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ALGEBRA -1
UNIT -1 - GROUP THEORY 18hrs

Another Counting Principle —Class Equation for Finite groups and its applications — Sylow’s

theorems [For theorem 2.12.1, Only First proof].

Chapter 2: Sections 2.11 and 2.12 [omit Lemma 2.11.3, 2.12.2, 2.12.5]
2.11 ANOTHER COUNTING PRINCIPLE

Definition:

Let G be a group and if a, b € G then b is said to be conjugate to a in G, there exists an element ¢

€ G such that b = ¢ 1ac. Symbolically a ~ c.

Lemma 2.11.1:

The above relation is an equivalence relation.
Or

Conjugacy is an equivalence relation on G.

Proof:

Now we have to prove that the above relation is an equivalence relation.

That is to prove that

i). Reflexive: a ~ a

ii). Symmetricca~b—-b~a

iii). Transitive:a~b,b~c—-a~c

i). Reflexive:

Sincee € G,a=e lae

Thereforea € G.



Hencea ~ a

il). Symmetric:

Leta ~ b.

Thenb =clac.

Nowcbc™' = b = ¢ lcacc™
—eae=a

Therefore b ~ a.

iii). Transitive:

Leta~bandb~c.

Then there exists an element x € G such that b = x~'ax and also there exists an element y € G

such that ¢ = y~1ay.
Now ¢ =y~ lay

y ! (xtax)y

(y'xHa(xy)
= (xy) "t a(xy)
=z laz
Therefore, a ~ c.
Hence the conjugacy relation is an equivalence relation.
Hence the lemma.
Definition:

Letain G. ThenC(a) = {xeG/x~a}={xeG/x=y lay, y € G}where C(a) is called the
conjugate class of a.



Definition:
If ain G then N(a) is the normalize of ain G such that N(a) ={x € G/ax=xa }.
Lemma 2.11.2
Prove that N(a) is a sub group of G.
Proof:
Given that g is a group.
To prove that N(a) is a subgroup of G.
It is enough to prove that N(a) satisfies
i). Closure
ii). Associative
By definition of N(a), N(a) is a subset of G.
Sinceeand ain G, ae = ea
Hence e € N(a).
Therefore, N(a) is non-empty.
Now to prove closure:
Let X, y € N(a).
Then xa = ax and ya = ay.
Consider,

(xy)a =x(ya)

= X(ay)

= (xa)y



= (ax)y

That is, (xy)a =a(xy)
Therefore, xy € N(a).
Closure is satisfied.
Now to prove the inverse:
Let x € N(a).
Then xa = ax.
Consider
xta =(x"a) (xx?)

= ax™
Hence x* € N(a).
Thus inverse is satisfied.
Therefore N(a) is a subgroup of G.
Hence the lemma proved.

Theorem 2.11.1 SECOND COUNTING PRINCIPLE

If G is a finite group, then ¢, = O(G) / O(N(a)); in other words, the number of elements conjugate

to a in G is the index of normalize of ain G.

Proof:

Fora € G, c(a) ={xeG/x~a}
={xeG/x=y'ay,yeG}

Therefore c(a) consist exactly of all the elements x*ax as x ranges over G.



Hence ¢, measures the number of distinct X *ax’s.

Now to show that two elements in the same right coset of N(a) in G yield the same conjugate of a

whereas two elements in different right cosets of N(a) in G give rise to different conjugates of a.

In this way we shall prove that there exists a one-to-one correspondence between conjugates of a

and right cosets of N(a).

Suppose that X, y € G are in the same right coset of N(a) in G.
thus y = nx where n € N(a).

So na = an.

Therefore, since y* = (nx)™ = x'n™, y'ay = x'n"anx = x™ax.

Thus we proved that two elements in the same right coset of N(a) in G yield the same conjugate

of a.

On the other hand, x and y are in different cosets of N(a) in G.

We claim that x'ax # y™ay.

Let us assume that xax = yay.

Thenx eN(a) xandy € N(a) y

Now x'ax = yay.

Pre-multiply by x and post multiply by y™* we get,

N(a)x = N(a) y,which is a contradiction.

Hence two elements in different right cosets of N(a) in G give rise to different conjugates of a.

Thus we proved that one-to-one correspondence between conjugates of a and right cosets of
N(a).

0(G)

Therefore ¢, = @)



Hence the theorem.

Corollary: CLASS EQUATION OF G

_v 06
0G)=2 0(N(a))

where this sum runs over one element a in each conjugate class.
Proof:

By applying theorem 2.11.1, we have

— 0(6)
O©) =2 5w@y
Now consider c,, Cp, ..... are distinct conjugate classesand alsoc, U ¢, U .... = G.

Therefore, Y, ¢, = O(G).

0(6)
O(N ()

Hence the equation O(G) = ),

Hence the corollary was proved.

Sub Lemma 1:

Prove that a € Z if and only if N(a) = G. If G is finite, a € Z and only if O(N(a)) = O(G).
Proof:

Necessary Part:

Letain Z(G).

To prove that N(a) = G.

By definition of N(a), N(a) is a subset of G.

By lemma 2.11.1, N(a) is a subgroup of G.

That iISN(@) C G .vveniiii e (1)



Now to show that G C N(a).

LetginG.

Then ag = ga.

Therefore g is in N(a).

Hence G C N(@) c.vvvvniiiiii (2)
From equation (1) and (2), G = N(a).

Sufficient Part:

Let G = N(a).

To prove that a in Z(G).

Letx in G.

Then xa = ax.

Hence a in Z(G).

Let G be a finite group.

Letain Z(G).

Then N(a) = G.

Hence O(N(a)) = O(G).

Hence the lemma was proved.

Theorem 2.11.2

If O(G) = p" where p is a prime number then Z(G) # (e).
Proof:

Let G be a finite group.



given that O(G) = p" where p is a prime number.

To prove that Z(G) # (e).

LetainG.

Since N(a) is a subgroup of G and G is a finite group then by Langrange’s theorem 0(01\5(62))
pn

Hence @)

That is O(N(a)) = p"™, where 1 < a < n.

If ais not in centre of G then by sub lemma 1 O(N(a)) = O(G).
Therefore p" = p™.

Hence n = na.

If ain Z(G) then na < n.

Consider the class equation

_ 0(6)

0(G) RO
_ 0(6) 0(6)
= Za in Z(G) —O(N(a)) + Za not in Z(G) 0(N(a))
_pn 0(G)
= pna + Za not in Z(G) 0(N(a))

0(6)

=Z+ Xanot in Z(6) o(N(a))
pn

n -
p _Z+Zn<naﬁ

n

z=p" '2n<nap% ............................................. (1)

p divides the R.H.S of (1).

p divides the L.H.S of (1).



Therefore p divides z, which gives p is either 0 or integral power of p.
Hence z is not equal to 0.

Therefore z must be a integral power of p.

Hence Z(G) # (e).

Corollary:

If O(G) = p? where p is a prime number then G is abelian.

Proof:

Suppose O(G) = p? where p is a prime number

Now to prove that G is abelian.

It is enough to prove that G = Z(G) is abelian, where Z(G) = { x in G such that ax = xa for all x
inG }.

0(6)
> 0(2(6))

Since G is a finite group and Z(G) is a subgroup of G then by Lagrange’s theorem

2

H 14
That is, DE(GY) o (1)

that is O(Z(G)) = 1 or p or p*

By theorem 2.11.2, Z(G) # (e).

That is, O(Z(G) #1.

Hence the possibilities are either p or p.

Suppose O(Z(G) = p.

Then there exists an element a in G but not in Z(G).

0(G)

Since N(a) is a subgroup of G and G is a finite group again by lagrange’s theorem SN @)

10



That is —2
at IS oN@)

Hence O(N(a)) = 1 or p or p?

Since N(a) is a subgroup of G, a and e in N(a) we have O(N(a)) #1.
Thus either O(Na)) = p or p?

letz in Z(G).

Thenaz =zaforall ain G.

Hence Z(G) is a subset of N(a).

Since a in N(a) and Z(G) is not equal to N(a) we have O(N(a)) # p>.
Therefore O(N(a)) = O(G)

Hence a is in Z(G), which is a contradiction to our assumption that a does not belong to Z(G).
Therefore Z(G) = G.

Thus G is abelian.

Example 2.11.1

A group of order 121 is an abelian group.

Solution:

Let O(G) = 121 = 112

By using above corollary, a group of order 121 is an abelian group.
Theorem 2.11.3 CAUCHY

If p is a prime number and p| O(G) then G has an element of order p.
Proof:

Suppose G is a finite group and p| O(G), where p is a prime number.

11



To prove G has an element of order p.

To prove that there exists an element a # e € G such that a° = e.

That is to prove that O(a) = p.

We prove this theorem by induction on O(G).

Let O(G) = 1.

Therefore O(G) = {e} and e! =e.

Thus O(e) = 1.

Hence the theorem is true for O(G) = 1.

Assume that the theorem is true for all group of order is less than q.

Now we prove the theorem for O(G).

Then there exists a subgroup H which is not equal to G such that p divides O(H).
Hence the theorem is true for H because O(H) < OG).

Therefore O(a) = p.

Since aisin H, aisalso in G, there exists an element a is in G such that O(a) = p..
Thus we may assume that p is not a divisor of any proper subgroup of G.

Let Z(G) be the centre of G.

Consider the class equation

0(6)
O(N(a))’

0@ =X

_ 0(6) 0(G6)
- Za in Z(G) 0(N(@)) + Za not in Z(G) 0(N(a))

0(6)

= O(Z(G)) + Xa not in 2(6) oN@)

12



O(Z(G)) = O(G) - Ta ot in 2(6) 5o

(N(a))
Hence p divides O(Z(G)).
Thus Z(G) is a subgroup of G whose order is divisible by p.
But we may assume that p does not divide any proper subgroup of G.
Hence Z(G) = G.
Since Z is an abelian nd G is also an abelian group.
Therefore by applying Cauchy theorem for abelian group, the theorem is true for O(G).
Thus G has an element of order p.
Lemma 2.11.3
The number of conjugate classes in Sy, is p(n), the number of partitions of n.
Proof:
Let the permutation be (12) in S,,. Thereare (n-2)!

Also ( 1, 2 ) commutes with itself.

This way we get 2(n-2)! elements in the group generated by (1 2) and the n(n-1)/2 transpositions
and these are conjugates of (1,2).

By counting principle

nn-1) _ 0(Sy) _ n!
2 o

Thus r = 2(n-2)!.
That is the order of the normalize of (1,2) is 2(n-2).

Now any n-cycle is conjugate to (1,2,...n) and there are (n-1)! distinct n-cycles in S,.

13



Thus if u denotes the order of the normalize of(1,2,..n) in S,, O(S,) / u = number of conjugates of
(1,2,...n)in S, =(n-1)!

__nl _
Therefore u = T

Hence the order of the normalize of (1,2,...n) in S, is n.
The powers of (1,2,...n) having given as n such elements.
Hence the lemma was proved.

Theorem 2.12.1 First part of Sylow’s Theorem
If P is a prime number and P%|O(G) then G has a subgroup of order P“.
Proof:
Given P is a prime number and P*|O(G)
==>0(G) = P'm
We know that, nCy = n!
k!(n—k)! @
Letn =P’m
Where P is a prime number and if P%|m but P“m
Take k = P*substitute this in (1)
We get, P‘mCP* = "*m!
PI(P*m—P%)!
=P*(P"m-1) (P"M-2).ccvuee (P*m-y).....(P“m-P%+1)
PY(P%-1).......... (P%i)......(P*m-P%+1)
= P'm (P*m-1).......... (P°m-1).......(P°m-P%+1) P*(P*1)......(P%i)......3.2.1
Now, we show that the power of P dividing (P* m-i) in the numerator is the same
as the power of P dividing (P%y-;) in the denominator.
Let P*(P%-1) ----------- (2)
==>P%j = aP* where k<a
==> -j = aP*-P"
Add both sides by P*m,
We get,

14



P*m-i = aP*-P*+P"m

= aP*+P%(m-1)

P*m-i= P [a+P**(m-1)]
==> PXP’m-i

Conversely,

Let P*divides P*m-i

==>Pm-1 = aP*=P%i

==>aP* = P |

==>PXp%i

Hence, all the powers of P cancel out except the power which divides m.
Thus, P'P*mCP®but P™*P*mCP®.

Let M be the set of all subsets of G which have P*elements.

Thus, M has P*mCpa gjements. Given My, M, € M. Since M is a subset of G having P* elements on
likewise M; define M;-M2, if there exist an element geg such that m1=m2g. Now To prove the

relation, ‘M’ is an equivalence relation on M,
1)Reflexive:

Since Mi=m1e ~-M1=M,.
2)Symmetric:

Let M;~M, then M1=pm2q Where geG
~ M101 =M,
~.there exist g'€G such that Ma=pyzg-1 Mo~M;
3. Transitive:

Let M;~M; and M,~Mg3 ~There exist g1€G such that M;=M,g; and
g1€G such that M =mzg2 =M3

15



M39291 =M3(g2¢1) =M3g ~M1~M3 Hence the relation ‘~ is an equivalence relation.

We claim that there is atleast on equivalent class of M such that the

number of elements in the class is not a multiple of P™** for if P! is a divisor of
the size of each equivalence class then P™ is also a divisor of the number of
elements in M, which is not possible.

Since M has P*mCP®elements and P! tP*mCP® Let {M1, Ms.....M n} be such an equivalence
class in M where Pr+1 does not divide n.

By our definition of equivalence class in M, geG for each i=1,2,....n
Mig = M; for some j, 1< j<n
Let H={geG/M1g=M1}
Since g€eG, H is a subset of G
To prove: H is a subgroup of G
~e€eH
Hence H is non-empty.

Let g1,g2en Then migi=M1 and m1g;=M1
Now, Mi(gig2) = M1g1)g2 = Mg = M1
~glg2eH

= Closure is satisfied.

Let geH then pm1g=M1
==>M1 = m1g-1
==>g'eH

~Inverse is also satisfied.

16



Hence H is a subgroup of G.

Now we show that there exist a one-one correspondence between the
equivalence class {M1,M, ............... Mn} and the set of all right cosets of H in G={Hgget;.
Let Migi=mog2

<==>p\i1g1g2 =M

<==>0Q1g2-Len

<==>Hg1g2'=H <==>H(=pg

~There exists a one-one correspondence between

thequivalence class and the set of all right coset of H in G.

Hence G is a finite group and H is a subgroup of G.

Then by Lagrange’s theorem, o(G) O(H)

Again, by using 2" counting principle o(G)

0(H) = the number of distinct right cosets

of Hin G.

Here the number of elements in the equivalence class in n,
i.e,0(G)O(H)™n

i.e, 0(G)=n0(H)

P 4P MCpot ang pr+1in

i.e, Pt nO(H)

It follows that P%| O(H)

==>0(H)> P%----------- (3)

Let if myeM; and ¥ heH Then myney Thus, M; has atleast order of H distinct element. However
M is a subset containing P* elements P*> 0(H)----------- 4)

From equation (3) & (4)

P“= 0(H)

Hence, H is a subgroup of G having P elements.

Hence the proof.
COROLLARY:

If p™/0(G) and p™*/0(G) then G has a subgroup of order p™.

Proof:

17



Suppose p™/o(G) p™/o(G)
To prove : G has a subgroup of order p™.
By using first part of sylow’s theorem
We get a subgroup of order p™.
Definition:
Let n(k) be defined by p®/p®1 but p"«Vp®.
Definition :
subgroup of G of order p™ where p™/o(G) but p™*/0(G) is called a p sylow subgroup of G.
Lemma 2.12.1

Prove that n(k) = 1+p+....... +p
Proof:
By the define of n(k), p"®/ p® | but P"®*p®
We know that
Pl=12..... (p-1)p
Hence p/p! but p? /p! if k=1 thenn(1) =1
Now p® 1=1.2....2p...3p....p""p
It is the expansion of p®!
It is also the multiplies of p.
Hence the powers of p dividing p®!
N(k) must be the powers of p which divides (p) (2p) (3p)...... P“L.p).
i-€) (p) (2p) Bp)--.-.... (Pp) = PV ))!
But n(k) = n(k-1) + p**

& also n(k-1) — n(k-2) = p*2

18



N(k-2) — n(k-3) = p*3

n(2) —n(1) = p* (i.e) n(1) =1.
Adding these we get
nk) = p“t+pta.. +1(Ge) nk)=1+p+....... +p*
Hence the Lamma.
Lemma 2.12.2
S,* has a p-sylow subgroup
proof:
If k=1, then the element (1 2 ....p), is s is of order p, so generated a subgroup of order p.
since n(1)=1, suppose that the result is correct for k-1
we show that,it that must follow for k.Divide the integers 1,2,.. ..,pk into p.
(1,2, p {1, 02, 2p L {(p-1)p* T+, .Y,

The permutation ¢ defined by o =(1,p*+1,2p*+1,...,(p-1)p* +1)...G.p+ j,.2p .. ... (p-1)p*

1.

each p; is isomorphic to p; so has order p"*™®

«. p=sylow subgroup of s,".

