  
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            If we interchange the order of summation in this last sum, we get 

                        𝑡𝑟  𝐴𝐵 =  ( 𝛼𝑖𝑘𝛽𝑘𝑖
𝑛
𝑖=1 )𝑛

𝑘=1   

                                       =  ( 𝛽𝑘𝑖𝛼𝑖𝑘
𝑛
𝑖=1 )𝑛

𝑘=1  

                                       =  𝜇𝑘𝑘
𝑛
𝑘=1  

                         ∴ 𝑡𝑟  𝐴𝐵 = 𝑡𝑟  𝐵𝐴 .    

COROLLARY 

     If 𝐴 is invertible then 𝐴𝐶𝐴−1 = 𝑡𝑟 𝐶. 

Proof: 

     Given 𝐴 is invertible, then we have 

                                 𝐴𝐴−1 = 1  __________  (1) 

      Consider,  𝐵 = 𝐶𝐴−1 

                       𝐴𝐵 = 𝐴𝐶𝐴−1 

                     𝑡𝑟  𝐴𝐵 = 𝑡𝑟  𝐵𝐴 = 𝑡𝑟  𝐶𝐴−1𝐴 = 𝑡𝑟 𝐶.  (∵  𝐴𝐴−1 = 1  )          

DEFINITION: (Trace of 𝑻)       

      If 𝑇 ∈ 𝐴(𝑉) then 𝑡𝑟 𝑇, then the trace of 𝑇 is the trace of 𝑚1(𝑇) where 𝑚1(𝑇) is the matrix of 

𝑇 in some basis of 𝑉.  

                              i.e. 𝑡𝑟 𝑇 = 𝑡𝑟 𝑚1(𝑇)    

LEMMA : 6.8.2 

     If 𝑇 ∈ 𝐴(𝑉) then 𝑡𝑟 𝑇 is the sum of the characteristic roots of  𝑇 (using each characteristic 

root as often as its multiplicity). 

Proof:  

     Assume that 𝑇 is a matrix in 𝐹𝑛 . 

     By using the result, 

      “ If 𝐾 is the splitting field for the minimum polynomial of 𝑇 over 𝐹 then in 𝐾𝑛", we get 

      𝑇  can be brought to its Jordan form 𝐽 ,  𝐽  is a matrix on whose diagonal appear the 

characteristic roots of 𝑇 each root appearing as often as its multiplicity. 
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      Thus, 𝑡𝑟 𝐽=sum  of the characteristic root 𝑇 

      𝐽 is of the form,     𝐽 = 𝐴𝑇𝐴−1 

                                𝑡𝑟 𝐽 = 𝑡𝑟  𝐴𝑇𝐴−1 = 𝑡𝑟 𝑇 = 𝑠𝑢𝑚 𝑜𝑓 𝑡𝑕𝑒 𝑐𝑕𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑟𝑜𝑜𝑡 𝑜𝑓 𝑇. 

LEMMA: 6.8.3 

     If 𝐹 is a field of characteristic zero and if 𝑇 ∈ 𝐴𝐹(𝑉) is such that 𝑡𝑟  𝑇𝑖 = 0, ∀ 𝑖 ≥ 1, then 𝑇 

is nilpotent. 

Proof:  

     Since 𝑇 ∈ 𝐴𝐹(𝑉) and 𝑇 satisfies some minimal polynomial, 

                          𝑝 𝑥 = 𝑥𝑚 + 𝛼1𝑥
𝑚−1 +⋯+ 𝛼𝑚  

                          𝑝 𝑇 = 𝑇𝑚 + 𝛼1𝑇
𝑚−1 +⋯+ 𝛼𝑚   

      Then, 𝑡𝑟  𝑝 𝑇  = 𝑡𝑟  𝑇𝑚 + 𝛼1𝑇
𝑚−1 +⋯+ 𝛼𝑚   

            ∴ 𝑡𝑟 𝑇𝑚 + 𝛼1 𝑡𝑟 𝑇𝑚−1 +⋯+ 𝑡𝑟 𝛼𝑚 = 0 

      Given 𝑡𝑟  𝑇𝑖 = 0,    ∀ 𝑖 ≥ 1 

     Then we get, 𝑡𝑟(𝑎𝑚) = 0  

     If dim 𝑉 = 𝑛  then  𝑡𝑟 𝑎𝑚 = 𝑛𝛼𝑚  where 𝑛𝛼𝑚 = 0. But the characteristic of 𝐹 is zero. 

           ∴ 𝑛 ≠ 0 ⟹ 𝛼𝑚 = 0 

     Since the constant term of the minimal polynomial 𝑇 = 0. 

    By a theorem, 

        “ If  𝑉 is a finite dimensional over 𝐹 then 𝑇 ∈ 𝐴(𝑉) is invertible  if and only if the constant 

term of the minimal polynomial for 𝑇 is not zero” 

          ∴ 𝑇 is not invertible 

          i.e. 𝑇 is singular. 

         ∴ Zero is the characteristic root of 𝑇. 

    Consider 𝑇 as a matrix in 𝐹𝑛 , also as a matrix in 𝐾𝑛 , where 𝐾 contains all characteristic roof 𝑇. 

    By a theorem, 
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    “ If  𝑇 ∈ 𝐴(𝑉) has all its characteristic roots in 𝐹𝑛  then there is a basis of 𝑉 in which the matrix 

of 𝑇 is triangular”. 

    We can bring 𝑇 to triangular form.  Since zero is the characteristic root of 𝑇 we can bring it of 

the form, 

      

0
𝛽2

⋮
𝛽𝑛

     

0
𝛼2

⋮
∗

     

⋯
⋯
⋮
⋯

     

0
0
⋮
𝛼𝑛

  =  
0 0
∗ 𝑇2

  where 𝑇2 =  
𝛼2 0    ⋯ 0
∗      0    ⋯ 𝛼𝑛

  

     𝑇2 is an  𝑛 − 1 × (𝑛 − 1) matrix. 

     Now,        𝑇𝑘 =  
0 0
0 𝑇2

𝑘  

      Hence 𝑡𝑟  𝑇𝑘 = 0, ∀ 𝑘 ≥ 1 either induction on ′𝑛′ or repeating the arguments on 𝑇2 used for 

𝑇 we get, 

     𝛼2, 𝛼3, … , 𝛼𝑛  are the characteristic root. 

                         i.e. 𝛼2 = 𝛼3 = ⋯𝛼𝑛 = 0 

     Thus when 𝑇 is brought to triangular form all its entries on the main diagonals are zero. 

                           ∴  𝑇 is nilpotent. 

DEFINITION: (Transpose) 

     If 𝐴 =  𝛼𝑖𝑗  ∈ 𝐹𝑛  then the transpose of  𝐴,  written as 𝐴′ ,  is the matrix 𝐴′ = (𝛾𝑖𝑗 )  where 

𝛾𝑖𝑗 = 𝛼𝑗𝑖   for each 𝑖 and 𝑗. 

LEMMA: 6.8.5 

     For all 𝐴, 𝐵 ∈ 𝐹𝑛 ,   

1.  𝐴′ ′ = 𝐴 

2.  𝐴 + 𝐵 ′ = 𝐴′ + 𝐵′ 

3.  𝐴𝐵 ′ = 𝐵′𝐴′ 

Proof: 

(i)  𝐴′ ′ = 𝐴 

Let 𝐴 =  𝛼𝑖𝑗   

      𝐴′ =  𝛽𝑖𝑗  , where 𝛽𝑖𝑗 = 𝛼𝑗𝑖 , ∀ 𝑖, 𝑗 

      𝐴′ ′ =  𝛾𝑖𝑗  , where 𝛾𝑖𝑗 = 𝛽𝑗𝑖 ,   which implies that 𝛾𝑖𝑗 = 𝛽𝑗𝑖 = 𝛼𝑖𝑗  
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∴  𝐴′ ′ = 𝛽𝑗𝑖 = 𝛼𝑖𝑗 = 𝐴 

 

(ii)  𝐴 + 𝐵 ′ = 𝐴′ + 𝐵′ 

Let  𝐴 =  𝛼𝑖𝑗   

       𝐴′ = (𝑎𝑖𝑗 ) where (𝑎𝑖𝑗 ) = 𝛼𝑗𝑖 , ∀ 𝑖, 𝑗 

      𝐵 =  𝛽𝑖𝑗   

      𝐵′ =  𝑏𝑖𝑗   where  𝑏𝑖𝑗  = 𝛽𝑗𝑖 , ∀𝑖, 𝑗 

     𝐴 + 𝐵 = (𝛾𝑖𝑗 )  where 𝛾𝑖𝑗 = 𝛼𝑖𝑗 + 𝛽𝑖𝑗 , ∀𝑖, 𝑗 

      𝐴 + 𝐵 ′ = 𝛿𝑖𝑗 ⟹ 𝛿𝑖𝑗 + 𝛾𝑖𝑗 = 𝛼𝑗𝑖 + 𝛽𝑗𝑖 = (𝑎𝑖𝑗 ) +  𝑏𝑖𝑗  ∈ 𝐴
′ + 𝐵′ 

∴  𝐴 + 𝐵 ′ = 𝐴′ + 𝐵′ 

(iii)  𝐴𝐵 ′ = 𝐵′𝐴′ 

Let 𝐴 =  𝑎𝑖𝑗  , 𝐴′ =  𝛼𝑖𝑗   where  𝛼𝑖𝑗  = 𝑎𝑗𝑖  

Let 𝐵 = (𝑏𝑖𝑗 ), 𝐵′ =  𝛽𝑖𝑗   where 𝛽𝑖𝑗 = (𝑏𝑗𝑖 ) 

Let 𝐴𝐵 =  𝐶𝑖𝑗  , where  𝐶𝑖𝑗  =  𝑎𝑖𝑘
𝑛
𝑘=1 𝑏𝑘𝑗  

      𝐴𝐵 ′ = (𝑑𝑖𝑗 )   where (𝑑𝑖𝑗 ) =  𝐶𝑗𝑖      

𝐵′𝐴′ = 𝜆𝑗𝑖  where 𝜆𝑗𝑖 =  𝛽𝑖𝑘
𝑛
𝑘=1 𝛼𝑘𝑗  

  Consider for every 𝑖, 𝑗, 

              𝜆𝑗𝑖 =  𝛽𝑖𝑘
𝑛
𝑘=1 𝛼𝑘𝑗  

                   𝜆𝑗𝑖 =  𝑏𝑘𝑖
𝑛
𝑘=1 𝑎𝑗𝑘          

        =  𝑎𝑗𝑘
𝑛
𝑘=1 𝑏𝑘𝑖 = 𝐶𝑗𝑖 = (𝑑𝑖𝑗 ) = (𝐴𝐵)′ 

∴  𝐴𝐵 ′ = 𝐵′𝐴′ 

 

Definition: 

Symmetric matrix: 

   If  𝐴 ∈ 𝐹𝑛  be a square matrix is said to be symmetric if 𝐴′ = 𝐴. 

   Eg: 

      𝐴 =    
𝑎 𝑏
𝑏 𝑎

         𝐴′ =   
𝑎 𝑏
𝑏 𝑎

 

Skew symmetric matrix: 

    If   𝐴 ∈ 𝐹𝑛   be a skew square matrix is said to be skew symmetric if  𝐴′ = −𝐴. 
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  Eg:  
    0 −𝑎
   𝑎  0

 

Note 1: 

    In a skew symmetric matrix the leading diagonal elements are zero. 

Note 2: 

  If  𝐴 is square matrix 𝐴 + 𝐴′  is symmetric and 𝐴 − 𝐴′  is skew symmetric 𝐴𝐴′  and 𝐴′𝐴 are 

symmetric. 

Adjoint on 𝐹𝑛 : 

     A mapping ∗∶  𝐹𝑛 → 𝐹𝑛  is called adjoint on 𝐹𝑛   if (i) (𝐴∗)∗ = 𝐴 

          (ii) (𝐴 + 𝐵)∗ = 𝐴∗ + 𝐵∗ 

          (iii) (𝐴𝐵)∗ = 𝐵∗𝐴∗∀ 𝐴, 𝐵 ∈ 𝐹𝑛  

Hermitian adjoint on 𝐹𝑛 : 

    Let consider the field of complex number for every matrix 𝐴 = (𝛼𝑖𝑗 )  and let 𝐴∗ = 𝛾𝑖𝑗    

    where  𝛾𝑖𝑗 =  
𝑗𝑖

in this case the ∗  is called the Hermitian adjoint on 𝐹𝑛 . 

Hermitian matrix: 

    Let 𝑓  be a field of complex number and  ∗ be a Hermitian adjoint every square matrix is 

called hermitian if 𝐴∗ = 𝐴. 

 Eg: 

             
1 −1 + 2𝑖 3 + 4𝑖

−1 − 2𝑖 −2 3
3 − 4𝑖 3 −2

 

 

Remark: 

1. If  𝐴 ≠ 0 ∈ 𝐹𝑛  then 𝑡𝑟(𝐴𝐴∗) > 0 

2. Let 𝐴1, 𝐴2, … 𝐴𝑛 ∈ 𝐹𝑛   if  𝐴1𝐴1
∗ + 𝐴2𝐴2

∗ +⋯+ 𝐴𝑘𝐴𝑘
∗ = 0  

   then    𝐴1 = 𝐴2 = ⋯ = 𝐴𝑘 = 0 

3. If   𝜆  is  a scalar matrix then 𝜆∗ =   



89 
 

Result : 

  The characteristic root of a Hermitian matrix are all real . 

Proof : 

     Given that 𝐴 ∈ 𝐹𝑛  be a hermitian matrix  

    To prove that the characteristic roots of  𝐴 is real. 

   We shall prove this by the method of contradiction 

   Assume that the roots of 𝐴 is a complex number ie) 𝛼 + 𝑖𝛽 where 𝛼, 𝛽 are real, by using the 

definition of characteristic roots 𝐴 − (𝛼 + 𝑖𝛽) is singular. 

             𝐴 −  𝛼 + 𝑖𝛽  [𝐴 −  𝛼 − 𝑖𝛽 ] is singular 

             𝐴 −  𝛼 + 𝑖𝛽  [𝐴 −  𝛼 − 𝑖𝛽 ] is not invertible  

              𝐴 − 𝛼 + 𝑖𝛽  [ 𝐴 − 𝛼 − 𝑖𝛽] is not invertible 

            (𝐴 − 𝛼)2 − (𝑖𝛽)2 is not invertible 

            (𝐴 − 𝛼)2 + 𝛽2  is not invertible 

By using the theorem, 

 If  𝑣 is finite dimension vector space over 𝐹 and if 𝐴 ∈ 𝐹𝑛  is not invertible then there exist a 

matrix 𝐵 ≠ 0 such that 𝐴𝐵 = 𝐵𝐴 = 0 there exist a matrix 𝐶 ≠ 0 such that 

 𝐶 (𝐴 − 𝛼)2 + 𝛽2 = 0 

Multiply 𝐶∗ on R.H.S of both sides 

𝐶[ 𝐴 − 𝛼)2 + 𝛽2 𝐶∗ = 0 

𝐶 𝐴 − 𝛼  𝐴 − 𝛼 𝐶∗ + 𝐶𝛽𝛽𝐶∗ = 0 →  

Takes 𝐷 = 𝐶(𝐴 − 𝛼)                              𝐸 = 𝐶𝛽 

          𝐷∗ = (𝐴 − 𝛼)∗𝐶∗                        𝐸∗ = (𝐶𝛽)∗ 

             = (𝐴∗ − 𝛼∗)𝐶∗                              = 𝛽∗𝐶∗ 

             = (𝐴 − 𝛼)𝐶∗                                = 𝛽𝐶∗ 

Since 𝐴 is hermitian  𝐴∗ = 𝐴 and 𝛼, 𝛽 are real  𝛼∗ = 𝛼, 𝛽∗ = 𝛽 

From               𝐷𝐷∗ + 𝐸𝐸∗ = 0     

1 

1 
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                        𝐷 = 𝐸 = 0 [𝑠𝑖𝑛𝑐𝑒 𝑏𝑦 𝑟𝑒𝑚𝑎𝑟𝑘 2] 

In particular 𝐸 = 0 

                     𝛽𝐶 = 0 

                     𝛽 = 0   [𝑠𝑖𝑛𝑐𝑒 𝐶 ≠ 0] 

Which contradicts our assumption is wrong 

The characteristic roots of hermitian matrix 𝐴 is real. 

Result: 

For  𝐴 ∈ 𝐹𝑛 . The real characteristic roots are 𝐴𝐴∗ are non negative. 

Proof: 

Given that 𝐴 ∈ 𝐹𝑛  

𝐴∗ = 𝐴 

(𝐴𝐴∗)∗ = (𝐴∗)∗𝐴∗ 

             = 𝐴𝐴∗ 

∴ 𝐴𝐴∗  is hermitian  

To prove the real characteristic roots of 𝐴𝐴∗ is positive 

We shall prove this by the method of contradiction 

Let 𝛼 be the characteristic roots of 𝐴𝐴∗ which is negative 

ie)  𝛼 = −𝛽2 where 𝛽 is real by using the definition of a characteristic root 

            𝐴𝐴∗ − (−𝛽2) is singular  

            𝐴𝐴∗ + 𝛽2 is singular 

By the theorem there exist 𝐶 ≠ 0 such that 𝐶 𝐴𝐴∗ + 𝛽2 = 0 

Multiply 𝐶∗ in R.H.S on both sides   𝐶 𝐴𝐴∗ + 𝛽2 𝐶∗ = 0 

𝐶𝐴𝐴∗𝐶∗ + 𝐶𝛽𝛽𝐶∗ = 0 

Take 𝐷 = 𝐶𝐴                              𝐸 = 𝐶𝛽 

         𝐷∗ = (𝐶𝐴)∗                       𝐸∗ = (𝐶𝛽)∗ 



91 
 

               = 𝐴∗𝐶∗                              = 𝛽∗𝐶∗ 

         𝐷𝐷∗ + 𝐸𝐸∗ = 0  𝑠𝑖𝑛𝑐𝑒 𝑏𝑦 𝑟𝑒𝑚𝑎𝑟𝑘 2  

         𝐷 = 𝐸 = 0 

In particular 𝐸 = 0 

               𝐶𝛽 = 0 

               𝛽 = 0  𝑠𝑖𝑛𝑐𝑒 𝐶 ≠ 0  

Which contradicts our assumption that 𝛼 is negative 

So our assumption is wrong 

∴ The real characteristic roots of 𝐴𝐴∗ are non – negative. 