DEFINITION :

Let G be a group,A,B two subgroups of G. if, x,y € G defined x~ y if y = axb where
aeA,beB.

Lemma: 2.12.3

The relation define above is an equivalence relation of G, the equivalence class XeG is
the set, AxB = { axb/a€A,beB}.

19



Proof:
Here the set AxB is a double coset of a,b in G .Now to prove that the relation x~ y .
If y=axb ,a€A, beB is an equivalence relation.

Reflextive :

To prove x~X

p1€ A, p2€ B . We can write X as p1Xp2

SX o~ X

Symmetric :

Letx ~y
To prove :y ~ X. Here x ~y,ycan be writtenasy =axb ,a€A,beB
ate A bteBNowalybt=at(axb)b™

= (@ta)x(bb™)

=X

Transtive :
Letx~y&y~z
Toprove:x ~z
X~y=>y=aXb
y~zZ>zZ=aXbyaa €A, bb, €B
=ax(a1 x by) by
= (aza1) X (b1by)
ZC1XCp
WX~ 2.

Here the given relation is an equivalence relation.

20



Definition :
A subgroup of G of order p™ where p™/o(G) but p™*/0(G) is called a p sylow subgroup of G.

Lemma:2.12.4:

If A,B are finite subgroup of G then o(AxB)= o(A).o(B)/o(ANxXBx™)
proof;

Given that Gis a finite group and A,B are finite subgroups of G.

To prove that : 0(AxB)= 0(a).o(b)/ o(ANXBx™)

The set xBx ™ is defined as
xBx *={ xbx*/b € B}
first we want to p.t xBx™ is a subgroup of G.
let xbyx ™ xbox™ € xBxby,b, € B
Now (xbix1)(xbx™) = xbyx ™t xbox™
= xby (X X)box* = xBx [ bib,€B]
=~ xBx™ is a subgroup of G.
Here, we get A and xBx ™ are two finite subgroup of G.
Now, By using “First counting principle”
“If H & K are finite subgroup of G then o(HK) = o(H)o(K)/o(HNK)
we write,

0(AxBx™) =0(A).o(xBx™)/ o(AnNxBx™)
(i.e) o(AxBx™) = 0(A).0(B) o(ANXBX 1 )---n-mmo-- (1) [ o(xBx™) = o(B)]
Now to prove thato(AxBx ) = o(AxB).
consider the mapping f: AxB — AxBx™ such that f(axb) = axb™, wherea € A,b € B.
To prove : f is ono-one and onto
aixb;,axb, € AxB

To prove f is one-one and onto

21



axbi,a, xb,€AXB
=~ f(axb) = f(axxby)
aixby = axxby
f is one-one
Now to prove : f is onto
Let axbx™ € AxBx ™, where a € A, b € B acaxb €AXB,
Here f(axb)=axbx™
Hence f is on to.
Thus there is a onto corresponding between AxB & AxBx™
= 0(AxB)=0(AxBx™?
Substituting in equation (1) we get ,
o(AxBx™=[o(A).o(B)]/o(ANxBx ™) -1
0(AxB)=[0(A).0(B)]/o(ANxB-1)
Hence proved.
Lemma 2.12.5

Let G be a finite group and suppose that G is a subgroup of the finite group M. suppose further
that M has a sylow subgroup Q . Then G has a p-sylow subgroup p.In fact, p = GnxQx™ for

some X € M.

Proof :

suppose that p™/o(M) ,p™**to(M) , Q is a subgroup of M of order p™
Let o(G) = p"t where p#t

By Lemma 2.12.4

22



p is a subgroup of G and has order p", the lemma is proved.
THEOREM: 2.12.2 SECOND PART OF SYLOW’S THEOREM
If G is a finite group, P is a prime and P"|O(G) but P"|O(G)then any two
subgroup of G order P" are conjugate.
Proof:

Let A,B be subgroup of G, each of order P" where P"|O(G)

but P"+O(G)------- (1)
~O(A) = O(B) = P"

To prove that A and B are conjugate in G.
It is enough to prove that A=gBg™ for some geG.
Let if equation (1) is possible then A=xBx™ vxeG
Now we decompose G into double cosets of A and B.

=G can be written as G=UAXB

Now by using O(AxB) = O(A) O(B) --------- 2)
O(ANxBx™) Here A and B are subgroups of G and O(A) = O(B) = P" and also ANxBx"is a

proper subgroup of G if A# xBx™ VX€G
Then O(ANxBx™) = P™ where m<n

- Equation (2) becomes O(AxB) = P"P™ = p?™"

==>n-m>0

==>n-m=>1

23



The above relation P™*|O(AxB) for every x.

Since, O(G)=X0(AxB) which is a contradiction to our assumption that
P™LO(G).

Hence A=gBg™ for some geG. Hence A and B are conjugate in G.
Lemma 2.12.6

The number of p-sylow subgroups in G equals o(G)/o(N(p)), Where p is any p-
sylow subgroup of G. In particular , this number is a divisor of o(G).

Proof:

P-sylow subgroups for a given prime p, in G.
Theorem: 2.12.3 THIRD PART OF SYLOW THEOREM:

Prove that the number of p-sylow subgroups in G for a given prime is of the form 1+Kkp.
Proof:
Let p be a p.sylow subgroup of G

To prove that the number of p-sylow subgroup in G is of the form 1+kp where p is a prime

number .
Now, we decompose G is a double cosets of pand p .
Thus G=upxp

By using theorem 2.12.14

o(pxp)=[0(p).0(p)[/O(PLAXPX *)---------- 1)
0(PXP)=(0(P))*/O(PAXPX )--mmmrmmmrmmnmnen (2)
Also 0(G) =Y o(pXp)--=--=============nnmmm- (3) [By eqn(1)]

If pn(xpx™) # p then p™*/o(pxp0

24



where o(p) = p"-------------- (4)
Also, if xe N(p)
then pxp = p(xp)
= p(px) = (PP)X

(i.e) pxp = px.
“ U(pXp) = Upx
Since p < N(p), Xxenp) 0(pxp) = 0(N(p)--------- ()
eqn(5) becomes
0(G) = Xxen(p) 0(PXP) + Xxen(p) 0(PXP)------- (6)
where each sum runs over one element from each double cosets.
If x¢N(p) then xpx™ # p
= pnxpxt<p
= o(pnxpx)/o(p)
= o(pnxpx ™ = p™ where m<n
Equation (3) becomes

o(pxp)=p"p™/p™ where m<n,

o(pxp)=p" ™
Since n-m> 0 and n —m = 1, if follows
That p™*/o (pxp) Vx&N(p)
= P Y enipy 0(pxp) =p" U e (7) for some integer u

Using (5) and (7) in equation (6) we get
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O(G)=o(N(p))+p"".u
O(G)(o(N(p))=1+[p"".ul/o(N(p)) -—-------- (8)
Since N(p) is subgroup of G and G is finite group
By Lagrange’s theorem.

0(G)/o(N(p)) and it is an integers.

Since p is a p-sylow’s subgroup of G and by defn p"/ 0(G) and p™*'/ o(G)

Hence p™* cannot divide o(N(p)).

But, p"™.u/o(N(p)) must be divisible by p.

p"*.u/o(N(p)) is of the form k.

where K is an integers.

(i.e) p".u/o(N(p)) = kp

Eqgn(8) becomes,

0(G)/0(N(p)) = 1+ kp,

Hence, the number of P- sylow’s sub groups in G = 1+kp.
UNIT Il - FIELDS, VECTORS SPACES, MODULES
Direct products — Finite abelian groups — Modules
Chapter 2: Sections 2.13 and 2.14 [only theorem 2.14.1]
Chapter 4: Section 4.5

2.13 DIRECT PRODUCTS

Section 2.13 GROUPS AND MODULES

Introduction
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Let A and B be any two groups and consider the Cartesian product G = A x B of A and

G consist of all ordered pairs A,B. where aeB,beB. In this way we define the product of

(a1,b1) & (a2,02) is (az,byy (a2,02)= (a1 b1,a2b2). Now we prove the Cartesian product G=AXB is a

group.
(i) Closure

Leta; by and a;, b, € AXB =G Wherea; ,a; € Aand by, b, €B
Now , (a1,b1) . (a2, by) = (a1a2b1b,) € G
=AxB
Therefore closure is satisfied.
(ii) Associative
Let (a1,b1), (a2, b2), (a3,b3) € G=AxB
Consider, (a1,b1) [(az, b2) (as,bs)] = (a1,b1) , (a2 a3 by b3)= (a1a, az bib, b3)------ Q)
Similarly
[ (a1,b1) (a2, b2) ] (as,bs) = (a1 a2,b1 b2) , (a3,b3)= (a1a; a3, bib, bs)------ (2)
(iii) Identity
Let eand f be the identity elements of A and B respectively,
Now (a,b) (e,f) = (ae,bf) = (a,b)
Also (e,f) . (a,b) = (ea,fb) = (a,b)
(iv) Inverse
Let (ay,b1), (a;™, by )EG

Now (ay,b1).(a;"L,by ") = (ay a;t.byhy Db
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=(ef)
Hence G = A X B isagroup.
Internal direct product
Let G be a group and Nj N2,N3...N, be the normal subgroups of G such that,

1) G= N1,N2,N3...Nn .
2) Given geG then g = mym,....m, where m;eN; in a unique way then we can say that G is
the internal direct product of Nj N,Ns...Ny .

Result

If G is the internal direct product of the groups A and B then G is the internal direct product
of A and B where A ={(a,f)/a€A} and {(e,b)/beB}. Here e and f are identity elements of A and
B respectively. Also prove that, A= AandB = B (or)

If G=A x B then prove that,G=4 B
Proof:
Given, G=AXB

Where A and B are any two groups of G

Toprovethat, A= AandB= B

Define a mapping @:A— A by ¢(a) = (a,f) for all acA

Now to prove one to one , Let @(a;)= @(ay) that is (a1,f) = (a2 f) =a;=a,
Therefore @ is one to one.

Now to prove, @ is onto

Let, (a,f) € A = a€A and fis the identity element of A

Therefore @(a) = (a,f) , Hence @ is onto
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Now to prove, @ is homomorphism,
Let, (a1a2) €A then (i) (a1a2.f) = (ar,f) . (ay,f) that is @(a; a2)= ?(a1). B(a,)
(i) (ag+a2 f) = (ar,f) + (az,f) that is @(ar+a2)= B(a1)+ B(az)
Therefore @ is homomorphism. Hence, A= A

Similarly We can prove that B = B

Next we want to prove that G is the internal direct product of A and B that is to prove that,

(i) A isthe normal subgroup of Gand B is the normal subgroup of G

(i) Every element g€ G can be written G=a b for allac€A ,be B,a€ A, b € B
Now to prove A is the normal subgroup of G, Let (a,f),(b,f) € 4,
Now, (a,f). (b,f)'=(af). (b™f)
Therefore A is a subgroup of G. since, A c G=A x B and (a,f) € A that is (a,f) €G
Therefore, A c G
Let, (a,b) eGand (a,f) € 4
Now, (a,b) (a,f) (a,b)'=(a,b) (a,f) (a'b™)
= (aaa’*, bfb™)
= (ae, fbb™)
=(afed
Therefore A is normal subgroup of G
Similarly B is normal subgroup of G

Hence we have an isomorphic copy A of Aand B of B in G which is a normol subgroup of G.
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Now we claim that G =A B for all g€G is a uniquedecomposition in the form, g=ab .

where,a€ A, b€ B
Now, G=A X B
Let ge G, then g = (a,b), where a€eA , be B
= (a,e).(f,b)
Since, (a,e) € A and (f,b) € B
Therefore g =a b with @ =(a,e), b=(f,b) thatis g € AB
Now to prove, this representation is unique.
LetG=xy ,where x =(x,e)and y = (f,y) then,
g=(xe).(fy)
=(xf,ey)
=(x.y)
But g=ab , Therefore, a=x and b=y
Hence G is the internal direct product of Aand B .
Lemma 2,13.1

Suppose that G is the internal direct product of N; N»...N, then for i# j, Nin Nj={e} and if
a €N; beN; then ab=ba.

Proof:

Given that , G is the internal direct product of N3 Na...Ny,
Therefore N3 N,...N,

Where, N N,...N, are normal subgroup of G.

If geG then by definition of internal direct product of g = m;m,...m, in a unique way.
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Where, m;C N;
Now to prove N; N N;={e} for all i+ |

Suppose that, X€N; N Nj= XEN; and XEN; then we can write ‘x’ as

X =€1,€7...€i1X €j+1t...€j. . .Cneeeeee m
Where e; = e ,viewing x as an element in N; .
Similarly We can write, X as X=€1€;...€;...€j-1Xgj+1...€p===-==--=-- (1)

Where e;= e, viewing x as an element in N; But, X as a unique representation in the form

my m,...m, Where m; € N; m; € Na...mp€ N,
From the equations (I) and (II)

The two decomposition in these form for ‘x” must coincide, the entry from N; in each must be

equal. In our first decomposition(I). This entry is ‘X’ in the 2" decomposition
Hence, x = e, Thus Nin Nj={e} for all i+ ]
Suppose a €N; beN; and i+ j then aba'lENj and since N; is the normal subgroup of G.
Thus, abab™eN; ,(since beN; b eN;)
Similarly, ae N;, ba*b™e N;, where aba™b™e N;,
But then aba™*b e Nin Nj={e}
aba™b'=e

ab(ba)*=e

ab=e(ba) Hence the proof.
Lemma 2.131

Let G be a group and suppose that G is the internal direct product of Ny N... N,

Let T= N1x NpX...XN, . then G and T are isomorphic.
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Proof:
Given that, G is the group and also G is the internal direct product of Nj N,...N,
Also given that, T = Ny X NoX... XNy
To prove, G and T are isomorphic. Define the mapping, y: T—G by v (b1,b2...b,) = by,b,...b,
Where, each b€ N;,i=1,2,...n. We claim that v is the isomorphic of T onto G.
Now to Prove , y is one to one.
Let, X,y € T then x = (a; a2,...an) and y = (by,b,...by) such that, v (X) = y(y)
= y (a1,82,...an) = y (b1,bz...by)
= (a1,82,...an) = (by,b2...bn)
= Xi=Yi
> Xy
Therefore v is one to one.
Now to prove , y is onto

Since ,G is the internal direct product of N N,...N, and if xeG then x = (a; ay,...an) for some

a1€N;  a,€ Na,...a,eN, But then,
v (a1,82,...an) = @1d2,...an = X , Therefore vy is onto

The mapping v is one to one by uniqueness of the representation of every element as a product
of element of the form, NiNy...N, . Forif, v (a1,82,...an) = C1,Ca,...cn. Where, ai€ N; C;EN; for i
=1,2,...n.

Then by definition of v , a3 8y,...a,= C1.C,...Cn,
sal=c¢, 1=1,2...n.

Thus v is one to one
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Now to show that, y is a homomorphism of T onto G.
If X (a18z,...an) , Y = (b1,b...b,) are the elements of T.
Then, v (xy) =y [(a1,82,...an) (b1,bs...by)]
=y (aiby,azby,...anby)
= agby aoby,...anby by lemma(2.13.1)
aibj = bja; for i#]
This gives, a;b; . asb, ...apbn = aja._a, bib, by
Therefore y (Xy) = aia,.an.bib,. by
= (a,82,...an) (b1,bz...by)
=y (X).y (y)
That is vy (xy) =y (X).y (y)
Y is homomorphism.
Hence, vy is an isomorphism of T onto G.
Therefore G and T are isomorphic.

2.14 FINITE ABELIAN GROUPS

A finite abelian group is a group satisfying the following equivalent conditions.

(1) Itis isomorphic to a direct product of finitely many finite cyclic groups.

(i) It is isomorphic to a direct product of abelian groups of prime power order.

(iii) It is isomorphic to a direct product of cyclic groups of prime power order.

Theorem 2.14.1

Statement
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Every finite abelian group is the direct product of cyclic groups
Proof:
Every finite abelian group G is finitely generated
Hence it is generated by the finite set consisting of all its elements.
Therefore Applying this theorem,

Let R be a Euclidean Ring, then any finitely generated R-Module, M is the direct sum of the finite

number of cyclic sub-modules.
Proof:

Let M be the finitely generated R-Module. To prove that the theorem for ring of integers. Since the ring
of integers is also a Euclidean ring. Hence we assume that M is an abelian group which has a finite

generating set.

Now we prove the theorem by the induction on the rank of M.

Step-1: If the rank of M is one. Then M is generated has a single element.

~ M is cyclic, Hence the theorem is proved for rank one.

Step-2: Let us assume that the theorem is proved for all abelian group of rank less than g.

That is the result is true for all abelian groups of rank for r-1, Hence any R-Module where rank is g-1 is

the direct sum of finite number of cyclic sub-module.