Definition: 

Hermitian Unitary and Normal Transformation: 

        In this section 𝐹 we denote the field of complex number. 

Fact 1: 

A polynomial with coefficient which are complex number has all its roots in complex field. 

Fact 2: 

The only irreducible non constant polynomial over the field of real number are either of degree 1 

or of degree 2. 

Lemma 6.10.1: 

If 𝑇𝜖𝐴(𝑉) is such that the inner product (𝑣𝑇, 𝑣) = 0 ∀ 𝑣 ∈ 𝑉 𝑡𝑕𝑒𝑛 𝑇 = 0  (Here 𝑉 is an inner 

product space over the complex field) 

Proof: 

Gn 𝑇𝜖𝐴(𝑉) such that inner product  𝑣𝑇, 𝑣 = 0 ∀ 𝑣 ∈ 𝑉 →   

    Here 𝑣 is the inner product space over the complex field. 

    𝑢,𝑤 ∈ 𝑣 

    𝑢 + 𝑤 ∈ 𝑣   𝑢 + 𝑤 = 𝑣 𝑠𝑢𝑏 𝑖𝑛  equation 

    𝑢 + 𝑤 ∈ 𝑣    

1 

1 

1 
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                𝑢 + 𝑤 𝑇,  𝑢 + 𝑤  = 0 

                   𝑢𝑇 + 𝑤𝑇 ,  𝑢 + 𝑤  = 0 

                  𝑢𝑇, 𝑢 +  𝑢𝑇,𝑤 +  𝑤𝑇, 𝑢 +  𝑤𝑇,𝑤 = 0 𝑏𝑦 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1 

                  𝑢𝑇,𝑤 +  𝑤𝑇, 𝑢 = 0  →   

     Take 𝑤 = 𝑖𝑤 

               𝑢𝑇, 𝑖𝑤 +  𝑖𝑤𝑇, 𝑢 = 0  

          𝑖 𝑢𝑇.𝑤 + 𝑖 𝑤𝑇, 𝑢 = 0 

             −𝑖 𝑢𝑇,𝑤 + 𝑖(𝑤𝑡, 𝑢) = 0 

      ÷ 𝑏𝑦 𝑖, − 𝑢𝑇,𝑤 +  𝑤𝑇, 𝑢 = 0   →  

                         +          2 𝑤𝑇, 𝑢 = 0 

                                      𝑤𝑇, 𝑢 = 0  

 Take 𝑢 = 𝑤𝑇 

         𝑤𝑇, 𝑤𝑇 = 0 

        𝑤𝑇 = 0 

        𝑇 = 0 (∵ 𝑤 ≠ 0) 

Note: 

 If   𝑣 is inner product space over the real field .This lemma is false. 

   Let 𝑣 = { 𝛼, 𝛽  /𝛼, 𝛽𝑎𝑟𝑒 𝑟𝑒𝑎𝑙} 

   Let 𝑇:  𝛼, 𝛽 → (−𝛽, 𝛼) 

   Let 𝑣 ∈ 𝑉  𝑣 =  𝛼, 𝛽    ∵  𝑣𝑇, 𝑣  = 0 

                𝛼, 𝛽 𝑇,  𝛼, 𝛽  = 0 

                 −𝛽, 𝛼 ,  𝛼, 𝛽  = 0 

                −𝛽𝛼 + 𝛼𝛽 = 0 

1 

2 

3 

2 3 
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              𝑣𝑇, 𝑣 = 0   ∀ 𝑣 ∈ 𝑉 and  𝑇 ≠ 0  (∵ 𝑇:  𝛼, 𝛽 →  −𝛽, 𝛼 ) 

 Hence if 𝑣 is the inner product space over the real field then lame is not proved. 

Definition:  

Unitary Linear Transformation: 

The linear transformation 𝑇 ∈ 𝐴 𝑉  is said to be unitary 

                 𝑢𝑇, 𝑣𝑇 =  𝑢, 𝑣 , ∀ 𝑢. 𝑣 ∈ 𝑉 

Problem: 

1. If  𝐴 𝑎𝑛𝑑 𝐵 are similar iff 𝑡𝑟 𝐴 = 𝑡𝑟(𝐵) 

Proof 

Necessary part: 

Given that 𝐴 𝑎𝑛𝑑 𝐵  are similar 

To prove 𝑡𝑟 𝐴 = 𝑡𝑟(𝐵) 

                   𝐴 = 𝐶𝐵𝐶−1 

                𝑡𝑟 𝐴 = 𝑡𝑟(𝐶𝐵𝐶−1) 

                           = 𝑡𝑟(𝐵) 

Sufficient part: 

To prove 𝐴 𝑎𝑛𝑑 𝐵 are similar 

 Given that  𝑡𝑟 𝐴 = 𝑡𝑟(𝐵) 

                   𝑡𝑟 𝐴𝐶𝐶−1 = 𝑡𝑟(𝐵)           

                   𝑡𝑟 𝐵 = 𝑡𝑟(𝐶𝐴𝐶−1) 

                𝐵 = 𝐶𝐴𝐶−1        

                𝐴 𝑎𝑛𝑑 𝐵 are similar 

2. 𝑆 = {𝐴 ∈ 𝐹𝑛  /𝐴∗ = 𝐴} and 𝐾 = {𝐴𝜖𝐹𝑛  /𝐴∗ = −𝐴} prove  i) If 𝐴, 𝐵𝜖𝑆 𝑡𝑕𝑒𝑛 𝐴𝐵 + 𝐵𝐴𝜖𝑆 

ii) If 𝐴, 𝐵𝜖𝐾 𝑡𝑕𝑒𝑛 (𝐴𝐵 − 𝐵𝐴)𝜖𝐾 iii) If 𝐴𝜖𝑆, 𝐵𝜖𝐾 𝑡𝑕𝑒𝑛  𝐴𝐵 − 𝐵𝐴 𝜖𝑆 𝑎𝑛𝑑 (𝐴𝐵 + 𝐵𝐴)𝜖𝑆 

proof: 
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i) To prove (𝐴𝐵 + 𝐵𝐴)𝜖𝑆 

ie) To prove (𝐴𝐵 + 𝐵𝐴)∗ = (𝐴𝐵 + 𝐵𝐴) 

                      𝐴𝜖𝑆  𝐴∗ = 𝐴    

                     𝐵𝜖𝑆  𝐵∗ = 𝐵 

Now consider  (𝐴𝐵 + 𝐵𝐴)∗ = (𝐴𝐵)∗ + (𝐵𝐴)∗ 

                      = 𝐵∗𝐴∗ + 𝐴∗𝐵∗ 

                      = 𝐵𝐴 + 𝐴𝐵 (∵ 𝑏𝑦 𝑒𝑞𝑢 1)  

                      = 𝐴𝐵 + 𝐵𝐴 

                      (𝐴𝐵 + 𝐵𝐴)𝜖𝑆   

ii)  To prove (𝐴𝐵 − 𝐵𝐴)𝜖𝐾 

   ie) To prove  (𝐴𝐵 − 𝐵𝐴)∗ = −(𝐴𝐵 − 𝐵𝐴) 

                         𝐴𝜖𝐾  𝐴∗ = −𝐴 

                          𝐵𝜖𝐾  𝐵∗ = −𝐵 

Now consider (𝐴𝐵 − 𝐵𝐴)∗ = −(𝐴𝐵)∗ − (𝐵𝐴)∗ 

                                             = 𝐵∗𝐴∗ − 𝐴∗𝐵∗ 

                                             =  −𝐵  −𝐴 −  −𝐴  −𝐵 (∵ 𝑏𝑦 𝑒𝑞𝑢 2) 

                                             = 𝐵𝐴 − 𝐴𝐵  

                                             = −(𝐴𝐵 − 𝐵𝐴) 

                      𝐴𝐵 − 𝐵𝐴 𝜖 𝐾  

iii) 𝐴𝜖𝑆, 𝐵𝜖𝐾 𝑡𝑕𝑒𝑛 𝐴𝐵 − 𝐵𝐴𝜖𝑆 𝑎𝑛𝑑 𝐴𝐵 + 𝐵𝐴𝜖𝐾 

       𝐴𝜖𝑆  𝐴∗ = 𝐴 

       𝐵𝜖𝐾  𝐵∗ = −𝐵       →         

 To prove (𝐴𝐵 − 𝐵𝐴)𝜖𝑆 

 ie) To prove (𝐴𝐵 − 𝐵𝐴)∗ = −(𝐴𝐵 − 𝐵𝐴) 

 Consider  (𝐴𝐵 − 𝐵𝐴)∗ = −(𝐴𝐵)∗ − (𝐵𝐴)∗ 

3 
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                                             = 𝐵∗𝐴∗ − 𝐴∗𝐵∗ 

                                             =  −𝐵 𝐴 − 𝐴 −𝐵  

                                             = 𝐵𝐴 + 𝐴𝐵  

                                             = (𝐴𝐵 − 𝐵𝐴) 

                      𝐴𝐵 − 𝐵𝐴 𝜖 𝑆 

     To prove (𝐴𝐵 = 𝐵𝐴)𝜖𝐾 

  ie) To prove (𝐴𝐵 + 𝐵𝐴)∗ = −(𝐴𝐵 + 𝐵𝐴) 

Consider (𝐴𝐵 + 𝐵𝐴)∗ = (𝐴𝐵)∗ + (𝐵𝐴)∗ 

                                     = 𝐵∗𝐴∗ + 𝐴∗𝐵∗     

                                     =  −𝐵 𝐴 + 𝐴(−𝐵) 

                                     = −𝐵𝐴 − 𝐴𝐵 

          (𝐴𝐵 + 𝐵𝐴)∗ = −(𝐴𝐵 + 𝐵𝐴) 

             (𝐴𝐵 + 𝐵𝐴)𝜖𝐾 

     Lemma 6.10.2: 

      If the inner product  𝑣𝑇, 𝑣𝑇 =  𝑣, 𝑣 ∀ 𝑣𝜖𝑉 then 𝑇 is unitary →  

     Proof: 

  ie)To prove  𝑢𝑇, 𝑣𝑇 =  𝑢, 𝑣 ∀ 𝑢, 𝑣𝜖𝑉 

    Let 𝑢, 𝑣𝜖𝑉 

         𝑢 + 𝑣𝜖𝑉 

         𝑢 + 𝑣 = 𝑣 

    Sub 𝑢 + 𝑣 = 𝑣 𝑖𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1 

                            𝑢 + 𝑣 𝑇,  𝑢 + 𝑣 𝑇 = ( 𝑢 + 𝑣 ,  𝑢 + 𝑣 ) 

                             𝑢𝑇 + 𝑣𝑇 ,  𝑢𝑇 + 𝑣𝑇  =   𝑢 + 𝑣 ,  𝑢 + 𝑣   

                   𝑢𝑇, 𝑢𝑇 +  𝑢𝑇, 𝑣𝑇 +  𝑣𝑇, 𝑢𝑇 +  𝑣𝑇, 𝑣𝑇 =  𝑢, 𝑢 +  𝑢, 𝑣 +  𝑣, 𝑢 +  𝑣, 𝑣  

                  𝑢𝑇, 𝑣𝑇 +  𝑣𝑇, 𝑢𝑇 =  𝑢, 𝑣 + (𝑣, 𝑢)  →  

1 

1 

2 
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   Take 𝑣 = 𝑖𝑣 

                     𝑢𝑇, 𝑖𝑣𝑇 +  𝑖𝑣𝑇, 𝑢𝑇 =  𝑢, 𝑖𝑣 + (𝑖𝑣, 𝑢) 

                       −𝑖 𝑢𝑇, 𝑣𝑇 + 𝑖 𝑣𝑇, 𝑢𝑇 = 𝑖 𝑢, 𝑣 + 𝑖(𝑣, 𝑢) 

               ÷ 𝑏𝑦 𝑖 

                − 𝑢𝑇, 𝑣𝑇 +  𝑣𝑇, 𝑢𝑇 = − 𝑢, 𝑣 + (𝑣, 𝑢) → 

   Adding equation 2 and 3 we get 

                   2 𝑢𝑇, 𝑣𝑇 = 2(𝑢, 𝑣) 

                    𝑢𝑇, 𝑣𝑇 =  𝑢, 𝑣  ∀ 𝑢, 𝑣𝜖𝑉    𝑇 is unitary 

 

Theorem 6.10.1: 

The Linear Transformation 𝑇 on 𝑉 is unitary iff it takes an orthonormal basis of 𝑉 into an 

Orthonormal basis of 𝑉. 

Proof: 

Necessary part: 

Suppose {𝑣1, 𝑣2 , … 𝑣𝑛} be an Orthonormal basis of 𝑣 then inner product 

 (𝑣𝑖 , 𝑣𝑗 ) = 0 𝑓𝑜𝑟 (𝑖 ≠ 𝑗) 

  𝑣𝑖 , 𝑣𝑖 = 1 𝑓𝑜𝑟  𝑖 = 𝑗  →  

We have to prove if 𝑇 is unitary then  𝑣1𝑇, 𝑣2𝑇,… 𝑣𝑛𝑇  is also an Orthonormal basis of 𝑣 

Consider   𝑣𝑖𝑇, 𝑣𝑗𝑇 =  𝑣𝑖 , 𝑣𝑗          [∵ 𝑇 𝑖𝑠 𝑢𝑛𝑖𝑡𝑎𝑟𝑦]            

                                   = 0                    ∵ 𝑏𝑦 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1  

                ∴  𝑣𝑖𝑇, 𝑣𝑗𝑇 = 0 ∀ 𝑖 ≠ 𝑗           

Consider   𝑣𝑖𝑇, 𝑣𝑖𝑇 =  𝑣𝑖 , 𝑣𝑖         [∵ 𝑡 𝑖𝑠 𝑢𝑛𝑖𝑡𝑎𝑟𝑦] 

                                  = 1                    𝑏𝑦 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1  

        ∴  𝑣1 𝑇, 𝑣2𝑇,…𝑣𝑛𝑇  is an Orthonormal basis of 𝑣. 

Sufficient part: 

2 

3 

1 
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If 𝑇𝜖𝐴(𝑉) such that both  𝑣1, 𝑣2, … 𝑣𝑛 𝑎𝑛𝑑 {𝑣1𝑇, 𝑣2𝑇,… 𝑣𝑛𝑇} are Orthonormal basis of 𝑣 then 

prove 𝑇 is unitary 

                         𝑣𝑖 , 𝑣𝑗  = 0 𝑓𝑜𝑟  𝑖 ≠ 𝑗          →         

                              𝑣𝑖 , 𝑣𝑖 = 1                             

Similarly   𝑣𝑖𝑇, 𝑣𝑗𝑇 = 0, ∀  𝑖 ≠ 𝑗         

                   𝑣𝑖𝑇, 𝑣𝑖𝑇 = 1                          →      

Let 𝑢,𝑤𝜖𝑣  𝑢 =  𝛼𝑖𝑣𝑖    
𝑛
𝑖=1 and  𝑤 =  𝛽𝑖𝑣𝑖

𝑛
𝑖=1  

Consider  𝑢, 𝑤 = ( 𝛼𝑖𝑣𝑖
𝑛
𝑖=1 ,  𝛽𝑖𝑣𝑖

𝑛
𝑖=1 )                            

 𝑢, 𝑤 = (𝛼1𝑣1 +⋯+ 𝛼𝑛𝑣𝑛 , 𝛽1𝑣1 +⋯+ 𝛽𝑛𝑣𝑛) 

            = 𝛼1  1   𝑣1, 𝑣1 + 𝛼2  2    𝑣2, 𝑣2 + ⋯+ 𝛼𝑛    n   (𝑣𝑛 , 𝑣𝑛)   

Here  (𝑣𝑖 , 𝑣𝑗 ) = 0 

      =  𝛼1   1+ 𝛼2   2 +…+𝛼𝑛    n 

Similarly 𝑢𝑇 =  𝛼𝑖𝑣𝑖𝑇
𝑛
𝑖=1  and  𝑤𝑇 =  𝛽𝑖𝑣𝑖𝑇

𝑛
𝑖=1  

Consider  𝑢𝑇,𝑤𝑇 = ( 𝛼𝑖𝑣𝑖
𝑛
𝑖=1  𝑇,  𝛽𝑖𝑣𝑖𝑇)𝑛

𝑖=1  

      𝑢𝑇,𝑤𝑇 = (𝛼1𝑣1𝑇 +⋯+ 𝛼𝑛𝑣𝑛𝑇, 𝛽1𝑣1𝑇 +⋯+ 𝛽𝑛𝑣𝑛𝑇) 

            = 𝛼1  1   𝑣1𝑇, 𝑣1𝑇 + 𝛼2  2    𝑣2𝑇, 𝑣2𝑇 + ⋯+ 𝛼𝑛    n   (𝑣𝑛𝑇, 𝑣𝑛𝑇)   

Here  (𝑣𝑖𝑇, 𝑣𝑗𝑇) = 0 

             =  𝛼1   1+ 𝛼2   2 +…+𝛼𝑛    n 

      𝑢𝑇,𝑤𝑇 =  𝛼𝑖 
𝑛
𝑖=1 i   

 𝑢𝑇,𝑤𝑇 =  𝑢,𝑤 , 𝑢, 𝑤𝜖𝑉 

T is unitary. 