Step-3: Now we prove the theorem for rank M = q. Let a, a,.... a; be the minimal generating set of M.
If any relation of the form ria;+r.a,+....+rqaq = 0. Where ry, r..... rq are integers then r1a; = 0, 1.8, =
0....rqaq = 0. Hence M is the direct sum of My, My... Mg, where each M; is the cyclic sub-

Module generated by a;.

Step-4: Let us assume that given any minimal generating set by, b,.... by of M must be integers r;,

... 1q such that ribs+robo+. .. .+rgbg = 0 and in which not all riay, ray,....,rqag are zero.
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Among all possible such relations for all minimal generating set, there is a smallest possible +ve
integers occurring as coefficient. Let this integer be s; and let the generating set for which if

occurs be ay, a.... agthus Sja3+S8,+. ... +Sqaq = 0.-------- (1)

We claim that if ria;+roa,+....+rqaq = 0. ------------ (2)

if notry=ms; +t--------—---- (3) where 0<t<s;.

Now (1) multiplying by m and subtracting from egn. (2) we get
(2)-(1)Xm = (r;-msy)a; +......+(rg-Msg)ay = 0.

That is ta;+(r,--msz)a, +...... +(rg-msg)ag = 0. Since t<s; and s, is the smallest possible +ve integer in such
a relation. We must have t=0.

~eqn.(3) becomes r; = ms,, therefore s,/n.

Now we claim that s,/s; forT=1,2....q

Suppose not then s; does not divide s,, therefore s, = m,s; + t --------- (A), where 0<t<s; .
Now a,' = a;+myay, ay, as, ... aq is also generated by m. Hence we have from eqgn. (1)
Sia+Spart.... 543 =0

i.e., s1(a1'-maaz)+spart. ... 45489 = 0

i.e., S181'-S1Mpaz+Soas+. ... 4543 = 0

i.e., s1a1'-(S-S1my)ag+....+sqgag = 0

i.e., s1ay" +ayt......+sqaq= 0 (by using (4))

Thus t occurs us a coefficient in some relation among elements of a minimal generating set. ..

By the very choice of s; that t = 0. Hence s; = mys; = $1/s,.

Similarly for the other s;, hence we write s; = ms; and also si/s; , i=1,2,3....q

Consider the elements a; = a;+Myaz+Maag+....+mgdg, az,...,ag Where az,as....,aq generate M.
Moreover, 518.1*: Si1a1t SiMoax+ S1M3as. ...+ S1Mgag = S1a1+Szax . ... TSqdy .
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If ry ay +rpat.....+1q8q = 0. Substitute for a; , we get
ri( ar+moadz+msast. ... +medq )+Hrodst. ... 418 = 0. rag+(rimy+ra)ast.....+(riMg+rg)ag = 0.
Therefore the coefficient of a; is r;, hence r;a;” = 0.

If M, is the cyclic sub-module generated by a; and My is the sub-module of M generated by ay,
as,...,ag. We have M;UM; = {e} and M;+M; = M. since al*,ag,ag,...,aq generate M and M is the
direct sum of M; and M. Since My is the sub-module generated by a,,as...,aq and its rank is

atmost g-1. Hence by induction hypothesis M is the direct sum of cyclic sub-modules.

Since M; is the cyclic sub-modules generated by a;” and hence M is the direct sum of cyclic
sub-modules M; & M, whose rank is q. Now the proof can be modified to the Euclidean ring R
as follows. Instead of taking s, let us take the elements of the ring R, whose value is maximal

and whenever we take of t , where r; = ms;+t either t=0 or d(t)<d(s)
Hence the Euclidean ring R-Module is the direct sum of finite number of cyclic sub-module.

We get any finite abelian group is the direct product of cyclic group.
Section 4.5

Modules

Let R be any ring. A non-empty set M is said to be an R-Module over R. If M is an abelian
group under the operation ‘+’ such that for every r€ R, me& M there exist an element rm in M

subject to

Q) r(atb) =r(a) + r(b)
(i) r(sa) = (rs)a
(i) (r+s)a=ra+sa forallabeM, rseR

Unital R-Module:

If R has a unit element one and if 1.m = m for every element m in M. Then M is called a

unital R-Module.

Definition:
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An additive subgroup A of the R-Module is called sub-module of M, if whenever re R, a€ A,
rac A.

Examples:

(i) Every abelian group G is a module over the ring of integers.
(i) Let R be any ring and let M be the left idle of R. Then M is an R-Module.

Definition:

If M is an R-Module and if My, Mo, .... Ms are the sub-module of M, then M is said to be
the direct sum of My, Mo, .... M;

i.e., M=Mi@ M.® ....0 M, if every element me M can be written in a unique manner as
my+my+ .... +ms, Where mieM;, myeMs, ..... m€M;.
Definition:

An R-Module is said to be cyclic if there is an element moeM, such that every meM is of the

form m = rmg where r€é R.
Definition:

An R-Module is said to be finitely generated if there exist elements a;, a,, .....a, EM, such

that every M is of the form ria;+ra,+....+1qa, .
Definition:

If M is finitely generated R-Module. Then a generating set having a few elements as possible is called

the minimal generating set.
Definition:

The number of elements in a minimal generating set is called rank of M.
Result:
Prove that the intersection of two sub-Modules is again a Sub-Module.
Proof:
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Let M be an R-Module and s; and s, be the sub-modules of M.
To prove that s;Ns; is a subset of M, we have, s;Ns, = @.

We know that s;Ns, is a additive subgroup of M. (since the number of two subgroups is again a

subgroup)
Leta,b EsiNs, =>a€s;,a€s,andb €5, , bE s,
Therefore (a,b) €5, Ns,
Therefore (s1, +) & (S, +) is a additive subgroup.
LetreRands €s;ns,=r€R ands € s; and sESs,.
=TrSEs; andrs €s,.
= IS € $1NS,, Therefore s;Ns, is sub-module.

Theorem:4.5.1: Fundamental theorem on finitely generated R-Module.

Let R be a Euclidean Ring, then any finitely generated R-Module, M is the direct sum of the finite

number of cyclic sub-modules.
Proof:

Let M be the finitely generated R-Module. To prove that the theorem for ring of integers. Since the ring
of integers is also a Euclidean ring. Hence we assume that M is an abelian group which has a finite

generating set.

Now we prove the theorem by the induction on the rank of M.

Step-1: If the rank of M is one. Then M is generated has a single element.

~ M is cyclic, Hence the theorem is proved for rank one.

Step-2: Let us assume that the theorem is proved for all abelian group of rank less than g.

That is the result is true for all abelian groups of rank for r-1, Hence any R-Module where rank is g-1 is

the direct sum of finite number of cyclic sub-module.
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Step-3: Now we prove the theorem for rank M = q. Let a, a,.... a; be the minimal generating set of M.
If any relation of the form ria;+roa,+....+rqaq = 0. Where ry, r,.... rq are integers then r1a; = 0, rpa; =
0....rqaq = 0. Hence M is the direct sum of My, My... Mg, where each M, is the cyclic sub-
Module generated by a;.

Step-4: Let us assume that given any minimal generating set by, b,.... by of M must be integers r;,

... 1q such that ribs+robo+. .. .+rgbg = 0 and in which not all riay, ray,....,rqag are zero.

Among all possible such relations for all minimal generating set, there is a smallest possible +ve
integers occurring as coefficient. Let this integer be s; and let the generating set for which if

occurs be ay, a.... ag thus Sjag+Sax+. ... +Sgaq = 0.-------- (1)

We claim that if ria;+roa,+....+rqaq = 0. ------------ (2)

if notr; =ms; +t------------ (3) where 0<t<s;.

Now (1) multiplying by m and subtracting from eqn. (2) we get
(2)-(1)Xm = (r;-msy)ag +......+(rg-Msg)aq = 0.

That is ta;+(r,-msy)a, +...... +(rg-msg)ag = 0. Since t<s; and s, is the smallest possible +ve integer in such

a relation. We must have t=0.

~eqn.(3) becomes r; = ms;, therefore s,/n.

Now we claim that s,/s; for 1=1,2....q

Suppose not then s; does not divide s,, therefore s, = m,s; + t --------- (A), where 0<t<s; .
Now a;* = a;+m,ay,, ay, as, .... aq Is also generated by m. Hence we have from eqgn. (1)
Sja1+Szart.... 4S84 =0

i.e., s1(a1'-maag)+Spat. ... 45489 = 0

i.e., s11'-81Mpas+Ssap+. ... 45480 = 0

i.e., s1a1'-(Sp-S1my)ag+....+sqgag = 0

i.e., s1ay" +ayt......+sqaq= 0 (by using (4))
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Thus t occurs us a coefficient in some relation among elements of a minimal generating set. -

By the very choice of s; that t = 0. Hence s; = mys; = $1/s,.

Similarly for the other s;, hence we write s; = ms; and also si/s; , i=1,2,3....q

Consider the elements a; = a;+Myaz+Maagt....+mgdg, az,...,ag Where az,as....,aq generate M.
Moreover, 518.1*: Si1a1t SyMoax+ SiM3ast. ...+ S1Mgag = S1a1+Szax . ... tSqdy -

If ry ay +rpat.....+1q8q = 0. Substitute for a; , we get

ri( atmodz+msast. ... +medq )+Hradzt. ... 418 = 0. ragr+(rimy+ra)as+.....+(rimg+rg)ag = 0.
Therefore the coefficient of a; is ry, hence rja; = 0.

If M, is the cyclic sub-module generated by a;” and My is the sub-module of M generated by ay,
as,...,ag. We have M;UM; = {e} and M;+M; = M. since al*,az,ag,...,aq generate M and M is the
direct sum of M; and M,. Since My is the sub-module generated by a,,as...,aq and its rank is

atmost g-1. Hence by induction hypothesis M is the direct sum of cyclic sub-modules.

Since My is the cyclic sub-modules generated by a;” and hence M is the direct sum of cyclic
sub-modules M; & M, whose rank is q. Now the proof can be modified to the Euclidean ring R
as follows. Instead of taking s;, let us take the elements of the ring R, whose value is maximal

and whenever we take of t , where r; = ms;+t either t=0 or d(t)<d(s)
Hence the Euclidean ring R-Module is the direct sum of finite number of cyclic sub-module.
Corollary: Fundamental theorem on finite abelian groups:
Statement:
Any finite abelian group is the direct product of cyclic groups.
Proof:

Every finite abelian group G is finitely generated. Hence it is generated by the finite set
consisting of all its elements. Therefore applying the theorem of Fundamental theorem on finitely

generated R-Module. Hence Any finite abelian group is the direct product of cyclic groups.
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UNIT - 111 - LINEAR TRANSFORMATIONS 18hrs

Solvability by Radicals - Galois groups over the Rationals
Chapter 5: Sections: 5.7 and 5.8
5.7 Solvability by radicals:

Solvable:

A graph G is said to be solvable if we can find a finite chain of subgroups Ng DN; DN; ...

DN = {e} where N; is a normal subgroup of N;.; and such that every factor group % IS

abelian.

Result:

Prove that abelian group is solvable.

Proof:

Let G be am abelian group . To prove that G is solvable.

We take No=G and N;={e} such that G= Ny DN; = {e}. To prove N; is a normal subgroup Ng =
G. Let geG, Now geg™ = (gg™)e = ee= e €G. Therefore gg*eN,.

Hence N; is a normal subgroup of Ng=G. Now to prove % is abelian. Here the factor group % =
1 1

{g—} = {ex=xe/xeG}. Since G is abelian, x—i is abelian. Hence G is solvable.
Every abelian is solvable.
Definition:
Let G be a group and the elements a,beG, then the commutator of a and bis the elements
a'l bt ab.
Definition:
The commutator subgroup G’of G is the subgroup of G generated by all the commutators in G.
Result:
Prove that the commutator subgroup G’ is a subgroup of G.
Proof:
Let G be a group and S = { a™b™ab such that a,beG} the commutator subgroup

41



G =1{S1,S;.... Sm / Si €G}, M is arbitrary. LetseSthen S= a'b™ab for some a,beG.
Consider (a'b*ab)*=b'a’baeS

No to prove G’ is a subgroup of G, Let x,y EG’ thenx=S;, S, .... Sm, Sj €S, m is arbitrary and
y=S51",S,"....Sy, S’ €S, nisarbitrary.

Consider, xy*= (S1, S5 .... Sm)(S1%, S2” .. S = (S, Sz oo Sm)(S L S Sh
Therefore xy™ is a finite product of finite number of elements of S.
Therefore xy™ is a finite product of finite number of elements of G.
~ xy'€G’, Hence G’ is a subgroup of G.
Result:
Prove that the commutator subgroup G’ is a normal subgroup of G.
Proof:
Let G be a group and G’ be the commutator subgroup of G. Let x€G and aeG’
Consider, xax™ = (xax™)(a™a)
= (xax* at)a €G’

By lemma(1), xax™* a€S and seG’
Hence G’ is a normal subgroup of G.
Result:

Let G be a group and G’ be a commutator subgroup of G, then
(1) G/G’ is abelian
(ii)If H is any normal subgroup of G such that G/H is a abelian than G’CH.
Proof:

Given G is a group and G’ is the commutator subgroup of G.

1) To prove: G/G’ is abelian. since G’ is normal in G, G/G’ is a factor group and G/G’:
{aG’/a€G}.

Let aG’,bG’e (;i where a,beG
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Now, aG’.bG’ = abG’, bG’.aG’= baG’ -------- @
Now consider ( ab)*ba €G’
(ab)'ba G’= G’ baG’ = G’(ab) » baG’ = abG
Therefore bG’.aG’=aG’.bG’
Hence G/G’ is abelian.
ii) Let G/H is a abelian
To prove G’ cH
since G/H is a abelian
aH .bH=bH.aH — abH =baH — (ba)™* (ab) H = H
— (ba)™* (ab) H eH
~a'babeH
therefore H contains all the elements of the form a*b™a.
Hence G’ cH.
Lemma-5.7.1:
G is solvable « G = {e} for some integer k.
Proof:
Necessary part:
Let G® = {e}
To prove G is solvable
Let No =G, N; = G!, N,= G ... Ny = G® = {e} we have G=NycN; c N; .....c Ny = {e}

where each N; is normal in G. By lemma (2) GV is a normal subgroup of G . Therefore 2t
G- G
= _G(l) - G(i—l)l

¢®

By lemma 3, sarn isan abelian group.

Hence G is solvable.
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Sufficient part:
Let G be a solvable group, To prove G® = {e}

Since G is solvable there exist a chain G=No CN; CNy .....C Ny ={e} and N; is a normal
subgroup Ni.; and also % is abelian. But then commutator subgroup (N;i.1)” must be contained

in N;. i

i.e., Nj.1 ©N;.

Thus, NjDNy’

N2 2 Ny’ =(G) =G@ ... Ni  SNgi=G® e (1)
Also Ny = {e} Eqn (1) which implies G® = {e}.

Hence the theorem.

Corollary:

If G is a solvable group and G is homomorphism image of G, then G is solvable. Prove that
homomorphic image of solvable group is solvable.

Proof:
Let @:G— G be a onto homomorphism
LetS={a'b"ab/ a,beG} and G’ = {s1,S; .... sm/ Si€ES, M is arbitrary}
LetS={a"'b~'ab/ab € G}
G’ =1{5,5,....5,/ 5, € S ,n is arbitrary}
To prove: @(S) =S
Let s€S, then S = a™*b™ab where a,beG
Now, @(S) = @( a™b™ab)
=9(a) 8(b ™) 0(a) B(a)
= (@@")™" (@b ™) 0(a) B(b)
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Let (a)~'(b)~'ab € S, whereab € G
since @ is onto there exist a,b €G such that @(a) = a, @(b) = b
Now(a)™(b)~*ab = (8(@™))™ (2(b™))"0(a) B(b)
= ¢(a’bab) € (S)
= S CO(S) -------- 2)
From (1) and (2) @(S)=S
Now to prove @(G’) = G’
Lets;, Sz ....sm €EG’, s €S, mis arbitrary.

Now @(S1,S2....5m) =@(S1) D(S2).... B(Sm)

#(G’) € G - (3)

Now to prove ¢’ C @(G’)

Letx = 51, 5;...5, €EG’

since @ is onto there exist s;€S, such that @(s;)=s;,
Letx=51,5S;.... sm EG’

P(X)=0(S1,S2.... Sm) =51, 53....5,,

G 2 O(G) - (4)

From (3) and (4) (G’) = G’

Hence G' is a homomorphic image of G™. implies that (G')’ is a homomorphic image of
G@....(G%*1Yis a homomorphic image of G¥

Also (GY)’ = {&} where & is the identity element of G

A group G is solvable G® = {e}. Here G is a homomorphic image of G and also G* is the
image of GY.

Hence G is solvable.
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Result:

Prove that subgroup of a solvable group is solvable.
Proof:

Let G be a solvable group and H its subgroup.