Lemma 6.10.3: 

If  𝑇𝜖𝐴(𝑉) then given any 𝑣𝜖𝑉 there exist an unique element 𝑤𝜖𝑣 depending on 𝑣 and 𝑇 .Such 

that  𝑢𝑇, 𝑣 =  𝑢,𝑤 ∀ 𝑢𝜖𝑉  

1 

2 
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Proof: 

Given that 𝑇𝜖𝐴 𝑉  

To prove for any 𝑣𝜖𝑉 there exist an unique element 𝑤𝜖𝑉 depending on 𝑣 𝑎𝑛𝑑 𝑇 

Such that  𝑢𝑇, 𝑣 = (𝑢,𝑤) ∀𝑢𝜖𝑣 

Let {𝑢1𝑢2 , … 𝑢𝑛} be the orthonormal basis of 𝑉 

    ∴  𝑢𝑖 , 𝑢𝑗  = 0 

         𝑢𝑖 , 𝑢𝑖 = 1 

   Define 𝑤 =  ( , )iu T v iu𝑛
𝑖=1  

Then  𝑢𝑖𝑤 = (𝑢𝑖 ,  ( , )iu T v iu𝑛
𝑖=1  

           𝑢𝑖𝑤 = (𝑢𝑖 , 1( , )u T v 𝑢1 + 2( , )u T v 𝑢2 +⋯+ ( , )nu T v 𝑢𝑛) 

                     = (𝑢𝑖 , 1( , )u T v 𝑢1) + (𝑢𝑖 , 2( , )u T v 𝑢2) + ⋯+ (𝑢𝑖 , ( , )nu T v 𝑢𝑛) 

                      =  𝑢1𝑇, 𝑣  𝑢𝑖 , 𝑢1 + ⋯+  𝑢𝑛𝑇, 𝑣 (𝑢𝑖 , 𝑢𝑛) 

                     =  𝑢1𝑇, 𝑣  0 + ⋯+  𝑢𝑛𝑇, 𝑣 (0) 

         𝑢𝑖𝑤 =  𝑢𝑖𝑇, 𝑣     

To prove 𝑤 is unique: 

   Ie) To prove 𝑤1 = 𝑤2 

Suppose that  𝑢𝑇, 𝑣 = (𝑢, 𝑤1) 

                      𝑢𝑇, 𝑣 = (𝑢, 𝑤2) 

                𝑢,𝑤1 = (𝑢,𝑤2) 

                𝑢,𝑤1 −  𝑢, 𝑤2 = 0 

               𝑢,𝑤1−𝑤2 = 0 

Then take 𝑢 = 𝑤1 − 𝑤2 

                 𝑤1 −𝑤2, 𝑤1 − 𝑤2 = 0 
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                𝑤1 − 𝑤2 = 0 

                𝑤1 = 𝑤2 

Definition: 

Hermitian adjoint of 𝑇: 

   If  𝑇𝜖𝐴 𝑉  then hermitian adjoint of 𝑇  is denoted by 𝑇∗and is defined by 

    𝑢𝑇, 𝑣 =  𝑢, 𝑣𝑇∗ ∀𝑢, 𝑣𝜖𝑉. 

Lemma 6.10.4: 

If  𝑇𝜖𝐴 𝑉  then  𝑇∗𝜖𝐴 𝑉  

i) (𝑇∗)∗ = 𝑇 

𝑖𝑖) (𝑆 + 𝑇)∗ = 𝑆∗ + 𝑇∗ 

iii) (𝜆𝑆)∗ =  𝑆∗ 

iv)  𝑆𝑇)∗ = 𝑇∗𝑆∗∀𝑆, 𝑇𝜖𝐴(𝑣 𝑎𝑛𝑑 𝛼𝜖𝐹 

proof: 

Given that 𝑇𝜖𝐴 𝑉  ie) T is linear transformation belongs to 𝐴 𝑣  

           ∴  𝑣 + 𝑤 𝑇 = 𝑣𝑇 + 𝑤𝑇 

                𝜆𝑣 𝑇 = 𝜆 𝑣𝑇  

To prove 𝑇∗𝜖𝐴 𝑉   

Ie)  𝑣 + 𝑤 𝑇∗ = 𝑣𝑇∗ + 𝑤𝑇∗ 

 𝜆𝑣 𝑇∗ = 𝜆(𝑣𝑇∗) 

Let 𝑢, 𝑣, 𝑤𝜖𝑉 

Consider   𝑢(𝑣 + 𝑤 𝑇∗) =  𝑢𝑇, 𝑣 + 𝑤  

                                   =  𝑢𝑇, 𝑣 +  𝑢𝑇,𝑤  

                                    = (𝑢, 𝑣𝑇∗ + 𝑤𝑇∗) 

                  𝑢 + 𝑤 𝑇∗ = 𝑣𝑇∗ +𝑤𝑇∗ 

Consider    𝑢(𝜆𝑣 𝑇∗) =  𝑢𝑇, 𝜆𝑣  



100 
 

                                   =   𝑢𝑇, 𝑣  

                                    = (𝑢, 𝜆𝑣𝑇∗) 

                  𝜆𝑣 𝑇∗ = 𝜆(𝑣𝑇∗)  

i) To prove (𝑇∗)∗ = 𝑇 

  Consider (𝑢, 𝑣 𝑇∗)∗ = (𝑢𝑇∗, 𝑣) 

                                     = *( , )v uT    

                                     = (𝑢, 𝑣𝑇)    

             (𝑇∗)∗ = 𝑇 

ii) To prove  (𝑆 + 𝑇)∗ = 𝑆∗ + 𝑇∗ 

Consider  (𝑢, 𝑣 𝑆 + 𝑇)∗ = (𝑢 𝑆 + 𝑇 , 𝑣) 

                                          =  𝑢𝑆 + 𝑢𝑇, 𝑣  

                                          = (𝑢, 𝑣𝑆∗ + 𝑣𝑇∗ ) 

                  (𝑆 + 𝑇)∗ = 𝑆∗ + 𝑇∗ 

iii) To prove  (𝜆𝑆)∗ =  𝑆∗ 

Consider  (𝑢, 𝑣 𝜆𝑆)∗ = (𝑢 𝜆𝑆 , 𝑣) 

                                          = 𝜆 𝑢𝑆 + 𝑣  

                                          = (𝑢, 𝑣( 𝑆∗))  

                                  (𝜆𝑆)∗ =  𝑆∗ 

iv) To prove (𝑆𝑇)∗ = 𝑇∗𝑆∗ 

Consider (𝑢, 𝑣 𝑆𝑇)∗ = (𝑢 𝑆𝑇 , 𝑣) 

                                          = ( 𝑢𝑆)𝑇, 𝑣  

                                          = (𝑢𝑆, 𝑣𝑇∗) 

                                           = (𝑢, 𝑣𝑇∗𝑆∗ ) 

                                           = 𝑣𝑇∗𝑆∗    
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                (𝑆𝑇)∗ = 𝑇∗𝑆∗  

Lemma 6.10.5: 

If 𝑇𝜖𝐴 𝑉  is unitary iff 𝑇𝑇∗ = 1 

Proof: 

Necessary part: 

Given that is unitary 

  ∴  𝑢𝑇, 𝑣𝑇 =  𝑢, 𝑣 ∀𝑢, 𝑣𝜖𝑉 

To prove 𝑇𝑇∗ = 1 

Consider  𝑢, 𝑣 𝑇𝑇∗  =  𝑢𝑇, 𝑣𝑇  

                                     =  𝑢, 𝑣  

                     𝑣𝑇𝑇∗ = 𝑣 

                        𝑇𝑇∗ = 1 

Sufficient part: 

 Given that 𝑇𝑇∗ = 1 

To prove that T is unitary 

Ie) To prove (𝑢𝑇, 𝑣𝑇) = (𝑢, 𝑣) 

Consider  𝑢, 𝑣 = (𝑢, 𝑣𝑇𝑇∗) 

                          =  𝑢𝑇, 𝑣𝑇  

 T is unitary. 

Note: 

 A unitary transformation is non singular and its inverse is just a hermitian adjoint also  𝑇𝑇∗ =

1  𝑇∗𝑇 = 1 

Theorem 6.10.2: 

If {𝑣1𝑣2 …𝑣𝑛} is an Orthonormal basis of v and if  𝑚 𝑇 𝜖𝐴(𝑉) in this basis is (𝛼𝑖𝑗 ) then matrix 

𝑇∗ in this basis is 𝛽𝑖𝑗  where 𝛽𝑖𝑗 = ji  
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Proof: 

Given {𝑣1𝑣2 …𝑣𝑛} is an orthonormal basis of v and matrix 𝑚 𝑇 𝜖𝐴(𝑉) and 

  𝛼𝑖𝑗  = 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓  𝑇 𝜖𝐴(𝑉) in this basis, 

To prove 𝛽𝑖𝑗 = 𝑚𝑎𝑡𝑟𝑖𝑥𝑜𝑓 𝑇∗ 𝜖𝐴(𝑣) in this basis where 𝛽𝑖𝑗 = ji  

Define 𝑣𝑖𝑇 =  𝛼𝑖𝑗𝑣𝑗
𝑛
𝑗=1  

             𝑣𝑖𝑇
∗ =  𝛽𝑖𝑗𝑣𝑗

𝑛
𝑗=1 , 𝑣𝑗  

 𝑣𝑖𝑇
∗, 𝑣𝑗  = ( 𝛽𝑖𝑗𝑣𝑗 , 𝑣𝑗

𝑛
𝑗=1 )  

                 = (𝛽𝑖1𝑣1 + 𝛽𝑖2𝑣2 +⋯+ 𝛽𝑖𝑗𝑣𝑗 +⋯+ 𝛽𝑖𝑛𝑣𝑛 , 𝑣𝑗 ) 

                  = (𝛽𝑖1𝑣1, 𝑣𝑗 + 𝛽𝑖2𝑣2, 𝑣𝑗 +⋯+ 𝛽𝑖𝑗𝑣𝑗 , 𝑣𝑗 +⋯+ 𝛽𝑖𝑛𝑣𝑛 , 𝑣𝑗 ) 

                  = 𝛽𝑖1(𝑣1, 𝑣𝑗 ) + 𝛽𝑖2(𝑣2, 𝑣𝑗 ) + ⋯+ 𝛽𝑖𝑗 (𝑣𝑗 , 𝑣𝑗 ) + ⋯+ 𝛽𝑖𝑛(𝑣𝑛 , 𝑣𝑗 ) 

                  = 𝛽𝑖1(0) + 𝛽𝑖2(0) + ⋯+ 𝛽𝑖𝑗 (1) + ⋯+ 𝛽𝑖𝑛 (0) 

 𝑣𝑖𝑇
∗, 𝑣𝑗  =  𝛽𝑖𝑗  

𝛽𝑖𝑗 =  𝑣𝑖𝑇
∗, 𝑣𝑗   

      =  𝑣𝑖 , 𝑣𝑗𝑇 = (𝑣𝑖 , ( 𝛼𝑗𝑖 , 𝑣𝑖
𝑛
𝑖=1 )  

      =  𝑣𝑖 , 𝛼𝑗1𝑣1 +  𝑣𝑖 , 𝛼𝑗2𝑣2 + ⋯+  𝑣𝑖 , 𝛼𝑗𝑖 𝑣𝑖 + ⋯+ (𝑣𝑖 , 𝛼𝑗𝑛 𝑣𝑛) 

      = 1j  𝑣𝑖 , 𝑣1 + 2j  𝑣𝑖 , 𝑣2 + ⋯+ ji  𝑣𝑖 , 𝑣𝑖 + ⋯+ jn (𝑣𝑖 , 𝑣𝑛)  

      = 1j  0 + 2j  0 + ⋯+ ji  1 + ⋯+ jn (0) 

 𝛽𝑖𝑗 = 1j  

Definition: 

Hermitian transformation: 

  𝑇𝜖𝐴(𝑉) is called hermitian transformation or self adjoint if 𝑇∗ = 𝑇 

Skew hermitian transformation: 
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     𝑇𝜖𝐴(𝑉) is called Skew hermitian transformation if  𝑇∗ = −𝑇 

Result: 

If 𝑆𝜖𝐴(𝑣) 

   𝑆 =
𝑆+𝑆∗

2
+ 𝑖(

𝑆−𝑆∗

2𝑖
) 

Where 
𝑆+𝑆∗

2
 𝑎𝑛𝑑 (

𝑆−𝑆∗

2𝑖
) are Hermitian  ie) 𝑆 = 𝐴 + 𝑖𝐵 where A and B are Hermitian. 

Theorem 6.10.3: 

All the characteristic roots  of hermitian transformation are real. 

Proof: 

Let     𝑇𝜖𝐴(𝑉) be the hermitian transformation  

Let 𝜆 be the characteristic roots of T there exist 𝑎𝑣 ≠ 0 𝑠𝑢𝑐𝑕 𝑡𝑕𝑎𝑡 𝑣𝑇 = 𝜆𝑣 →  

 Consider 𝜆 𝑣. 𝑣 = (𝜆𝑣, 𝑣) 

                             = (𝑣𝑇, 𝑣) 

                             =  𝑣, 𝑣𝑇∗  

                              =  𝑣, 𝑣𝑇  

                             =  (𝑣, 𝑣) 

                      𝜆 𝑣, 𝑣 −   𝑣, 𝑣 = 0 

                          𝜆 −  = 0 

                          𝜆 =        

Hence λ is real . 

Lemma 6.10.6: 

 If 𝑆𝜖𝐴(𝑉) and if 𝑣𝑆𝑆∗ = 0 then 𝑣𝑆 = 0 

 Consider  𝑣𝑆𝑆∗, 𝑣 =  0, 𝑣 = 0 

                  𝑣𝑆𝑆∗, 𝑣 = 0 

1 
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                  𝑣𝑆, 𝑣𝑆 = 0 

                   𝑣𝑆 = 0 

Definition: 

Normal linear transformation: 

𝑇𝜖𝐴(𝑉) is said to be a normal if 𝑇𝑇∗ = 𝑇∗𝑇 

Lemma 6.10.7: 

If N is normal linear transformation and if 𝑣𝑁 = 0, 𝑣𝜖𝑉 

                                                                   𝑣𝑁∗ = 0 

Proof: 

 Given that  𝑣𝑁 = 0 for  𝑣𝜖𝑉 

To prove 𝑣𝑁∗ = 0 

Consider   𝑣𝑁∗, 𝑣𝑁∗ = (𝑣𝑁∗𝑁, 𝑣) 

                                    = (𝑣𝑁𝑁∗, 𝑣) 

                                    = (0. 𝑁∗, 𝑣) 

                                    = (0, 𝑣) 

                     𝑣𝑁∗, 𝑣𝑁∗ = 0 

                      𝑣𝑁∗ = 0 

Corollary 1: 

If 𝜆 is the characteristic roots of the normal transformation N and if 𝑣𝑁 = 𝜆𝑣  

𝑡𝑕𝑒𝑛 𝑣𝑁∗ =  𝑣 

Proof: 

Given that λ is the characteristic roots of the normal transformation N and 𝑣𝑁 = 𝜆𝑣 →   

  Then To prove 𝑣𝑁∗ =  𝑣 N is normal  𝑁𝑁∗ = 𝑁∗𝑁 

Consider  𝑁 − 𝜆 (𝑁 − 𝜆)∗ = (𝑁 − 𝜆)(𝑁∗ −  ) 

1 
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                                             = 𝑁𝑁∗ − 𝑁 − 𝜆𝑁∗ + 𝜆    

                                             = 𝑁∗ 𝑁 − 𝜆  −  (𝑁 − 𝜆)    

               𝑁 − 𝜆 (𝑁 − 𝜆)∗ = (𝑁 − 𝜆)(𝑁∗ −  ) 

                       (𝑁 − 𝜆) is normal 

Consider   𝑣 𝑁 − 𝜆 = 𝑣𝑁 − 𝑣𝜆 

                                  = 𝑣𝜆 − 𝑣𝜆 

               𝑣 𝑁 − 𝜆 = 0 

By the lemma “If N is normal and if   𝑣𝑁 = 0 then 𝑣𝑁∗ = 0 

                        ∵  𝑁 − 𝜆  is normal  

                            𝑣 𝑁 − 𝜆 = 0 

                            𝑣(𝑁 − 𝜆)∗       

                            𝑣𝑁∗ = 𝑣  

                           ∴ 𝑣𝑁∗ =  𝑣    

Corollary 2: 

If T is unitary and 𝜆 is the characteristic roots of T then ∣ 𝜆 ∣= 1 

To prove: 

Given that T is unitary and λ is the characteristic root of T 

To prove  ∣ 𝜆 ∣= 1 

 ∴ 𝑇 𝑖𝑠  unitary  

       𝑇𝑇∗ = 𝑇∗𝑇 = 1 

       𝑇 is normal  

∵ 𝜆 is the characteristic root of T 

There exist 𝑣 ≠ 0 such that 𝑣𝑇 = 𝜆𝑢 

 By the corollary 𝑣𝑇∗ =  𝑣 



106 
 

Consider 𝑣 = 𝑣. 1 

                   = 𝑣𝑇𝑇∗  

                    =  𝜆𝑣𝑇∗     

                  1 = 𝜆  

                 1 =∣ 𝜆 ∣ 

Corollary: 

If T is hermitian and  𝑣𝑇𝑘 = 0, 𝑘 ≥ 1 𝑡𝑕𝑒𝑛 𝑣𝑇 = 0 

Proof: 

Given that T is hermitian and  𝑣𝑇𝑘 = 0, 𝑘 ≥ 1 

                                                            𝑇 = 𝑇∗  

      To prove 𝑣𝑇 = 0 

We show that if  𝑣𝑇2𝑚 = 0 𝑡𝑕𝑒𝑛 𝑣𝑇 = 0 𝑓𝑜𝑟 𝑖𝑓 𝑆 = 𝑇2𝑚−1
 

                                                                              𝑆∗ = (𝑇2𝑚−1
)∗ 

                                                                                   = 𝑇2𝑚−1
   

                                                                                    𝑆∗ = 𝑆   

                                                                                   𝑆𝑆∗ =  𝑇2𝑚−1
 (𝑇2𝑚−1

)       

                                                                                           = 𝑇(2𝑚−1+2𝑚−1) 

                                                                                           = 𝑇2.2𝑚−1
 

                                                                                            = 𝑇2.𝑚−1+1
 

                                                                                            = 𝑇2𝑚  

Continuing down in this way  we obtain 𝑣𝑇 = 0 if  𝑣𝑇𝑘 = 0 then 𝑣𝑇2𝑚 = 0 for 2m> 𝑘 

                  Hence 𝑣𝑇 = 0. 

 

. 
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Lemma 6.10.8 : If N is Normal and if vN
k
=0 then vN=0. 

Proof: 

Let S=NN
*
 , To prove that S is Hermitian. 