To prove that H is solvable

Since G is solvable, then by definition of solvable group

Q) G = G=Np>Nj.... oN¢={e}
(i) N; is normal subgroup of N;_;
(iii) % is an abelian group, here G = G= Ny DN; .... o= {e}

Now, HNG = HNNy DHNN; .... DHNNg = {e}
i.e., H= Ho DH; .... DHk = {E}

Let HNN; = H; V i, we know that N; is a normal subgroup of N;.;, then HNN; is a normal
subgroup of HNN;.;.

Implies that H; is a normal subgroup of Hi.;.

Now, let us define the mapping F: Hi— % f(X) = XNijs+1, V XEH;

To prove F is well defined
Here Hi = HNN; € N;, - H;j cN;.

Let xeH; implies that XxeN;.

N.
Therefore xNj;1€ ——,
Nitq

=~ fis well defined.

Now to prove f is homomorphism

Let X,y € H;

i) f(x+y) = (x+y) Nis1 = X Niva +y Nisg = f(x) +5(y).
i) f(xy) = (xy) Nisa = (X Nisg)(y Nisa) = FOOF(y).
Now to prove f is onto

N.
= XEN;.

XN'+1E
! Niyq
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= x€HNN; = x€H..

= f(X) = XNis1

Now to prove kerf = Hiy1, Vi

We know that kerf = { x€Hi/ f(x) = Nj:1 }

Let xekerf & f(X) = Nj+1 © xNi+1 = Nj+1 © XENjs1 © XEHN Niyg
& x€Hi+1 © kerf = Hiv1

Hence fis a onto homomorphism.

. N; . . .
i.e,f:Hi »onto ~ —, homomorphism with kerf = Hi+1, By using fundamental theorem of
i+1
H; N; N; H;
homomorphism —— = —— Here —— and —
p Hit; Nipq Nitq Hitq

is an abelian group.

Hence H is an solvable group.

Lemma 5.7.2:

Prove that if G = S;,, where n>5 then G® for k =1,2.... Contains every 3- cycle of S,
Proof:

Let G =S, n=5, to prove G for k =1,2.... Contains every 3 cycle of S.

We know that if N’ is a normal subgroupof G then N’ must also be a normal subgroup of G.
Step-1:

We claim that if N is a normal subgroup of G = S, , where n>5 which contains evry 3-cycle
in S,.

Suppose a= (1,2,3), b=(1,4,5)areinN. Then a*= |1 2 3| = {3 2 1]
Also b = [1 4 5} bd:t 4 5}
4 5 1 4 1
Then, atblab = {1 2 3} [1 4 5] {1 2 3} {1 4 5}
3 1 2 5 1 4 2 3 1 4 5 1

=11 2 3 4 5 = [1 4 2} IS a commutators of elements

3 1

47



4 1 3 2 5
Of N must be in N’. since N’ is a normal subgroup of G equal to S, for any w € S,
Y1 4 2)m mustalso be in N”.
~m (1 4 2)m cN’. Now let iy, iy, i3 be three distinct integer in the range from i=1,2,3.... n.
To prove iy, I, i3 € N’, i.e., To prove 7 Y1 4 2)m =(iy, i, i3) is in N’.

Since iy, iy, izare 3-cycle in S,. Choose m €S, such that (1) = iy, m(4) = iy, m(2) = i3, where (iy,

I, I3) are 3 distinct ineger range fromi=1,2,3 .....
Step-2:

Let G = S, which is normal in G and contains all the 3-cycle in G. Also we have N’ =G’, N’

contains every 3-cycle of S,, we have G’ also contains every 3-cycle of Sp,.

Now, (G")™ = G contains every 3-cycle of S,. Since G is normal in G, G containing
every 3-cycle of S,. Also, (G®)® = G® is normal in G, G® containing in this way we get G®

contains every 3-cycle of S, for arbitrary k.
Theorem: 5.7.1:
Prove that S, is not solvable for n>5.
Proof:
Let G =S, where n>5,
Then by using lemma 5.7.2, G® contains every 3-cycle of S,
Hence G = S, is not solvable for n>5.
SECTION 5.8 GALOIS GROUPS OVER THE RATIONALS

In Theorem, Let f(X) € F(X) he of degree "L, Then there is an E of F of degree at most n! in

which f(x) has n roots. We saw that given a field F and a polynomial p(x) over F has degree at
most n! over F. In the preceding section we saw that this upper limit of n! is indeed, taken on for
some choice of F and some polynomial p(x) of degree n over F. In fact, if Fo is any field and if F
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is the field of rational functions in the variables as, ay,.....an over Fo, it was shown that the
splitting field K, of the polynomial p(x) = X" + a;x"* + ....+a, over F has degree exactly n! over
F. Moreover, it was shown that the Galois group of K over F is Sy, the symmetric group of
degree n. This turned out to be the basis for the fact that the general polynomial of degree n, with

N25 s not solvable by radicals.

We shall make use of the fact that polynomials with rational coefficients have their roots in the
complex field

Theorem 5.8

Let g(x) is an irreducible polynomial of degree p, p a prime, over the field Q of rational
numbers. Suppose that g(x) has exactly two non real roots in the field of complex numbers then
the Galois group of q(x) over Q is Sy, the symmetric group of degree p. Thus the splitting field of
q(x) over Q has degree p over Q

Proof: Let K be the splitting field of the polynomial g(x) over Q

If «isaroot of q(x) in K, since q(x) is irreducible over 2, then by theorem 5.1.3 [Q(« ) : Q] =p
Since K > Q(«) > Q and according to theorem 5.1.1

[K:QI=[K:Q(a)][Q(e): Q] =[K:Q(a)lp

By theorem 5.6.4 O(G) = [K: F]. Thus p/O(G)

Hence by Cauchy’s theorem, G has an element o of order p to this point we have not used our
hypothesis that q(x) has exactly two non real roots. We use it now «,,«, are these non-real roots,

then o, =a,,a, = o, Where the bar denotes the complex conjugate.
If a,......a are the other roots since they are real a =a,, i>3

Thus the complex conjugate mapping takes K into itself, is an automorphism 7 of K over Q and
interchanges «,, @, leaving the other roots of q(x) fixed.

Now the elements of G take roots of q(x) into roots of q(x). So induces permutations of

In this way we imbed G in S,. The automorphism  described above is the transposition (1, 2)
Since 7() =«a,, 7(,) =, and () =c;, 123

What about the element o € G. Which we mentioned above has order p? As an element of S,. o
has order p, but the only elements of order p in S, are p cycles. Thus S must be a p cycles
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Therefore G has a subgroup of S, contains a transposition and p cycles

To prove that any transposition and only p cycles in S, generates Sp. Thus o and 7 genetrates Sy,
but since they are in G, the group generated by o and z mustbe in G. G =S,

In otherwords, the Galois group of g(x) over Q indeed S

UNIT - IV - LINEAR TRANSFORMATIONS 18hrs
Linear Transformations: Canonical forms- Triangular form -Nilpotent transformations.
-Jordan form

Chapter 6: Sections 6.4, 6.5, 6.6

SECTION 6.4
CANONICAL FORM AND TRIANGULAR FORM
Definition: Linear Transformation

Let V be a vector space over a field F a mapping T :V —V is called a Linear
transformation. If it satisfies the following conditions
() (v, +V )T =T (v) +T(v,)
(i)  a(vT)=oav(T)

Note: Hom(V, V) is the set of all homomorphism of V into itself and Hom(V, V) is a vector space
and it is denoted by A(V) and it is the set of all linear transformation from V to V

Definition: Matrices

Let V be an n-dimensional vector space over a field F. Let {v,,v, ,......v, }be a basis of V

over F. If T € A(V)then T is determined by any vectors depends on the basis of V. Since
TeAV), T(v,), T(v,), ....T(v,) are belonging to V

T (V]_) = allvl + alzvz F s + alnv
T(V,) = @pVy + 0V + ey V

T(V,) =,V +a,V, +....... +a,V,, wherea; e F

nn'n?
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n
This system of linear equation can be written as T(v;) = Zaijvj, i=12,...n. Then the matrix
j=L

Ay Aoy eee Gy

Oy Olyy oo Oy,

of T is the basis {v,,v, ,.......v, }is written as m(T) =

Invariant: Let W be the subspace of a vector V over F. Suppose W is invariant under the
transformation T € A(V) if W(T)cW

Invertible (or) Regular: An element T € A(V) is said to be invertible (or) regular. If there exist
anelement S e A(V) suchthat ST=TS=1

Similar Linear Transformation: The Linear transformation S,T € A(V) is said to be similar

transformation if there exist an invertible element C € A(V)such that T e CSC™ then we say
that S and T are similar to each other

Similar matrices: Let F, be the set of all nxn matrices over F. The matrices A, B € F, are said

to similar if there exist an invertible matrix C € F, such that B =CAC ™

Minimal Polynomial: Let V be a n-dimensional vector space over F than for any element
T € A(V) there exist a non-trivial polynomial q(x) € F(x) such that q(T) =0

A non-trivial polynomial of lowest degree satisfying this property is called the minimal
polynomial of T over F

Result: If p(x) is the minimal polynomial of T and if T satisfies h(x) € F(x) then p(x) is the
divisor of h(x)

Proof: Given that p(x) is the minimal polynomial of T.

Therefore p(x) is the least degree polynomial of T and p(T) = 0. Also given that T satisfies h(x)
Therefore h(T) =0

Since p(x), h(x) € F(x)there exist q(x), r(x) e F(x)such that h(x) = p(x)q(x) +r(x)

= either r(x) = 0 (or) deg r(x) < deg p(x) since h(T) =0

= h(T) = p(T)q(T)+r(T)

Now r(T) = 0 we get h(x) = p(xX)q(x) = p(x) / h(x)
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Hence p(x) is a divisor of h(x)

Lemma: 6.4.1

If W <V is invariant under T then T induces a linear mapping T onV /W defined by
(v+W)T =vT +W . If T satisfies the polynomial g(x) € F(x) then so does T (or)

If p,(x)is the minimal polynomial for T over F and if p(x) is that for T then p,(x)/ p(x)
Proof:

Given that W cV is invariantunder T = W(T) cW
: . =V Vv =
Define the mapping T :V_V _)V_V by (v+W)T =vT +W

Q) To prove T is well defined
Vv
Let v, +W, v, +W EV_V such that v, +W =v, +W

=V, -V, tW=W=v, -v, eW
= (v, —V,)T eWT W
v,T =v,T +W =W
(v, T +W)—(v,T +W) =W
T +W) =(v,T +W)
(v, +W)T = (v, +W)T
Therefore T is well defined.

(i)  ToProve T isa linear transformation
gy (WY, +W)T =v,T +v,T +W
= (v, +W)T + (v, +W)T
@ a(V+W)T =a(vT +w_)
=T +W =(av+W)T
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Therefore T s a linear transformation V / W

Let us take 9(X) =, + X +......+a, X" be minimal polynomial for T and its satisfy q(T) = 0
Now q(T) =0

Consider, (v, +W)T~ =vT2 +W = (v+W)T

=T =)’

Similarly we can prove T = ()"
Now consider (V+W)a(T) =va(T) +W

=V(a, +o T+, T") +W
=a,(V+W)+a, (VT +W) + ...+, (VT +W)

= (VAW) + @, (V+W)T + .ot o, (VEW)T
=(V+W)(a, +alf+ ...... +a
(v+W)a() = (v+W)q(T) = a(T) = a(T)

Therefore for any (%) € F(X) with (T) = 0, Since Yis the 0 transformation on V / W and have
q(T)=q(T)=0
T satisfies the minimal polynomial A(X) € F(X) then by using the result * If p(x) is the minimal

polynomial of T and if T satisfies h(x) then p(x) is the divisor of h(x)”

We get p1(x) / q(x)

Therefore p(x) is the minimal polynomial for T over F then p(T) = 0 hence p(T )=0
Again by using the result pi(x) / p(x)

Definition: If Te AV)&AeF

singular

is called a characteristic root (or) Eigen value of T then A-Tis

Definition: The matrix A is called triangular if all the entries of above the main diagonal (or)
above the main diagonal are zero
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Definition: If T is linear transformation on V over F then matrix of T in the basis D1 Vg e Vot
if triangular if

v,T =a, v,
V,T =a,\V, +a,,V,

Theorem: 6.4.1

If T e A(V) has all its characteristic root in F then there is a basis of V in which the matrix of T is
triangular

Proof:

We shall prove this theorem by induction on n, where n is the dimension of V over F that is
dim_V =n

Step 1:

Let 9MeV =1ihen v/ has the basis with 1 element. Therefore m(T) is a one by one matrix.
Hence the theorem is true forn =1

Step 2:

Assume that the theorem is true for all vector spaces over F of dimension n —1
Step 3:

Let V be of dimension n over F

To prove the matrix of T is triangular in the basis of V over F

Let heF be the characteristic root of T then there exist a non-zero vector Yt such that
it =4V (1

Since by the property of characteristic root 4 € F+ T € AV) then VT =4v, V=0

Let W ={av,/axeF}....... 2

Here W is a one-dimensional subspace of V

To prove W is invariant under T
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That is to prove W(T) cW

Let (ZVlT ewT

av T = (aA)v, eW by equation(1)

Therefore W(T) €W

Hence W is invariant under T

LetV =—, -.dimV =dimV —dimW =n-1

=<

By lemma 6.4.1, T induces in linear transformation T on V whose minimal polynomial over F
divides the minimal polynomial of T over F

Thus all the roots of the minimal polynomial of T being the roots of the minimal polynomial of
T, must be liein F

T on V satisfies the hypothesis of the theorem, since V is n — 1 dimensional over F, our

Yo} pe the elements of V into ¥2*Vs»~++Vn respectively

To prove Vi,V Vs V”}forms a basis of VV over F

S RTAR VAR | veVisa

That is to prove that (i) are linearly independent (ii) Any element

linear combination of {V;,V, ,Vs,.....v,

Let oV + OOV, + e taVv, =0, ek 3)

a. =
Now to prove all constants '

Equation (3) implies %22+ nVn =7V, eW
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Therefore eqn(3) becomes oV, =0=a,=0"v; #0

- vV -

Let veV then v=v+W eV—V:V _________ 4)
Let szaivi

i=2
VAW =D v, +W

i=2
v—Z:aivi +W =W

i=2
V=aV, + Y o,
i=2

V=aV, + AV, + et V,

Hence any element v eV is a linear combination of {v,,v, ,v,,.....v, }

Now to prove the matrix of T is triangular in the basis ViV Vg Vot

Now by (1) Vil =4V, =,V

V_z-F =0V,
V,T —a,,v, +W =W
V,T —a,,V, eW =W
V,T =a,\V, +a,,V,

VT =gV, +ag,V, +ag,V,

Similarly we can prove that v, T =V, + o,,V, +......+ @V,
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a, 0 0.. O

Oy 0,y 0... 0

Hence m(T) =| a3, 5, ag.. O

Oy Opp Opsee. O

Therefore m(T) is triangular
Alternate form of theorem 6.4.1:

If the matrix A e F, has all its characteristic roots in F then there is a matrix C € F, such that

CAC ™ is triangular
Theorem 6.4.2:

If V is an n-dimensional vector space over F and if T e A(V)all has its characteristic roots in F
then T satisfies the polynomial of degree n over F

Proof: Let V be an n-dimensional vector space over F

Suppose that T € A(V) has all its characteristic roots in F then by theorem 6.4.1, we can find a

basis {V;,V; Va1Vt ¢ v/ over F such that

viT =4V, =V,

V,T =,V +a,,V,

VT =gV, +ag,V, + o5V,

Here the above can be rewritten as

v,T =4V,
V,(T-2)=0--.... (1)

Also v (T ) oV ...... (2)

Similarly we can write v, (T —A4,) =V, + &V, +....... +a

Also (T =A4)(T =4,) =(T=4)T -4)
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Continuing in this way, we get
T=-2)T-24)cc...(T=2,)=0

Multiplying both side by (T —A4,) in eqn(2) we get
Vo (T =2)(T —4) = vy (T - 4) =0

Proceeding in this manner we get
V,(T-24,)eeee(T=2)=0

Let S=(T -A4)(T —A4,).......(T — 4,) which satisfies

HenceS=0,v,#0,i=1,23,....n

(T =A)T = A).ceeeT = 4,) =0
Therefore T is satisfies the polynomial (x—A4,)(X—A4,).......(x = 4,) € F[x] of degree n

Hence T satisfies the polynomial of degree n over F

Section 6.5
Canonical Transformation — Nilpotent Transformation
Lemma: 6.5.1

IfV=vieovd®d ...... @vi where each subspace v; is of dimension n; and is invariant under

T, then a basis of V can be found so that, the matrix of T in this basis if of the form,

A, 0. 0
0 Ay.. O
0 0. 4,

Where each A; is njx m;matrix and the linear transformation induced by T on v;.

Proof:

58



Choose a basis V as follows:
v v v WY is a basis of Vy
v v,? . vio®Y is a basis of Va......
v v v ™Y s a basis of Vi

Since each V; is invariant under T, vi’?”Te V;, i = 1.k and so it is a linear combination of v,

Vo0 v @, thus the matrix of T this basis is the desired form.
ie, the matrix of T, in this basis is of the form n; xn;

Let this matix be A,. ie, each Ajis a matrix of T; and T; is the linear transformation induced by T
on V;

Hence we get, the matrix of T in the above basis of V as

A 0. 0
0 Ay.. 0
0 0.. A

Hence the theorem.
Definition of Nilpotent:

An element T € A(V) is said to be an invertable then there exist an element S € A(V) such
that ST=TS=1

Lemma: 6.5.2.

If T € A(V) is nilpotent then o¢. oo+ o<; T + ---. ¢, T™ where the ;€ F is invertable o, # 0.
Proof:

Suppose that T is nilpotent, the definition of nilpotent have exist an integer r such that <" = 0.

To prove g+ o« T + ---.cc,,, T™ is invertible if oc; # 0.
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LetS= g+ o; T + ---.¢,, T™. Now to prove «,+ S is invertible.
Consider, S = (<q T + +--.0¢,, T™)"
= (T(ocq+ ooy, T™)')

=T'(o¢q+ o+ o, T™)T

=0(T"=0)
: 1 S s2 (-1)r—1s7-1
Consider, (<o+ S) = (_ S - +—r)
X X o g
_ayr—1.r—1 2 _q\r—1.r
=1- 3y A S5,
o "~ xg o oco”
_1yr—1.r
=1+ (D" "s
OCOr

=1 (since S"=0)

Hence <y+ S isinvertible. ccg+ o¢; T + ---.x,,, T™ is invertible if o4 # 0.

Definition:
If Te A(V) is nilpotent then k is called the index of nilpotent of T. If T =0 but T** = 0.
Theorem 6.5.1:

If Te A(V) is nilpotent, of index of nilpotent n; then a basis of V can be found such that the

matrix of T in this basis of the form
A, 0.. 0
0 A,.. 0
0 0.. A

Where ny=>n,> n, and where ni+.....4n, = dimg V

Proof:
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Given that Te A(V) is nilpotent. T" =0

Also given that, T is of index of nilpotents ny. T"™ =0 but T" ™ # 0.----(1)
Now we can find a vector v € V such that v T™ * % 0.

We claim that the vectors v, v T.... v T™ * are linearly independent over F
Suppose that the above vectors are not linearly independent then

o; v+ o< UT + . 0¢,; v T™ ™ = 0 where «; € F, here all the oc’s are not zero. Let «’s be the

first non zero coefficient of the above equation.

ocsv T 4o, vT™E=0

v T Hocs +....40c,; THS)= 0 cmmmmmmeev (2)

since ocs # 0 by using lemma 6.5.2 , we get(ocs +ocsT+......+oc,; T™ %) is invertible.
Equation (2) becomes

vT*1=0

vt =01"=0

vT*! = 0. Which is a contradiction to vT"™* % 0 for s <n.

"1 are lineary independent . Let v be the subspace of \V spanned by

Hence v, vT, .... VT
Vi=V,Vo=vT ....vpy = vT"1

viT c V. Hence vy is invariant under T

Thus in this bais the linear transformation induced by T on v; has the matrix Mp;

0 1. 0
0 0.. O
Mny = : : :
0 0.. 1

Now to prove the rest of the theorem we need the following lemma’s
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Lemma: 6.5.3.
If ueV, is such that u vT™ * = 0 where 0<k<n; then u = uoT* some u,€ V;
Proof:

Given that ueV; and V; is a subspace of V spanned by v,vT,... vI"'!. Also given that

Thenu=o; v + ¢y VT + ++.0¢, v T
uT™* = (o, v+ ocy UT 4 -+ 0c,y v T TK

= oy anl—k + o, anl—k+1 + - K1 V Tan—k—l

vT™Mk v T2"1=k=13re linearly independent

Hence oc;= o¢p=++-. =¢;; = 0

U= LV T +oc T = uoT

UO = XsyVt. ...+ T "1 € vy

Lemma: 6.5.4.

There exist a subspace W of V, invariant under T such that V =v; @ w
Proof:

Let w be a subspace of v which is the largest possible such that

()  Vinw={0}

(i) W is invariant under T

To show that V = V; + W. where V; is the subspace of V which is invariant under T
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Suppose not V # Vi + W. Then there exist an element z € V such that z does not belongs to
Vi+W. since T™ =0, there exist an integer k , o< k<n; such that zT*€ V; + W and such
that zT' does not belongs to Vi +W, for i <k ---------- 4)

Thus zT*=u+w where u € V1& WE W -------- (5)
zT" =0
T T =0

(u+w) T =0

Since W is invariant under T, uT € V;, wT € W
uT"*e v, & w T *e W
Equation (6) becomes
u T +w T e vin W = {0}
uT =-w T e vin W = {0}
uT* =0
Now by using lemma 6.5.3.
There exist an integer u, € V1 Show that u = uoTX
Equation (5) becomes
ZT¢ = u+w
=uoTX +w
ZT* = uoT* =w
Tz —uo) =w eW
Let u; = z —uo then T*uo = wew
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Since W is invariant under T, wTcW
uT*Tew
uT™ e W, m>k
on the other hand if i > k then,
uTt=(z-uo) T
=(@ZT-uT)
Does not contains V1+W
For otherwise u; T'e V1+W. Which is a contradiction to equation (4)
Let W be the subspace of V spanned by W & z; z;T.... 7, T
Since w € W and Wcw; Then dim W < dim w;
dim w; must be larger than that of W
Since z; T*e W
If W is invariant under T, wy must be invariant under T
To prove w;T € W1 Where w; € Wy, Herew; = Wo+ o¢;z,T+....+oc, 2, T< --(7)
WiT = WoT+ o¢ 2, T+ +oc, 23T
woT EW & 2, T'e W
wi T e W,

hence W, is invariant under T. We have Vin W; # {0}, otherwise this will affect the
maximum matrix of W. There exist an element wo € W is of the form, oo+ ocyz3+.. . +ox;,

2, T% # 0 ---(8) in V1N W have all the scalars ; ....c; are non- zero. Butwy € W c W,
wp # 0, which is a contradiction to our assumption that V,n W; = {0},

Let s be the first non —zero coefficient of equation (7)
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Wo +0¢; 21 +.... 400,21 T 2 0 € V4
Wo +21 T (o¢gt..... 40, 2, TY) € V4
Since «s # 0 by using lemma 6.5.2., we get

- 1
oK g+ g4 T +. ...+ ZlTk S = E-“-(g)

Equation (9) becomes wg +z;T5'= % €V,

iE) woR +ZlTs-1E ViRcV,
ie) z,T%%e V1+W, since s-1<k which is impossible.

Our assumption that V; +W #V. V =V; +W. Already we have VinW = {0}. Hence we
get, V =V; &W.

Proof the main theorem, here V = V; @W. Where W is invariant under T, Then by using

lemma 6.5.1., the matrix of T in the basis vy V,.....vy has the form (Mgl T? ) Where A;is the
2

matrix of T, & T is the linear transformation induced by T on W. since T™ = 0, T" = 0 for

some n, < n; repeating the above argument used for T on V for T, on W. Hence we get a basis

of V in which the matrix of is the form
My, 0.. 0

0 My.. O
....... >n,. Since the size of the matrix is n X n. Hence we have,
(ie) dimV =n
Hence the Theorem
Definition — 1:

The integer ny na,...... n, are called the invariants of T
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Definition — 2:

If Te A(V) is nilpotent, the subspace M of V is of dimension m which is invariant under T is
called cyclic with respect to T. If (i) MT™ =0, MT™ 0

(i) There is an element zeM such that z, zT,...ZT™form a basis of M.
Lemma: 6.5.5.

If M is of dimension m is cyclic with respect to T. Then the dimension of MT* is m-k for all
heM

Proof:

Given that M is cyclic with respect to T and M is of dimension m.

To prove that dim MT* = m-k, for all k<m.

Since M is cyclic with respect to then by definition of cyclic

(YMT™ =0, MT™!£0

(i) There is an element zeM such that z, zT,...ZT™form a basis of M.
Claim:

7, 7T, ...... zT™ of M leads to a basis zT¥ zT*",...zT™ of mTX.

First we want to prove, zT¥, zT**%....zT™ are linearly independent

Let o,z T 4 0cz T .. 4otz T™ = 0

0.2+0.2T+.....¢.z T 0z T 4otz T™ = 0

o;=o forall i

{zT* 2T, .. 2T™} is linearly independent

Now to prove every element of mT¥ is linear combination of {zT¥ zT*",...zZT™}. Let xeM

ie) X = ocyz+06z Th. ..+ oz TM
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XTK = oz Th oz T L 4 ocz T
xTke MTX
Every element of MTX is a linear combination of {zT*,zT*",...zT™} form a basis of MT*.
dim MT* = m- k
Hence the lemma.
Theorem: 6.5.2.
Two nilpotent linear transformation are similar iff they have the sae invariants.
Proof:
Necessary Part:
Let T& S be to similar nilpotent linear transformations.
To prove that, T & S have the same invariants

Given that T is a nilpotent linear transformation. By using 6.5.1. theorem, we can find a

integers n; > np, > > n, and subspaces vi,v,. Vv, of V cyclic with respect to T and of

dimensions ny, ny,..n; respectively such that V = vi@v.®_ ®v;
Again given that s is a nilpotent linear transformation then by using theorem 6.5.1.

We can find another integer, m;=>m,>_._ms and subspaces u1,U,,....us of cyclic with respect to S

and such of dimensions my,m;, _ms respectively such that that V = U; U, & PU;
Claim:

r =s, N;=my N,=m,....n=Ms. Let us assume that the above one is not true. (ie) there exist atleast

one integer k such that nk = mk.

Let | be the first integer such that n; # m;, where ni=m; ny=m;....ni.1=mj_; without loss of
generality, let m; < n;, Since V = vi®v.®_®v, Now VT = v;T" @v,T"®. ®v,T™

dim (VT™) = dim viT™+......+dim v,T™

67



> (ny — my)+ (ng —mj)+...+ (n,—m;) also V=U; U, & DU;
Now VT™=U; T"@U, T" & QU T™
dim (VT™) = dim U; T™+......+dim UgT™
> (my — my)+ (M — my)+...+ (ms — m;), 1is ng=my Np=my....ni=m;=1
Where VT™ = (ny — mj)+ (nz — my)+...+ (nj.g — m;)
Which is contradiction to dimension of , dim(VT™) > (nj — my).... (n, — m;)

Thus there is a unique set of integer, ny=>n,>___ >n,. Such that V is the direct sum of

subspaces, cyclic with respect to T of dimensions ny,n, ....n, thus they have the same invariants.
Sufficient Part:

Assume that two nilpotent linear transformation T & S have the same invariant. To prove that T

& S are similar.

Let the invariants T & S be n;> n,> . >n,, then by theorem 6.5.1. , there exist a basis

{v1,v2..vp}and {w,w,..w,} of V. Such that the matrix of T and the matrix of S are equal

M, 0. 0

M(T) = (:J Mn:z... (:J

0 0. M,
But if A is a linear transformation defined on V by viA = w;. Then S = ATA™(Since by using the

result. Let T & S be linear transformation defined on V such that the matrix of T in one basis is
equal to the matrix of S in another basis. Then a transformation A on B such that T = ASA™)

Thus T and S are similar linear transformations.
6.6 Canonical Forms: A Decomposition of ¥V: Jordan Form
Lemma 6.6.1

Suppose that V =V; @ V,, where V; and V, are subspaces of V invariant under T.
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Let T, and T, be the linear transformations induced by T on V; and V, respectively. If the

minimal polynomial of T; over F is p;(x) while that of T, is p,(x), then the minimal polynomial

for T over F is the least common multiple of p;(x) and p;(x).

Proof:

Giventhat V =V; @ V,, where V; and V, are subspaces of V invariant under T.
Let p(x) be the minimal polynomial for T over F. Then p(T) = 0.
Therefore, p(T;) = 0 and p(T,) = 0.
Since p; (x) is a minimal polynomial of T;, we have p;(T;) = 0, which implies p; (x)|p(x).
Similarly, p,(x) is a minimal polynomial of T,, we have p,(T,) = 0, which implies p,(x)|p(x).
Hence, the L.C.M of p; (x) and p, (x) must divide p(x).
Let g(x) be the L.C.M of p;(x) and p,(x) then q(x)|p(x) 1)
Since q(x) is the L.C.M of p;(x) and p,(x), we have p;(x)|q(x).
= q(x) = p1(xX)h(x) where h(x) € F[x].
Also, q(T;) = p1(Ty)h(Ty) = q(T1) =0, (since p;(Ty) = 0)
Consider, v, € V, then v1q(T) = v1q(Ty),
= v1p1(Ty)h(Ty) =0, (since p;(Ty) = 0).
Similarly, v, € V,, then v,q(T) = v,q(T,),
= vp2(T2)h(T2) =0, (since p,(T) = 0).
Let veV,thenv, +v, =v,v; €EViand v, €V,
Now,  vq(T) = (v +v2)q(T)

= v1q(T) + v,q(T)
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vq(T)=0 = q(T) =0 )

From (1) and (2),
q(x) is the minimal polynomial of T which is the L.C.M of p;(x) and p,(x).
Corollary:

ifv=v, @V, D ..V, whereV; is invariant under T and if p;(x) is the minimal
polynomial over F of T, the linear transformation induced by T on V;, then the minimal

polynomial of T over F is the least common multiple of p; (x), p2 (%) ..., px (X).
Proof:

We prove this result by induction on k.

For k = 1, the result is obvious.

Fork =2thenV =V, @V,.

=~ By using previous theorem, we get the result.

Assume that, the result is true for k — 1, then by induction hypothesis the minimal

polynomial p;(x) of T; is the L.C.M of p;(X), p2(X) ..., pr—1 (X).

Now, T = T; + T, then by using previous lemma,

The minimal polynomial of T over F is the L.C.M of p;(x), p2(X) ..., px—1(X).
Theorem: 6.6.1 [Jordan Theorem]

Foreachi =12, ..k V; = (0)andV =V; @V, @ ... D V. The minimal polynomial of
T, is q;(x)i. (OR) LetT € A(V) and p(x) = q;(x)'". q2(%)'? ... qi (x)'x, where q;(x)"i are
distinct irreducible polynomial over F be the minimal polynomial for T over Fthen V =V; @
V, @ ...8H V., where each V; # (0) and T(V;) € V; is a subspace of V is invariant under T.

Then the minimal polynomial for T, is the linear transformation induced by T on V; is q;(x)".

Proof:
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Claim 1
To prove, each V; is invariant under T.
If k =1,thenV = V; and p(x) = q, ().
Then, p(T) = q,(T)"1 = 0.
= V is the subspace and T is the minimal p(x), a power of the irreducible polynomial.
=~ The theorem is true for k = 1.
Let k > 1, then p(x) = q;(x)'1. 4, (%)'2 ... q (x)'k.
Let ¥V, ={v € V|vg (D" =0}

V, = {v € V|vg,(T)'2 = 0}

V; = {v € V|vg;(D)" = 0}

Vi ={v € V|vq(T) = 0}
Clearly, Vy,V,, ...V, are subspaces of V. Also if v € V; then vq;(T)"i = 0.
To prove vT € V; for v €V}, i.e. To prove, vTq;(T)"i = 0.
Now, vTq(T)" = v(q;(T)")T =0
=~ V; is invariant under T.
Claim 2
Now, hy(x) = q2(%)'2.q3 ()" ... qe(x)'

hy (%) = q1 (). q3 ()" .. qi ()

hi(x) = 1j209;(%)"
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hi () = 41 (). 430" . Gig ()
Since p(x) is the minimal polynomial for T, we have p(T) = 0.
Also de g( h;(x)) < deg (p(x))
= h(T)#0, Vi=1.2,..k
~ 3v; € V such that v;h;(T) # 0
Let w; = v;h;(T), then
w;qi (M = (v;h;(T))q; (T
= vip(T)
w;q;(M" =0, (+ p(T) = 0)
= w; # 0 € V;, also vh;(T) # 0 and for which vh;(T) € Vh;(T)
i.e., vh (T)q (D" = vp(T) =0
But vh;(T) # 0 € V;, we have v;h;(T) =0,i # j.
Thus, q;(x)"|R; (x).
Claim 3
V=V, ®V, D .. DV,

We know that, hy(x), hy(x), ... by (x) are distinct irreducible polynomials. Therefore, they
are relatively prime.

Hence, we can find a polynomial a, (x), a,(x), ... a; (x) € F[x], such that
a (x)hy(x) + az(x)hy(x) + -+ a ()h (x) =1
= a; (T (T) + a(T)h,(T) + -+ + a;, (T)h (T) = 1
Now for v € V, we have
v(ai(T)h{(T) + a(T)hy(T) + -+ a, (T)h (T)) = 1.v
vay (T)hy (T) + vay (T)hy(T) + -+ + va, (T)hy (T) = v

Now, each va;(T)h;(T) € Vh;(T) and also each v = v; + v, + -+ + v}, where each
V; = va; (T)hl (T) isin Vhl (T)
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Thus, V=V +V, + -4+ 7V,

Suppose that, Vi +V, + -+ V, = 0foreach V; € V.