Consider, S
k
=(NN

*
)
k
 

  =(N)
k
 (N

*
)
k
 

vS
k
=v(N)

k
 (N

*
)
k
 

=0. (N
*
)
k
 

vS
k
 =0 

By the Corollary to Lemma 6.10.6, If T is Hermitian and vT
k
 =0 then vT=0 

vS
k
 =0 which Implies vS=0 

  implies v(NN
*
)=0 

implies v(NN
*
)=0 

By the Lemma, “If s ∈A(v) and if vSS
*
=0 then vS=0”. 

Implies vN=0. 

Corollary: 

If N is Normal and if for λ∈ F, v(N-λ)
k
 =0 then vN=λv. 

Proof: 

Given that N is Normal ===>NN
*
 = N

*
N 

To prove that (N-λ) is normal. 

That is To prove that (N-λ) (N-λ)
*
= (N-λ)

*
 (N-λ) 

                   Consider (N-λ) (N-λ)
*
= (N-λ) (N

*
-λ  ) 
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          = N
*
N – Nλ  – λ N

*
 + λλ  

                  = N
*
N– λ N

*
– Nλ + λλ  

= N
*
(N-λ) - λ (N-λ) 

  = (N
*
-λ  ) (N-λ) 

= (N-λ)
*
 (N-λ) 

Which implies  (N-λ) is Normal. 

By the above Lemma, v(N-λ)
k
 = 0 

  ===>v(N-λ) = 0 

===>vN- vλ= 0 

===>vN-=vλ 

===>vN-=λv 

Lemma :6.10.9 

Let N be a Normal transformation and suppose that λ and µ are 2 distinct characteristic 

roots of N. If v and w are in V and are such that vN =λv, wN = µw  

then (v,w) =0. 

Proof: 

Given that N is Normal and λ and µ are 2 distinct characteristic roots of N and vN =λv, 

wN = µw . 

To prove that (v,w) =0. 

Consider vN =λv 

(vN,w) = (λv,w) 

 = λ(v,w)          -------- (1) 
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Consider wN=µw. 

In the Corollary, “If  λ is a characteristic root of the normal transformation N and if vN =λv then 

vN
*
 = λ  v”.  

We get, wN
*
 = µ  w 

(v,wN
*
) = (v, µ  w) 

              = µ (v,w) 

(vN,w) = µ (v,w) ------------ (2)  

From (1) & (2) ===> 

 λ (v,w) = µ (v,w) 

λ (v,w) - µ (v,w) = 0 

( λ-µ ) (v,w) = 0 

===> (v,w) = 0. 

Theorem : 6.10.4 

 If  N  is a Normal linear transformation on v, then there exists an orthonormal basis 

consisting of Characteristic vectors of N, in which the matrix of N is diagonal. Equivalently, if N 

is a normal matrix there exists an unitary matrix U such that UNU
-1

 (= UNU
*
) is diagonal.  

Proof: 

Prove the corollary If N is Normal and if for 𝜆 ∈ F, v(N-λ)
k
 =0 then vN=λv 

Let N be Normal. Let λ1,λ2,…λ𝑘  be the distinct characteristic roots of N. 

By the corollary, “If all the distinct characteristic roots λ1,λ2,…λ𝑘  of T lying F then V can be 

written as V=V1V2….. Vk where vi = {v ∈ V / v(T − λ𝑖) 𝑙𝑖 = 0} and where Ti has only one 

Characteristics roots λ𝑖  on vi.  

We can decompose V=V1V2….. Vk where every vi∈ Vi is annihilated by (N − λ𝑖) 𝑛𝑖 . 
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By the above corollary, vi consists only of characteristic vectors of N belonging to λ𝑖 . 

The inner product of V induces an inner product on vi. By the theorem, let v be a finite 

dimensional inner product space then v has an orthonormal set as a basis. Vi  has an orthonormal 

basis related to this inner product. By the lemma, elements lying in distinct vi are orthogonal.  

Thus putting together the orthonormal basis are vi „s provides as with an orthonormal basis of v. 

This basis consists of characteristic vectors of N. Thus in this basis the matrix of n is diagonal. 

Corollary:1 

 If T is an unitary transformation then there is an orthonormal basis in which the matrix of 

t is diagonal equivalently if T is a unitary matrix then there is a unitary matrix U such that UTU
-1

 

(= UTU
*
) is diagonal.  

Corollary:2 

If T is a Hermitian linear  transformation then there is an orthonormal basis in which the matrix 

of t is diagonal equivalently if T is a Hermitian matrix then there is a unitary matrix U such that 

UTU
-1

 (= UTU
*
) is diagonal.  

Lemma 6.10.10 

 The Normal transformation N is  

(i) Hermitian<===> its characteristics roots are real 

(ii) Unitary <===> its characteristics roots are all of absolute value 1. 

Proof: 

 Given that N is Hermitian and N is Normal. 

(i) ===> N has only real characteristic roots . Hence if N is Hermitian then its 

characteristics roots are real. 

If N is normal and has only real characteristics roots. To p.t N is Hermitian. 
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Consider for sum unitary matrix U , D = UNU
-1

 (= UNU
*
) where D is a diagonal 

matrix with real entries on the diagonal. 

===> D
*
=D 

Consider D
*
= (UNU

*
)
* 

  
 = (U*)

*
N

*
U

*
 

          D
*
= U N

*
U

* 

D
*
=D ===> U N

*
U

* 
 = UN U

*
 

===> N
*
=N 

===> N is Hermitian. 

(ii) Proof: 

G.T N is unitary and N is normal. Let λ be the characteristics roots of N. by the 

corollary, “ If  T is unitary and if λ is a characteristics roots of T “.  

Then |λ| =1, we have the characteristics roots of N are all of absolute value 1. Given 

that N is Normal and its characteristics roots are all of absolute value 1. 

(ie)., λλ  = 1 where λ is a characteristic roots of N.  

 Converse: 

 To Prove N is unitary.  

 By the Defn of characteristic roots, vN = λv----- (1) with v≠ 0 in V. 

By the corollary, if λ is a characteristic root of the Normal transformation N and vN = λv then 

vN
*
 =λ  v. 

We get, vN
*
 =λ  v 

 λ(vN
*
 ) = λ(λ  v)  
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 λvN
*
  = λλ  v 

 vNN
*
=1.v 

 vNN
*
=v.1 

 ===> NN
*
=1 

 ===> N is unitary. 

Note:tr(AA
*
) = 0 <===>A = 0 

Lemma : 6.10.11 

 If N is Normal and AN=NA, then A N
*
= N

*
A. 

Proof:  

Given that N is Normal and AN=NA 

To P.T, A N
*
= N

*
A. (ie)., X= A N

*
= N

*
A=0. 

(ie)., to prove tr(XX
*
) = 0 

Consider, XX
*
 = (A N

*
- N

*
A) (A N

*
- N

*
A)

*
 

=(A N
*
- N

*
A) [(N

*
)

*
A

*
- A

*
(N

*
)
*
] 

= (A N
*
- N

*
A) (NA

*
- A

*
N) 

= (A N
*
- N

*
A) NA

*
- (A N

*
- N

*
A) A

*
N 

= N[(A N
*
- N

*
A) A

*
] –[(A N

*
- N

*
A) A

*
]N 

= NB-BN=0        [since AN=NA ===> AN-NA=0]. 

(XX
*
) = 0 

tr(XX
*
) = tr (0) =0 

By the above Note, X=0 
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(ie)., (A N
*
- N

*
A) = 0 

===>  A N
*
 = N

*
A. 

Definition : 

T Positive (OR) Positive Definite (OR) Non-Negative 

If the Hermitian Linear transformation T ≥ 0 and in addition (vT,v) > 0 for v ≠ 0 then T is called 

T Positive (OR) Positive Definite. 

Lemma : 6.10.12 

         The Hermitian Linear transformation T is Non-Negative (Positive) <===> All of its 

characteristics roots are Non-Negative (Positive). 

Proof: 

        Given that T is Non-Negative (ie)., T ≥ 0. 

Let λ be a characteristics root of T and vT = λv for some v ≠ 0 

Consider vT = λv 

===> (vT,v) = (λv,v) 

0 ≤ (vT,v) = λ(v,v) 

===> 0 ≤  λ(v,v) 

===>λ(v,v) ≥ 0 

===>λ ≥ 0 

===> All of its characteristics roots are Non-Negative (Positive). 

Converse Part : 

Given that T is Hermitian with non-negative characteristics roots. 

To P.T T ≥ 0. 
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Let {v1,v2,….,vn} be an orthonormal basis consisting of characteristics vectors of T. 

Let λ1,λ2,…λ𝑛  be the non-negative characteristics roots of T under the basis {v1,v2,….,vn}. 

===>viT = λivi    -----(1) where λi ≥ 0 

Define v =  𝛼𝑖
𝑛
𝑖=1 vi  ,v ∈ V 

vT = 𝛼𝑖
𝑛
𝑖=1 vi  T 

               = 𝛼𝑖
𝑛
𝑖=1 λi vi(by (1)) 

vT = 𝛼𝑖
𝑛
𝑖=1 λi vi    

(vT,v) = ( 𝛼𝑖
𝑛
𝑖=1 λi vi   ,  𝛼𝑖

𝑛
𝑖=1 vi  ) 

             = (λ1α1v1+….+λnαnvn , α1v1+….+ αnvn) 

             = (λ1α1v1,  α1v1)+…..+ (λnαnvn, αnvn) 

         = λ1α1 (v1,  α1v1) +….+ λnαn (vn, αnvn) 

         = λ1α1𝛼1    (v1,  v1) +….+ λnαn 𝛼𝑛     (vn, vn) 

         = λ1α1𝛼1    (1) +….+ λnαn 𝛼𝑛     (1)         (since (vi,  vi) =1, (vi,  vj) =0 ) 

Here (vi,  vj) =0, we are not having the terms λ1α1𝛼1    (v1,  v2),……. 