Now, (Vi + Vo, + -+ V) (T) =0

Letv e Vthenv = v; + v, + -+ v, then

v +vy+-4+v)h(T)=0

vih (T) + vy (T) + -+ v, (T) =0
Which implies that, v;hy(T) =0, [+ vhi(T) =0, fori# j]
Also, v;q;(T)"* = 0 and hy(x), q;(x)"* are relatively prime, we get p; = 0.
By the same procedure we get, v, = 0,v3 =0, ...,v, =0
Hence, V=V, @1, D ..PV,.
Claim4

The minimal polynomial for T; is the linear transformation induced by T on V; is g; (x)
on V.

By Viq:(T)" = 0 = q;(T)'' = 0
= T; satisfies the polynomial g; (x)"
= The minimal polynomial for T; must be the divisor of g; (x)"
Of the form q; (x)/i where f; < I
By the Corollary 6.6.1, we get ,
The minimal polynomial of T over F is the L.C.M of q;(x)1,q,(x)'2, ...q, (x)/*.
2 qr ()1 q (0% e (D% = 1 ()12 (D)2 . i ()
Sh=fl=fpl=f,
Thus the minimal polynomial for T; is g;(x)".
Corollary:

If all the distinct characteristic root A4, 4,, ... 4, of T lie in F then V can be written as
V=V, ®@V, @ ..®V, where V; = {v € V/v(T — 4;,)% = 0} and where T; has only one
characteristic root A; on V;.
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Proof:
By the above Theorem 6.6.1,
we have proved that for the minimal polynomial,
p(x) = 1 ()", ¢, (0)2, .. q ()%, V=V, BV, D ... DV, where
V; = {x € V/vq,(T)" = 0}.

We know that, the characteristic roots of T are the roots of the minimal polynomial p(x),
the characteristic roots lies in F, the factorization of p(x) becomes,

p(x) = (x — )" (x = A2)"2 .. (x — L)
Where 14, 4,, ... A;, are distinct characteristic roots of T.
=~ The irreducible factors,
qi(x) = x — 4
q(T)=T-4
~ T; has only one characteristic root A; on V;.

Definition: (Jordan Form)

A 10 .. O

The matrix | : ... -+ -+ - | with A’s on the diagonal, 1 s on the superdiagonal and
T |
0 .. . . A

0's elsewhere, is a basic Jordan Block belonging to A.
Theorem: 6.6.2

Let T € Ap(V) have all its distinct characteristic roots, A4, 4, ... 4, in F. Then a basis of V

J1
can be found in which the matrix T is of the form J2-. where each

Jk

Ji = Bi,-. and where B;;, By, ... B;,, are basic Jordan blocks belonging to 4.
BiTi
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Let T € Ar(V) have all its distinct characteristic roots, A1, 4,, ... 4, in F.

1
To prove, A basis of Vcan be found in which the matrix of T is of the form J2-.
Jk
B
where J; = B;>-. )
Birl-
Since T has all its distinct roots in F.
By the Corollary 6.6.1, V can be written as,
V=V, @V, D ..®V,, where V,={veV/v(—-21)" =0} (1)

And T; has only one characteristic root 4; on V.

Again by using Lemma 6.5.1,

Ji 0 ... 0
The matrix of T, m(T) = 0 ]2 O
0 .- - Jk

We know that, v;(T —4;) =0, (by (1))
Which implies that, T — 4, is nilpotent.

By using Theorem 6.5.1,

m(T — A;) = : ...12... O
0 ces vt MiTi

Now T can be written as,

~m(T) = Am(I) + m(T — )

1 0 0 My 0 0

0 M
=4 :0 .1 ° T ...12- X
0 - e 1 0 M;,,
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_ Ai 0, 0 {‘./I.iz. 0
0 v oo A 0 M;,,
By 0 - 0

[0 By 0
O birl-
0 e 0 !

mmy=|2 2 0o,
0 oo o I Ji
UNIT -V - LINEAR TRANSFORMATIONS 18hrs

Canonical Forms - Rational Canonical Form — Hermitian, Unitary, Normal transformations -

Real Quadratic Forms.

Chapter 6: Sections6.7, 6.10 and 6.11[Omit 6.8 and 6.9]

.6.7 Canonical Forms: Rational Canonical Form
DEFINITION: (Companion Matrix)

If fF(x) =yo +y1x + -+ ¥,—1x" "1+ x7 isin F[x], then the r X r matrix

0 0 1 0
: : : : is called the companion matrix of f(x). We write it as
0 0 0 1
Yo "N —¥Yr—1
C(f(x)).
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THEOREM 6.7.1

If T € Ap(V) has as minimal polynomial p(x) = q(x)¢, where q(x) is a monic, irreducible
polynomial in F[x], then a basis of VV over F can be found in which the matrix of T is of the form

C(q(x))
C(g(x)e2) where, e; > e, = - > e,.

~ C(g(x)°*)
Proof:

Since V, as a module over F[x], is finitely generated and since F[x] is Euclidean, we can
decompose V=V, @V, P ... D V,, where the /; are cyclic modules.

The V; are thus invariant under T.

If T; is the linear transformation induced by T on V;, its minimal polynomial must be a divisor
of p(x) = q(x)¢ so is of the form q(x)¢ where e; <e, (i =1,2,...r).

To prove, e; = e:
Now q(T)°t annihilates each V;.
I.e., q(T)°1 annihilates V, whence q(T)®! = 0, T satisfies this polynomial g(x)®.
= q(x)°|q(x)*
=e<eg I ¢ )
We have, e; <e (2)
From (1) and (2), we get
ep=e

Since V; is a cyclic module , there exist g(x)¢: is the minimal polynomial for T; on V.

By Lemma 6.7.1,
There is a basis of v; in which the matrix of T; is C(q(x)¢).
By Lemma 6.6.1,

We get the basis of V and with respect to the basis of T we have,
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C(q(x)1)
m(T) = C(q(x)*?) :
~ C(q(x)°r)

THEOREM 6.7.2

Let V and W be two vector spaces over F and suppose that 1 is a vector space isomorphism
of V onto W. Suppose that S € Ap(V) and T € Ar(W) are such that forany v € V, (vS)y =
(vy)T. Then S and T have the same elementary divisors.

Proof:
Claim 1
S and T have the same minimal polynomial.
By hypothesis, forany v € V/,
WSy = (vP)T
sy = (S)S)y
= (wSHY)T
= ()T
WSy = (wP)T?

ws™y = (vP)T™
If f(x) € F[x], forany v eV,
Wf(sHY = ) f(T)
If £(s) = 0then (vip)f(T) = 0.
Since ¥ maps V onto W, f(T) = 0.
Conversely, If g(x) € F[x], forany v € V, then
(g ()Y = (viP)g(T)
If g(T) =0, then for any v € VV we have (vg(s))y = 0.

Since ¥ is an isomorphism,
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vg(s) =0
g(s)=0
Thus S and T satisfies the same set of minimal polynomial in F[x].
~ S and T have the same minimal polynomial.
Claim 2
Let p(x) = q1 (%), q2(x)%2, ... qi (x)¢* be the minimal polynomial for both S and T.
If v is a subspace of V invariant under S, then vy is a subspace of W invariant under T.
~ ()T =vSyP c vy

Let S; be the linear transformation induced by T on v.
Now the minimal polynomial S on V is (x) = g1 (x)°1, g2 (x)2, ... q; (x)°*.
As we have seen in Theorem 6.7.1 and its Corollary,

We take as the 1% elementary divisor of S as the polynomial g; (x)¢* and we can find a
subspace V; of V/, which is invariant under S.

In terms of S:

1. V =V, @ M, where M is invariant under S.

2. The only elementary divisor of S; the linear transformation induced on V;by S is g4 (x)®!.

3. The other elementary divisors of S are those of linear transformation S, induced by S on
M.

In terms of T:

1. W=W; @ N,where W; =V;y and N = My are invariant under T.
2. The only elementary divisor of T; the linear transformation induced by T on W; is

q1(x)°*.
3. The other elementary divisor of T are those of the linear transformation T, induced by
TonN.

Since N = My, M and N are isomorphic vector spaces over F under the isomorphic i,
induced by .

If u € M, then U(Sz)ll)z = (US)ll) = (ull))T = (ulpz)TZ

~ S, and T, are in the same relation vis-a-vis 1, as S and T were vis-a-Vvis .
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By induction on dimension S, and T, have the same elementary divisors.
~ § and T have the same elementary divisors.
THEOREM: 6.7.3

The elements S and T in Ag (V) are similar in Ap(V) if and only if they have the same
elementary divisors.

Proof:
Necessary Part:
Suppose S and T have the same elementary divisors. Then there are two bases

{v1, V2, ..} X {wy, wy, ...w, } of V over F such that matrix S in {vy, v,, ... v, } equals the matrix

Riy 0 ... 0
. Ri -+ 01 .
of canonical form ~“... ... | («ByCorollary 6.7.1)
0 ,,,,,, Rli

We know that, if V is a finite dimensional vector space over F, then any two bases of IV have
the same number of elements.

C(q;(x)°11)
R, = C(q;(x)%2) , where each e; = e;; = e;3 = -~ ;.

RRACHEORD
By the result,

“Let S and T be linear transformation defined on V. If the matrix on T in of {vy,v,,...v,}Iis
equal to the matrix of S in {w;,w,,...w,}. Then there exist a linear transformation A on V
defined by V,A=w;, Vi, such that T = ASA™! (or) S = ATA™' which gives S and T are
similar”.

Sufficient Part:

Suppose that, S and T are similar there exist a linear transformation A on V such that T =
ASA71 (or) S = ATA™L.

~ T and S are same minimal polynomial.

Without loss of generality, We may assume that the minimal polynomial of T is q(x)¢, where
q(x) is irreducible in F[x] of degree 'd’.
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“ The rational canonical form” states that we can decomposed VasV =V, @V, D ..D V.,
where V; is invariant under T then the linear transformation induced by T on V; as the matrix
q(x)¢, wheree; > e; = - e,.

i.e. g(x)°t. q(x)2 ...q(x)° are the elementary divisors of T (A)

f V=V, &V, ®..0&V, where the subspace V; is invariant under S, then the linear
transformation induced by S on V; as the matrix q(x)fi where f; > f, > >f,

i.e. q(x)1q(x)2 ...q(x)’s are the elementary divisor of S (B)
From (A) and (B), we get
r=s,e;=fi,e;=fr,..ep =f
Claim
r=se =fi,e;=fo .6 = f
Suppose that, e; # f;
Then there exist a first inter m, such that e,,, # f,,, where
e1=fr.ex=fo, o1 = fin-1.
Suppose that e,, = f,, now q(T)/» annihilates Uy,, Uy, 11, -, Us.
i.e. V,q(T)m =0
Consider, Vq(T)m = (V; @V, @ ... ® V,,_1)q(T)/m
=V1q(T)/" @ V2q(TY" @ .. Vin_1q(T)"
dim Uq(T)/m = dimU,q(T)/ + dimU,q(T)/™ + -+ + dimU,,_,q(T)/m
[ dimU; = df; and dim q(T) = df,, ,fori < m]
dim(U;q(T)™) = d(f; = fn) 1)
dim (Uq(T)m) = d(fy = fn) +d(fo = f) + -+ d(fnot = f)
But,  Vq(T)/~ >Viq(T)/m @ V2q(T)/" @ ... ® Vi q(T)/m

Consider, Vq(T)m = (V;, @V, @ ... D V,)q(T)/m

= V1q(TYm @ Voq(T)m @ ... ® V,q(T)/n
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dimVq(T)m = dimVyq(T)/m @ dimV,q(T)m @ ... dimV,q(T)/n
[ dimV;q(T)™ >d(e; —fn), fori<m]_ (2
=~ By our choice of e,,, e1 = fi,€2 = f2, €1 = fm_1. aNd e, > f,
Substituting in (1), we have
dim(Vq(T)m) 2 d(fy = fn) + d(fy = fu) + -+ + d(fno1. = fin)
This is necessary and sufficient to the equality of (1).
Which is a contradiction to our assumption.
Hence,r = s,e; = f;, Vi
Thus T and S have same elementary divisors.
COROLLARY:6.7.3

Suppose the two matrices A and B in E, are similar in K,, where K is an extension of F. Then
A and B are already similar in E,.

Proof:
Suppose that 4, B € E, are similar in K,, such that B = C~'AC with C € K,,.
Consider, K™ is the vector space of n —tuples over K. Since K is an extension of F.
W FMW < g
F™) is a vector space over F but not over K.
= The image of F™ is a subset of K™,
Now, F(VC is a subset of K™,
Let V be the vector space F™ over F and W be the vector space FUC over F.
Foranyv eV, let vip = vC.
Now, A € Ap(V)and B € Ap(W) and forany v € V,
(vA)Y = vAC = vCB = (v)B, (v A= CBC™! = AC = CB)
(whence the conditions of Theorem 6.7.3 are satisfied)

Thus A and B have the same elementary divisors.
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Therefore by Theorem 6.7.3, A and B are similar in E,.
TRACE AND TRANSPOSE
TRACE:

Let F be a field and let A be a matrix in E,. Then the trace of A is the sum of the elements on
the main diagonal of A. We can write the trace of A as tr A. Let A= (a;) € F thentr A =

11 24 A1n
a1 Qp d2n
n —_ J—
Zi=1 ai;, Where A= (al’j) = . . : .
an1 an2 Ann

LEMMA 6.8.1
ForA,B€E,andA€F,

1. tr(14) = Atr A.
2. tr(A+B)=trA+trB.
3. tr (AB) = tr (BA).

Proof:

1. Toprovetr(AA) =AtrA
Let A = (a;; ). Then
tr (A) =Y a;
tr (A44) = Xio1(Aay)
= A= (@)
str(AA) =AtrA
2. Toprovetr (A+B)=trA+trB
Let A = (a; ), B = (By). Then
A+ B =(ay)+ (By)
tr (A+ B) = Xisq(ay + Bu)
= Xim1 Qi + 21 Ba

~tr(A+ B) =trA+trB

4. Toprove tr (AB) = tr (BA).
Let AB = (y;) where y;; = ¥ii—y ayfy; and let BA = (uy;; ) where
tij = Zk=1Bix ;- Thus,

tr (AB) = X1 Vi = Xi=1(Xk=1 Xk Pri)
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If we interchange the order of summation in this last sum, we get
tr (AB) = Xg-1(Zis1 @ik Bri)
= Yk=1Ziz1 Bri k)
= Yk=1 Kk
~ tr (AB) = tr (BA).
COROLLARY
If A is invertible then ACA™! = tr C.
Proof:
Given A is invertible, then we have
AA1 =1 (1)
Consider, B=CA™!
AB = ACA™!
tr (AB) =tr (BA) =tr (CA™'A) =tr C. (~ AA™'=1)
DEFINITION: (Trace of T)

If T € A(V) then tr T, then the trace of T is the trace of m,(T") where m,(T) is the matrix of
T in some basis of V.

ie.tr T =tr mqy(T)
LEMMA :6.8.2

If T € A(V) then tr T is the sum of the characteristic roots of T (using each characteristic
root as often as its multiplicity).

Proof:
Assume that T is a matrix in F,.
By using the result,
“If K is the splitting field for the minimum polynomial of T over F then in K,,", we get

T can be brought to its Jordan form J, ] is a matrix on whose diagonal appear the
characteristic roots of T each root appearing as often as its multiplicity.
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Thus, tr J=sum of the characteristic root T
Jisof the form, J = ATA™!
tr] = tr (ATA™Y) = tr T = sum of the characteristic root of T.
LEMMA: 6.8.3

If F is a field of characteristic zero and if T € A (V) is such that tr (Ti) =0,vi=>1,thenT
is nilpotent.

Proof:
Since T € Ap(V) and T satisfies some minimal polynomial,
p(x) =x™ + ayx™ 1 + -+ ay,
p(T)=T™ + a;T™ 1 + -+ ay,
Then, tr (p(T)) = tr (T™ + @, T™ 1 + - + a,,)
ctrTm+a tr T M4 et tra, =0
Giventr (TY) =0, Vix>1
Then we get, tr(a,,) =0
If dim(V) = n then tr(a,,) = na,, where na,, = 0. But the characteristic of F is zero.
sn#x0=a, =0
Since the constant term of the minimal polynomial T = 0.
By a theorem,

“1If Vis a finite dimensional over F then T € A(V) is invertible if and only if the constant
term of the minimal polynomial for T is not zero”

~ T is not invertible
i.e. T is singular.
=~ Zero is the characteristic root of T.
Consider T as a matrix in F,, also as a matrix in K,,, where K contains all characteristic roof T.

By a theorem,
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“If T € A(V) has all its characteristic roots in F, then there is a basis of IV in which the matrix
of T is triangular”.

We can bring T to triangular form. Since zero is the characteristic root of T we can bring it of
the form,

ﬁ? 0 0

2 Qp 0\ _ (O _(a; O 0

: . : ( Tz) where T, = (* 0 an)
g« T a

T,isan (n — 1) x (n — 1) matrix.

0 O
k _
Now, T = (O T2k>

Hence tr (T*) = 0,V k > 1 either induction on 'n’ or repeating the arguments on T, used for
T we get,

a,, as, ..., a, are the characteristic root.
le.ay=az3=-a,=0
Thus when T is brought to triangular form all its entries on the main diagonals are zero.
~ T is nilpotent.
DEFINITION: (Transpose)

If A= (aij) € F, then the transpose of A, written as 4, is the matrix A" = (vi) where
Yij = a;; foreachiandj.

LEMMA: 6.8.5
Forall A,B € E,,

1. (4) =4
2. (A+B) =A+PB
3. (AB) =B'A’
Proof:
() A4) =4
Let A = (“ij)
A= (:Bij)1 where B;; = a;;,V i, j
(4) = (y;), where y;; = B;;, which implies that y;; = B;; =
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(i) (A+B) =4 +P

Let A = (aij)
A’ = (aij) where (al-j) = o, v l,]
B = (By)

B' = (b;; ) where (b; ) = By, Vi,j
A+ B = (y;) wherey; = a; + B, Vi,j
(A+B) =6; = 6; +yy =a; + B = (ay) +(b;) €A + B
~(A4+B) =4 +B
(i) (AB) =B'A’

Let A = (a;),A" = (a;) where (a;;) = Gji

Let AB = (Cl])v where (Cl]) = Z;cl:l a;r bk]
(AB) = (dy) where (d;) = (C;)
B'A" = A; where &; = ¥R_; B oy,

Consider for every i, j,
i = k=1Pik Ayj
A = D=1 by ke
= Yk=1 by = G; = (di;) = (AB)’

~ (AB) =B'A’

Definition:
Symmetric matrix:
If A € F, be asquare matrix is said to be symmetric if A’ = A.
Eg:
=2 <]
Skew symmetric matrix:

If A€ E, beaskew square matrix is said to be skew symmetric if A" = —A.
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[ 0 —a
Eg: [a 0

Note 1:
In a skew symmetric matrix the leading diagonal elements are zero.
Note 2:

If A issquare matrix A+ A" is symmetricand A — A’ is skew symmetric AA" and A'A are
symmetric.

Adjoint on E,:
A mapping *: F, — F, is called adjointon F, if (i) (A")* = A
(i) (A+B)"=A"+B"
(iii) (AB)* = B*A*VA,B €F,
Hermitian adjoint on F;:

Let consider the field of complex number for every matrix A = (a;;) and let A* = y;;

where y;; = Eﬁ in this case the * is called the Hermitian adjoint on F,.

Hermitian matrix:

Let f be afield of complex number and * be a Hermitian adjoint every square matrix is
called hermitian if A* = A.

Eg:
1 —1+4+2i 344
—-1-2i -2 3
3—4i 3 -2
Remark:

1.If A+ 0 € E, thentr(44*) >0

2. Let Ay, Ay, ... A, EE, if AJA" + A4 + -+ 4,4, =0
then A =4, =-=4,=0

3.1f 1 is ascalar matrix then 1* = 4
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Result :
The characteristic root of a Hermitian matrix are all real .
Proof :
Given that A € F, be a hermitian matrix
To prove that the characteristic roots of A is real.
We shall prove this by the method of contradiction

Assume that the roots of A is a complex number ie) @ + iff where «, 8 are real, by using the
definition of characteristic roots A — (a + if8) is singular.

= [A— (a +iB)][A — (a — if)] is singular
= (A— (a+ip)][A — (a — iB)] is not invertible
= [(A—a) +iB] [(A — a) — if] is not invertible
= (A — a)? — (if)? is not invertible
= (A — a)? + B? isnot invertible

By using the theorem,

If v is finite dimension vector space over F and if A € E, is not invertible then there exist a
matrix B # 0 such that AB = BA = 0 there exist a matrix C # 0 such that

Cl[(A—a)>+B%]=0
Multiply €* on R.H.S of both sides
C[(A—a)*+B%1C* =0

CA-—a)(A—a)C"+CBBC" =0 —>®

Takes D = C(A — @) E=Cp
D*=(A-a)C* E* = (CB)”
= (4" —a")C” =pc”
=(A-a)C* = BC*

Since A is hermitian > A* = Aand a,B arereal = a* = a,* =

From @ =>DD*+EE*=0
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= D = E = 0 [since by remark 2]
In particular E = 0
BC =0
B =0 [sinceC # 0]

Which contradicts our assumption is wrong
The characteristic roots of hermitian matrix A is real.
Result:
For A € E,. The real characteristic roots are AA™ are non negative.
Proof:
Giventhat A € F,
A=A
(AA7)* = (A")°A"

= AA”
~ AA™ is hermitian
To prove the real characteristic roots of AA* is positive
We shall prove this by the method of contradiction
Let a be the characteristic roots of AA* which is negative
ie) a = —(? where S is real by using the definition of a characteristic root

AA* — (—B?) is singular

AA* + B2 is singular
By the theorem there exist C # 0 such that C(A4* + $?) = 0
Multiply C* in R.H.S on both sides C(4A* + %)C* =0

CAA*C* + CBBC* =0
Take D = CA E=Cp
D* = (CA) E* = (CB)
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— AC* = g*C*
@ = DD* + EE* = 0 (since by remark 2)
=>D=E=0
In particular E = 0
=>C=0
= f =0 (since C # 0)
Which contradicts our assumption that « is negative
So our assumption is wrong
=~ The real characteristic roots of AA* are non — negative.
Definition:
Hermitian Unitary and Normal Transformation:
In this section F we denote the field of complex number.
Fact 1:
A polynomial with coefficient which are complex number has all its roots in complex field.
Fact 2:

The only irreducible non constant polynomial over the field of real number are either of degree 1
or of degree 2.

Lemma 6.10.1:

If TeA(V) is such that the inner product (vT,v) =0V v € VthenT =0 (Here V isan inner
product space over the complex field)

Proof:

Gn TeA(V) such that inner product (vT,v) =0Vv EV — @
Here v is the inner product space over the complex field.
u,wev
u+wE€ev u+w=vsubin equation @

u+wev
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@:> (w+w)T,(u+w))=0
(T +wT), (u+w)) =0
(uT,u) + (uT,w) + (WT,u) + (WT,w) = 0 by equation 1
T, w) + WT, 1) =0 - @
Take w = iw
(uT,iw) + (iwT,u) =0
= i(uT.w) +i(wT,u) =0
—i(uT,w) + i(wt,u) = 0
+byi,—(uT,w)+ wlu) =0 - @
@ + @ = 2(wT,u) = 0
= wT,u) =0
Take u = wT
= (WT,wT) = 0
=>wl =0
ST =0(w#0)
Note:
If v isinner product space over the real field .This lemma is false.
Letv = {(a, B )/, Bare real}
Let T: (a,B) = (=B, a)
LetveV=v=(apB) [*@wlv)]=0
[(a, BT, (., B)] = O
((=B,@),(@,p) =0

—fa+af =0
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> Wlv)=0 VveVand T#0 (~T:(a,B) - (—8,a))

Hence if v is the inner product space over the real field then lame is not proved.
Definition:
Unitary Linear Transformation:
The linear transformation T € A(V) is said to be unitary

(uT,vT) = (u,v),Yu.vev
Problem:
1. If A and B are similar iff tr(A) = tr(B)
Proof
Necessary part:
Given that A and B are similar
To prove tr(A) = tr(B)

A=CBC!

tr(4) = tr(CBC™1)

=tr(B)
Sufficient part:
To prove A and B are similar
Given that tr(A) = tr(B)
tr(ACC™1) = tr(B)
tr(B) = tr(CAC™)

= B = CAC™!

= A and B are similar
2.S={A€F, /A" = A}and K = {A€FE, /A* = —A} prove i) If A, BeS then AB + BA€eS
ii) If A, BeK then (AB — BA)eK iii) If AeS, BeK then (AB — BA)eS and (AB + BA)eS

proof:
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i) To prove (AB + BA)eS
ie) To prove (AB + BA)" = (AB + BA)
AeS = A" =A
BeS=B* =B
Now consider (AB + BA)" = (AB)" + (BA)”
= B*A* + A*B"
=BA+ AB (~ byequl)
= AB + BA
= (AB + BA)eS
i) To prove (AB — BA)eK
ie) To prove (AB — BA)" = —(AB — BA)
AeK = A" = —A
BeK = B* = —B
Now consider (AB — BA)* = —(AB)* — (BA)*
= B*A* — A"B*
= (=B)(=4) — (=A)(=B)(+ by equ 2)
= BA - AB
= —(AB — BA)
> AB —BA€eK
iii) AeS, BeK then AB — BAeS and AB + BAeK

AeS=> A" =A

BeK = B* = —-B _,@

To prove (AB — BA)eS
ie) To prove (AB — BA)" = —(AB — BA)
Consider (AB — BA)" = —(4AB)* — (BA)"
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=B*A* — A*B”
= (—B)A—-A(-B)
=BA+ AB
= (AB — BA)
= AB —BA€S
To prove (AB = BA)eK
ie) To prove (AB + BA)* = —(AB + BA)
Consider (AB + BA)* = (AB)" + (BA)"
=B*A* + A*B”
= (=B)A + A(-B)
= —BA - AB
(AB + BA)* = —(AB + BA)
= (AB + BA)eK
Lemma 6.10.2:
If the inner product (vT,vT) = (v,v)V veV then T is unitary — @
Proof:
ie)To prove (uT,vT) = (u, v)V u, veV
Let u, veV
= u+ veV
Sut+v=v
Sub u + v = v in equation 1
@ = ((w+v)T,(w+v)T) = ((u+v), (u+v))
= (T +vT), T +vT)) = ((u+v), (u+v))
(uT,uT) + (uT,vT) + WT,uT) + (WT,vT) = (w,u) + (w,v) + (v,uw) + (v, v)

= (uT,vT) + (WT,uT) = (w,v) + (v,u) - @
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Take v = iv
@ = (uT,ivT) + (ivT,uT) = (u,iv) + (iv,u)
—i(uT,vT) + i(vT,uT) = i(u,v) + i(v,u)
~byi
—T,vT) + WT,uT) = —(u,v) + (v,u) - @
Adding equation 2 and 3 we get
2(uT,vT) = 2(u,v)

= (uT,vT) = (w,v) Vu,veV = T isunitary

Theorem 6.10.1:

The Linear Transformation T on V is unitary iff it takes an orthonormal basis of V into an
Orthonormal basis of V.

Proof:
Necessary part:
Suppose {v4, vy, ... v, } be an Orthonormal basis of v then inner product
(v, v7) = 0 for (i # j)
wpv) =1for (i=j) - @
We have to prove if T is unitary then {v; T, v,T, ... v, T} is also an Orthonormal basis of v
Consider (viT, va) = (vi,vj) [ T is unitary]
=0 [ by equation 1]
w(wT,yT)=0Vi#j
Consider (v;T,v;T) = (v;,v;) [+ t is unitary]
=1 [by equation 1]
~A{v, T,v,T, ...v, T} is an Orthonormal basis of v.

Sufficient part:
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If TeA(V) such that both {vy, v,, ... v, }and {v,T, v, T, ... v, T} are Orthonormal basis of v then
prove T is unitary

(vi,vj)=0f0r(i¢j) — @
(wyv) =1
Similarly (v;,T,T) =0,V i #j
(v T,v,T) =1 — @
Letu,wev = u =3, qv; and w =Y, Biv;
Consider (w,w) = (ZiZ; a;vi, Xi=q Bivi)
(ww) = (a1v1 + -+ Ap vy, P1v1 + -+ + BaVn)
=a; f1 (v, v) +ay B2 (V2 v) + -+ ay B (Vn,v)
Here (v;,v;) =0
= a B rtay B ot tay, P
Similarly uT = Y7 ; q;v;T and wT =} Biv;T
Consider (uT,wT) = Qi av; T, Y=, Biv;T)
wT,wT) = (ayviT + -+ a,v,T, f1viT + -+ B, v, T)
= al,ﬁl (1T, T) + a5 ,52 (T, v, T) + -+ a, ,En v, T,v,T)
Here (v;T,vT) =0
= afrtay fot.ta, B
(T, wT) =Y, a; Bi
(uT,wT) = (u,w),u, weV
T is unitary.

Lemma 6.10.3:

If TeA(V) then given any vel/ there exist an unique element wev depending on v and T .Such
that (uT,v) = (u, w)V ueV
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Proof:
Given that TeA(V)
To prove for any veV there exist an unique element weV depending on v and T
Such that (uT,v) = (u,w) Vuev
Let {uyu,, ...u, } be the orthonormal basis of V
& (upy) = 0
(w,u) =1

Definew = i, (uT,v) U,

Then (u;w) = (w;, Xi=1 (UT,V) U,

(ww) = (u, (WT,V)ug + (UT V) up + o4 (U, T, V) uy)

= (u, UT,v)u) + (w, (U, T,V)uy) + -+ (u, (U.T,V)u,)
= (Wi T,v)(u, up) + -+ (W, T, v) (wy, uy)
= (wT,v)(0) + -+ (u,T,v)(0)
(ww) = (wT,v)
To prove w is unique:
le) To prove wy; = w,
Suppose that (uT,v) = (u,w;)
(uT,v) = (u,wy)
= (u,w1) = (w,wy)
= (w,wy) — (wwy) =0
= (u,w;—w;) =0
Then take u = wy; —wy

= (W —wy,w; —wy) =0
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>w;—wy; =0
S>w =Ww,
Definition:
Hermitian adjoint of T
If TeA(V) then hermitian adjoint of T is denoted by T*and is defined by
(uT,v) = (u, vT*)Vu, veV.
Lemma 6.10.4:
If TeA(V) then T*eA(V)
(T =T
i) (S+T) =S*+T*
iii) (1) = 15"
iv) (ST)* =T*S*VS,TeA(v)and aeF
proof:
Given that TeA(V) ie) T is linear transformation belongs to A(v)
s W4+ w)T =vT +wTl
(Av)T = A(vT)
To prove T*eA(V)
le) v+ w)T* =vT* +wT”*
(W)T* = A(vT™)
Let u, v, weV
Consider (u(v +w)T*) = (uT,v + w)
= (uT,v) + (uT,w)
= (u,vT* +wT")
> WU+w)T =vT*+wT”*
Consider (u(Av)T*) = (uT, Av)
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= 1 (uT,v)
= (w, AWWT™)
= (AT = A(wT")
i) Toprove (T*)* =T

Consider (u, v(T*)*) = (uT*, v)

= (v,uT")
= (u,vT)
(T =T
i) Toprove (S+T) =S*"+T"
Consider (w,v(S+T)") = (u(S+T),v)
= (uS + uT,v)
= (u,vS* +vT")
(S+T) =S"+T*
iii) To prove (AS)* = 15"
Consider (u,v(A8)*) = (u(AS),v)

= A(uS + v)
= (wv(1SY)

(AS)* = AS*
iv) To prove (ST)* =T*S*
Consider (u, v(ST)*) = (u(ST),v)
= ((W9)T,v)
= (uS,vT")
= (w,vT*S*)

=vT*S*
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(ST  =T*S”
Lemma 6.10.5:
If TeA(V) isunitary iff TT* =1
Proof:
Necessary part:
Given that is unitary
o (uT,vT) = (u, v)Vu, veV
Toprove TT* =
Consider (u, v(TT*)) = (uT, vT)
= (w,v)
=>vIT =v
TT =1
Sufficient part:
Giventhat TT* = 1
To prove that T is unitary
le) To prove (uT,vT) = (u,v)
Consider (u,v) = (u, vTT*)
= (uT,vT)
T is unitary.
Note:

A unitary transformation is non singular and its inverse is just a hermitian adjoint also TT* =
1=>TT=1

Theorem 6.10.2:
If {v1v; ...v,} is an Orthonormal basis of v and if m(T)eA(V) in this basis is (a;;) then matrix

T* in this basis is §;; where §;; = a;;
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Proof:
Given {v,v; ...v,, } is an orthonormal basis of v and matrix m(T)eA(V) and
(al-j) = matrix of (T)eA(V) in this basis,
To prove B;; = matrixof T* €A(v) in this basis where g;; = a_ji
Define v;T = ¥/ a;; v
viT" = Xj=1 Byv; v
(T v) = Ej1 By )
= (Biyv1 + Bizvo + -+ By + o+ BV, V)
= (Buvy, Yy + Piv, vy + o+ By v, vy + o+ BV, 1))
= Bin(v1, V) + iz (Vo v) + -+ By (v, V) + -+ Bin(Vn, V)
= Bi1(0) + Bi2(0) + -+ B;; (1) + -+ + B (0)
(T v) = By
By = (wT"v)
= (vi;va) = (v, Q=1 @i, V;)
= (vi’ajlvl) + (vi:ajZUZ) + -+ (Vi»aji Vi) + -+ (v, A V)
= 05—,-1 (v, v1) + 0;(171'»172) + -+ a_ji (v, v) + -+ a_jn(vi'vn)
=a, 0+ a, )+ +a; D)+ + a,(0)
=By = ay
Definition:
Hermitian transformation:

TeA(V) is called hermitian transformation or self adjoint if T* =T

Skew hermitian transformation:
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TeA(V) is called Skew hermitian transformation if T* = —T

Result:
If SeA(v)
_ S+s* | . .S-=§*
S = > + i( - )

Where % and (%) are Hermitian ie) S = A + iB where A and B are Hermitian.