(vT,v) =   𝛼𝑖
𝑛
𝑖=1 λi𝛼𝑖  

(vT,v) ≥ 0 

Since by the lemma, “ if T ∈ A(V) is such that (vT,v) = 0 for all v ∈ V then T= 0”. 

We have T ≥ 0. 

Lemma 6.10.13 

          T ≥ 0 <===> T = AA
*
 for some A. 

Proof : 
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(i) Consider T= AA
*
 

To P.t T ≥ 0  (ie)., AA
*
≥ 0  

Consider, (v AA
*
,v) = (vA,v(A

*
)

* 

   
     = (vA,vA) 

        ≥ 0    (by the defn of Inner Product) 

                (v AA
*
,v) ≥ 0    

 ===> AA
* 
≥ 0   (by the defn of T Positive) 

===> T ≥ 0    

(ii) T ≥ 0    To P.t T= AA
*
 

Consider the Unitary matrix U such that UTU
*
 =   

  𝜆1 
…

  𝜆𝑛 

    where each 𝜆𝑖  is the 

characteristic root of T.  

since T ≥ 0   ===> each 𝜆𝑖  ≥ 0 

Let S =  
  𝜆1 
…

  𝜆𝑛 

    since each 𝜆𝑖  ≥ 0 which implies  𝜆𝑖 ≥ 0 

===> S is Hermitian 

(ie)., S=S
*
. 

To Prove that USU
*
 is Hermitian. 

Consider (USU
*
) 

*
 = (U

*
)

*
 S

*
U

*
 

      = U S
*
U

* 

      = US U
*
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 ===>  (USU
*
) 

*
= US U

*     
------------(1) 

               US U
*
 is Hermitian.    

Consider (U
*
 SU) 

2
 = (U

*
 SU) (U

*
 SU)  

      = (U
*
 SU U

*
 SU)  

      = (U
*
 S.1. SU) 

      = (U
*
 S

2
 U) 

      = U
* 
  𝜆1 
…

  𝜆𝑛 

 

2

      U    

                               = U
*  
  𝜆1 
…

  𝜆𝑛 

    U 

                             = U
*
(UT U

*
)U 

                              = U
*
UT U

*
U 

           (U
*
 SU) 

2
= 1.T.1 =T ------(2) 

Take A= (U
*
 SU)  

===> A
*
= (U

*
 SU) 

* 

A
*
= (U

*
 SU)   By (1) 

(2) ===> T= (U
*
 SU) 

2 
= (U

*
 SU)   (U

*
 SU)    

                T = AA
*
  for some A. 

6.11 Real Quadratic forms 

Definition :Quadratic form associated with A. 
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 Let V be a Real Inner Product space and suppose that a is a (real) symmetric linear 

transformation on V. The real valued function Q(v) defined on V by Q(v) =(vA,v) is called the 

quadratic form associated with A.  

Definition :Congruent Matrices 

 Two real symmetric matrices of A and B are congruent matrices if there is a non-

singular real matrix T such that B=TAT
-1

. 

Lemma 6.11.1 

 Congruence is an equivalence relation. 

Proof: 

 Let us denote A is congruent to B has A≅ B 

(i) Reflexive:  

 To p.t A≅ A 

 A= IAI
-1

 where I is an identity matrix.  ===> A≅ A. 

(ii) Symmetric: 

 Consider A≅ B To P.t B ≅ A 

A≅ B ===> B = TAT
-1

 (where T is non-singular) 

T
-1

B = T
-1

TA T
-1

 

             = IA T
-1

 

T
-1

BT= A T
-1

T
 

 T
-1

BT= A I 

 T
-1

BT= A 

 T
-1

B(T
-1

) = A 
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                   Let (T
-1

) =S  ===> SBS
-1

 = A where S is non-singular. 

                   ===> B ≅ A. 

(iii) Transitive: 

Let A≅ B & B ≅ C. To p.t A ≅ C. 

A≅B  ===> B = TAT
-1

 

            B ≅C  ===> C = SBS
-1

 where S & T are non-singular. 

C = SBS
-1

 = S(TAT
-1

) S
-1 

                 = (ST) A(T
-1

S
-1

) 

                  = (ST) A (ST)
-1

 = RAR
-1 

C = RAR
-1 

             ===> C ≅ A. 

Hence congruence is an equivalence relation. 

Definition :Signature of A 

 If A is a real symmetric matrix congruent to       

𝐼𝑟
−𝐼𝑠

0𝑡

  then r-s is called the 

signature of A. The signature of  a quadratic form is defined to be the  signature of the associated 

symmetric matrix. 

Result (1): 

 Let A be a symmetric matrix and let us consider associated quadratic form  

Q(v) = (vA,v). If T is non-singular and real given v ∈ F(n)
 , v = wT for some w ∈ F

(n)
. Hence 

(vA,v) = (wTA,wT). 

 Thus A and ATA
-1

 effectively define the same quadratic form. 
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Result (2): 

 Given a real orthogonal matrix , we can fixed an orthogonal matrix T such that TQT
-

1
 = TQT

‟
. 

Theorem 6.11.1 (Sylvester‟s  Law) 

 Given be the real symmetric matrix A there is an invertible matrix T such that   

TAT
-1

= 
  

𝐼𝑟
−𝐼𝑠

0𝑡

  where Irand  Is are respectively r x r and s x s unit matrices and 0t is 

the t x t zero matrix. The integer r+s which is be rank of A and r-s which is the signature of A 

,characterize the congruence class of A. (ie)., two real symmetric matrices are congruent iff they 

have the same rank and signature. 

Proof: 

 A isreal symmetric matrix , its characteristic  roots are real. Let λ1,λ2,…λ𝑟  be its 

characteristic roots.Let  −λ𝑟+1,−λ𝑟+2,…, −λ𝑟+𝑠  be its negative  characteristic roots . 

We can find a real orthogonal matrix C, such that  

CAC
-1

 = CAC
‟
 =

 

 
 
 
 
 
 

𝜆1

⋱
𝜆𝑟

−λ𝑟+1

⋱
−λ𝑟+𝑠

⋱
0𝑡 

 
 
 
 
 
 

 

Where t=n- r s.   (here n = r+s+t). Let T be the real diagonal matrix  
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D= 

 

 
 
 
 
 
 
 

1

 𝜆1

⋱
1

 𝜆𝑟
1

 𝜆𝑟+1

⋱
1

 𝜆𝑟+𝑠

𝐼𝑡 

 
 
 
 
 
 
 

 then the simple computation that  

DCAC
‟ 
D

‟ 
=  (DC) A(C

‟ 
D

‟
) =  

𝐼𝑟
−𝐼𝑠

0𝑡

  . Thus there is a matrix of the required form in 

the congruence class of A. Now, to show that this is the only matrix in the congruence class of 

this form (or) equivalently that L=  

𝐼𝑟
−𝐼𝑠

0𝑡

  and M =  

𝐼𝑟
′

−𝐼𝑠
′

0𝑡
′

  are congruent 

only if r = r
‟
, s = s

‟
 and t =t

‟
.  

To p.t  r = r
‟
, s = s

‟
 and t =t

‟
.  

Suppose that M=TLT
‟
 where T is invertible (by lemma L≅M) 

If v is a finite dimensional vector space over F and if S ∈ A(V) and T ∈ A(V) is regular then r(S) 

= r (TST
-1

). 

M = TLT
-1

 ===>r(M) = r (TLT
-1

) = r(L) 

     n-t
‟
 = n-t  ===> t

‟
= t. 

To prove r = r
‟
 and s = s

‟ 

Suppose r <r
‟
 , n= r+s+t = r

‟
+s

‟
+t

‟
 

===>  s - s
‟
= r - r

‟
===> s > s

‟
 

 Let U be the subspace of F
(n)

 for all vectors having the first r and the last t 

coordinates 0. Therefore U is s-dimensional. For u ≠ 0 ∈U , (uL,u) < 0. Let W be the subspace of 



121 
 

F
(n)

 for which r
‟
+1,….,r

‟
+s are zero.Since T is invertible and W is (n-s

‟
)dimensional. WT is (n-s

‟
) 

dimensional. For w∈W , (wM,w) ≥ 0. Hence (wTL, wT) ≥ 0 for all elements. 

 Now dim (WT)+ dim U = n-s
‟
 + r = n+s-s

‟
>n . by the corollary to lemma 4.2.6, 

WT ∩  U ≠ 0. This however is nonsense. For if x ≠ 0  ∈WT ∩  U , (xL,x)  < 0 while on the other 

hand, being in WT,  (xL,x) ≥ 0. Thus r = r
‟
 and s = s

‟
. 

 The rank r+s, and signature r-s , determine  r,s and t = (n-r-s) , hence they  determine 

the congruence class. 
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