Theorem 6.10.3:
All the characteristic roots of hermitian transformation are real.
Proof:
Let TeA(V) be the hermitian transformation
Let A be the characteristic roots of T there exist av # 0 such that vT = Av — @
Consider A(v.v) = (1v,v)
= (vT,v)
= (v,vT")

= (v,vT)
=2 (v,v)

= A(v,v) — Z(v,v) =0

>

A-2=0

I
|

A
Hence A is real .
Lemma 6.10.6:
If SeA(V) and if vSS* = 0 thenvS =0
Consider (vSS*,v) = (0,v) =0

(wvSS*,v) =0
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(wS,v8S) =0
vS§=0
Definition:
Normal linear transformation:
TeA(V) is said to be a normal if TT* = T*T
Lemma 6.10.7:
If N is normal linear transformation and if vN = 0, veV
vN* =0
Proof:
Given that vN = 0 for veV
To prove vN* =0
Consider (vN*,vN*) = (vN*N,v)
= (vNN*, v)
= (0.N*,v)
= (0,v)
(vN*,vN*) =0
vN* =0
Corollary 1:

If A is the characteristic roots of the normal transformation N and if vN = Av

thenvN* = Av
Proof:

Given that A is the characteristic roots of the normal transformation N and vN = Alv - @
Then To prove vN* = Av Nisnormal = NN* = N*N

Consider (N —)(N —2)* = (N —AD)(N* — 1)
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=NN*=NA —AN*+ 14
=N*(N—-2) — A(N—2)
(N=DW =2 =©N-DW" - 2)
= (N — A) is normal
Consider v(N — 1) = vN — vl
=vl—vi
v(N-21)=0
By the lemma “If N is normal and if vN = 0 then vN* =0

~ (N — A) is normal

>v(N—-21)=0

= v(N — )"

> uN* =vl
vN* = Av

Corollary 2:
If T is unitary and A is the characteristic roots of Tthen | 1 |= 1
To prove:
Given that T is unitary and A is the characteristic root of T
Toprove [A]=1
~ T is unitary
>TT*=T'T=1
= T is normal
~+ A is the characteristic root of T

There exist v # 0 such that vT = Au

By the corollary vT* = Av
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Consider v = v. 1

=vIT"
= WT*
1=24

1=111

Corollary:
If T is hermitian and vT* = 0,k > 1 then vT = 0
Proof:
Given that T is hermitian and vT* =0,k > 1
>T=T"
To prove vT =0
We show that if vT2" = 0 thenvT =0 for if S =T?" '
§* = (sz—l)*
—r2"!
§*=S
§s* = (T )T
— @ te2m
= 22!
— r2moitH
=T2"
Continuing down in this way we obtain vT = 0 if vT* = 0 then vT?™ = 0 for 2m> k

Hence vT = 0.
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LLemma 6.10.8 : If N is Normal and if vN¥=0 then vN=0.
Proof:
Let SSNN", To prove that S is Hermitian.
Consider, S*=(NN")*
=(N) (N)"
vS*=v(N)* (N)*
=0. (N)¥
vs =0
By the Corollary to Lemma 6.10.6, If T is Hermitian and vT* =0 then vT=0
vS¥ =0 which Implies vS=0
implies v(NN)=0
implies v(NN)=0
By the Lemma, “If s EA(V) and if vSS =0 then vS=0".
Implies vN=0.
Corollary:
If N is Normal and if for A€ F, V(N-1)¥ =0 then vN=Av.
Proof:
Given that N is Normal ===>NN"=N'N
To prove that (N-1) is normal.
That is To prove that (N-A) (N-1) = (N-1)” (N-})

Consider (N-1) (N-1)"= (N-1) (N"-1)
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=N'N-NA-AN +2A
= N'N- A N"= NA+ AA
= N(N-X) - A(N-))
= (N"-X) (N-)
= (N-1)" (N-))
Which implies (N-A) is Normal.
By the above Lemma, V(N-1)“ =0
===>y(N-1) = 0
===>VYN- vA=0

===>VyN-=vi

Lemma :6.10.9

Let N be a Normal transformation and suppose that A and p are 2 distinct characteristic

roots of N. If v and w are in V and are such that vN =Av, wN = uw
then (v,w) =0.
Proof:

Given that N is Normal and A and p are 2 distinct characteristic roots of N and vN =A\v,

WN = pw .

To prove that (v,w) =O0.
Consider vN =Av
(VN,w) = (Av,w)

=Mvw) e ®
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Consider wN=pw.

In the Corollary, “If A is a characteristic root of the normal transformation N and if vN =Av then

We get, WN" = Bw
(vWN") = (v, Blw)
= H(v,w)

(VN,W) = [t (VW) ---ommmoeee &)
From (1) & (2) ===>

A (v,wW) = p(v,w)

A (v;w) - B (vw) =0

(A-p) (vw) =0

===> (v,w) = 0.
Theorem : 6.10.4

If N isa Normal linear transformation on v, then there exists an orthonormal basis
consisting of Characteristic vectors of N, in which the matrix of N is diagonal. Equivalently, if N

is a normal matrix there exists an unitary matrix U such that UNU™ (= UNU") is diagonal.
Proof:

Prove the corollary If N is Normal and if for A € F, v(N-1)* =0 then vN=Av

Let N be Normal. Let A;,A,,...A; be the distinct characteristic roots of N.

By the corollary, “If all the distinct characteristic roots A1,A,,...A; of T lying F then V can be
written as V=V1 @ V@ ... @ Vkwherevi={v eV /v(T — X)) i = 0} and where T; has only one

Characteristics roots A; on vi.

We can decompose V=V1® V. @ ... ® Vkx Where every vi€ V; is annihilated by (N — 2;) ™.
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By the above corollary, v; consists only of characteristic vectors of N belonging to 2;.

The inner product of V induces an inner product on v;. By the theorem, let v be a finite
dimensional inner product space then v has an orthonormal set as a basis. V; has an orthonormal

basis related to this inner product. By the lemma, elements lying in distinct v; are orthogonal.

Thus putting together the orthonormal basis are v; ‘s provides as with an orthonormal basis of v.

This basis consists of characteristic vectors of N. Thus in this basis the matrix of n is diagonal.
Corollary:1

If T is an unitary transformation then there is an orthonormal basis in which the matrix of
t is diagonal equivalently if T is a unitary matrix then there is a unitary matrix U such that UTU™
(= UTU") is diagonal.

Corollary:2

If T is a Hermitian linear transformation then there is an orthonormal basis in which the matrix
of tis diagonal equivalently if T is a Hermitian matrix then there is a unitary matrix U such that
UTU™ (= UTU") is diagonal.

Lemma 6.10.10
The Normal transformation N is
Q) Hermitian<===> its characteristics roots are real
(i)  Unitary <===> its characteristics roots are all of absolute value 1.
Proof:
Given that N is Hermitian and N is Normal.

M ===> N has only real characteristic roots . Hence if N is Hermitian then its

characteristics roots are real.

If N is normal and has only real characteristics roots. To p.t N is Hermitian.
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Consider for sum unitary matrix U, D = UNU™ (= UNU") where D is a diagonal

matrix with real entries on the diagonal.
===>D'=D
Consider D= (UNU")"
- UYN'U”
D=UN'U
D=D===>UNU" =UNU"
===>N"=N
===> N is Hermitian.
(i) Proof:

G.T N is unitary and N is normal. Let A be the characteristics roots of N. by the

corollary, “ If T is unitary and if A is a characteristics roots of T *“.

Then [A| =1, we have the characteristics roots of N are all of absolute value 1. Given

that N is Normal and its characteristics roots are all of absolute value 1.
(ie)., M = 1 where M\ is a characteristic roots of N.

Converse:

To Prove N is unitary.

By the Defn of characteristic roots, VN = Av----- (1) withv#0in V.

By the corollary, if A is a characteristic root of the Normal transformation N and vN = Av then

VN =Av.
Weget, VN =Av

AMVNT) =14 V)
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AWN™ =2V

VNN'=1.v

VvNN"=v.1

===>NN'=1

===> N is unitary.
Note:tr(AA") =0 <===>A =0
Lemma : 6.10.11
If N is Normal and AN=NA, then A N'= N"A.
Proof:
Given that N is Normal and AN=NA
ToP.T, AN'=N"A. (ie)., X= A N'= N'A=0.
(ie)., to prove tr(XX) = 0
Consider, XX" = (AN~ N'A) (AN~ N'A)"
=(AN-N'A) [(N)A- A (N)]
=(AN-N"A) (NA- A'N)
=(AN-NA)NA-(AN-NA)AN
=N[(AN"-N"A) AT-[(AN"-NA) AN
= NB-BN=0 [since AN=NA ===> AN-NA=0].
XX =0
tr(XX") = tr (0) =0

By the above Note, X=0
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(ie)., (AN-N'A)=0

===> AN =N'A.

Definition :

T Positive (OR) Positive Definite (OR) Non-Negative

If the Hermitian Linear transformation T > 0 and in addition (vT,v) > 0 for v # 0 then T is called

T Positive (OR) Positive Definite.
Lemma : 6.10.12

The Hermitian Linear transformation T is Non-Negative (Positive) <===> All of its

characteristics roots are Non-Negative (Positive).
Proof:
Given that T is Non-Negative (ie)., T > 0.
Let A be a characteristics root of T and vT = Av for some v # 0
Consider vT = Av
== (vT,v) = (Av,v)
0<(vT,v)=Mv,v)
==>0< MV,v)
===>)(v,v) >0
===>) > ()
===> All of its characteristics roots are Non-Negative (Positive).
Converse Part :
Given that T is Hermitian with non-negative characteristics roots.
ToP.TT=>0.
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Let {v1,Va,....,vn} be an orthonormal basis consisting of characteristics vectors of T.

Let A1,A,,...A,, be the non-negative characteristics roots of T under the basis {vi,vo,....

===>ViT = Aiv; ----- (1) where A; >0
Definev=3",a;vi VEV
VT = v T
=Xi=1 a;:hivi(by (1))
VT = Vi
(VT,V) = Biog i Vi, X a;Vi)
= (MoyVit.... FA0nVn , 0qVit. ...+ apVy)
= (MouVi, 0qVi)t..... T (AnOnVn, 0nVp)
= Moy (Vi, 01V1) +....F Anoin (Vn, 0nVi)
=Mouaq (V1, Vi) ...t Anon @, (Vi Vi)
=Moga; (1) +....+ Aon @, (1) (since (vi, vi) =1, (v, vj) =0)
Here (vi, Vvj) =0, we are not having the terms Adouay (Vi, Va2),.......
(VTV) = Yo ahid;
(vT,v)>0
Since by the lemma, “ if T € A(V) is such that (vT,v) =0 for all v € V then T=0".
We have T > 0.
Lemma 6.10.13
T>0<===>T=AA" for some A.

Proof :
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(i)  Consider T= AA”
ToP.tT>0 (ie)., AA>0
Consider, (v AA"v) = (VA V(A"
= (VAVA)
>0 (by the defn of Inner Product)
(VAA v)>0
===>AA">0 (by the defn of T Positive)
—==>T>0

(i) T>0 ToP.tT=AA"

V(A1)
Consider the Unitary matrix U such that UTU" = where each 4; is the
(An)
characteristic root of T.
since T>0 ===>each ;>0
V(1)
LetS={ .. since each 4; > 0 which implies \/2; > 0
V()

===> S is Hermitian

(ie)., S=S".

To Prove that USU™ is Hermitian.

Consider (USU™) "= (U)"S'U”
=uUsu

=yUsu”
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===> (USU") ZUSU" --mrrmeeeem-
US U is Hermitian.
Consider (U” SU) 2= (U” SU) (U” SU)
= (U"SU U" SU)
= (U"S.1. SU)

= (U S? V)

(V@)
=u( .. U
V)
(V@)
=U U
V)
= U (UT UHU
=UUTUU
(U'SU)?=1.T.1 =T - (2)
Take A= (U” SU)
=_==> A*: (U* SU) *
A= (U SU) By (1)
(2) ===>T=(U"SU) 2= (U SU) (U"SU)
T=AA" for some A.

6.11 Real Quadratic forms

Definition :Quadratic form associated with A.
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Let V be a Real Inner Product space and suppose that a is a (real) symmetric linear

transformation on V. The real valued function Q(v) defined on V by Q(v) =(VA,v) is called the

quadratic form associated with A.

Definition :Congruent Matrices

Two real symmetric matrices of A and B are congruent matrices if there is a non-

singular real matrix T such that B=TAT™.

Lemma6.11.1

Proof:

Congruence is an equivalence relation.

Let us denote A is congruent to B has A= B
(i Reflexive:
ToptA=A
A= IAI" where [ is an identity matrix. ===> A= A.
(i)  Symmetric:
Consider AxBToP.tB=A
A= B ===> B = TAT" (where T is non-singular)
T'B=TTAT?
=IAT?
T'BT=AT'T
T'BT=AI
T'BT=A

TB(TH=A
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Let (T?) =S ===> SBS™ = A where S is non-singular.
===>B = A
(i) Transitive:
LetA=B&B=C.ToptA=C.
A=B ===>B =TAT"
B =C ===>C = SBS™ where S & T are non-singular.
C=SBS'=S(TAT!) s*
= (ST) A(T's™)
=(ST) A(ST)* =RAR*
C=RAR™
==>C=A
Hence congruence is an equivalence relation.
Definition :Signature of A
L

If A is a real symmetric matrix congruent to -1 then r-s is called the
0,

signature of A. The signature of a quadratic form is defined to be the signature of the associated

symmetric matrix.
Result (1):
Let A be a symmetric matrix and let us consider associated quadratic form

Q(v) = (VAV). If T is non-singular and real given v € F , v = wT for some w € F™. Hence

(VA,V) = (WTA,WT).

Thus A and ATA™ effectively define the same quadratic form.
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Result (2):

Given a real orthogonal matrix , we can fixed an orthogonal matrix T such that TQT"
'=TQT.

Theorem 6.11.1 (Sylvester’s Law)
Given be the real symmetric matrix A there is an invertible matrix T such that
I,

TAT = —I where liand | are respectively r x r and s x s unit matrices and 0; is
0,

the t x t zero matrix. The integer r+s which is be rank of A and r-s which is the signature of A
,Characterize the congruence class of A. (ie)., two real symmetric matrices are congruent iff they

have the same rank and signature.
Proof:

A isreal symmetric matrix , its characteristic roots are real. Let A1,A,,...A, be its

characteristic roots.Let —A,.1,—A,12,..., —A,.,¢ be its negative characteristic roots .
We can find a real orthogonal matrix C, such that

A

CAC'=CAC = A

_}\r+s

0,

Where t=n-rs. (here n =r+s+t). Let T be the real diagonal matrix
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E

1
N7
D= ! then the simple computation that
V/‘lr+1
1
\/Ar+s
I
I,
DCAC D = (DC)A(C' D) = —I . Thus there is a matrix of the required form in
0,
the congruence class of A. Now, to show that this is the only matrix in the congruence class of
I, I
this form (or) equivalently that L= —I and M = -1 are congruent
0, 0,

onlyifr=r,s=s andt=t.
Toptr=r,s=s andt=t.
Suppose that M=TLT where T is invertible (by lemma L=M)

If v is a finite dimensional vector space over F and if S € A(V) and T € A(V) is regular then r(S)
=r(TST).

M=TLT? ===>r(M) =r (TLT?) = r(L)
Nt =nt ===>t=t

Toprover=r ands=s

Suppose r <r , N= r+s+t = r +s +t

===> §-§=r-r===>5>5§

Let U be the subspace of F™ for all vectors having the first r and the last t

coordinates 0. Therefore U is s-dimensional. For u # 0 €U, (uL,u) <0. Let W be the subspace of
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F™ for which r+1,....,r +s are zero.Since T is invertible and W is (n-s )dimensional. WT is (n-s)

dimensional. For weW , (wM,w) > 0. Hence (WTL, wT) > 0 for all elements.

Now dim (WT)+ dim U = n-s +r = n+s-s >n . by the corollary to lemma 4.2.6,

WT N U # 0. This however is nonsense. Forif x #0 eWT n U, (xL,x) <0 while on the other

hand, being in WT, (xL,x)>0. Thusr=r ands=s.

The rank r+s, and signature r-s , determine r,s and t = (n-r-s) , hence they determine

the congruence class.
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