D.K.M. COLLEGE FOR WOMEN

(AUTONOMOUS), VELLORE

E CONTENT TITLE : ALGEBRA
DEPARTMENT : MATHEMATICS -PG

DESIGNED BY
: 1. Mrs. G.Chithra, M.Phil,
2. Ms. K. Geetha Priya, M.Phil,
3. Mrs. R. Ramya, M.Phil,
4. Mrs.D. Vijayalakshmi, M.Phil,
5. Mrs. C. Revathi, M. Phil,
6. Ms. R. Chithra, M.Phil,
7. Mrs.V. Vandar Kuzhali, M.Phil,
8. Dr. M. Kathuri, Ph.D
9. Dr. T. Ranjani, Ph.D
10. Dr. M. Devi, Ph.D

ALGEBRA - I

UNIT - I - GROUP THEORY
18hrs

Another Counting Principle -Class Equation for Finite groups and its applications - Sylow's theorems [For theorem 2.12.1, Only First proof].

Chapter 2: Sections $\mathbf{2 . 1 1}$ and $\mathbf{2 . 1 2}$ [omit Lemma 2.11.3, 2.12.2, 2.12.5]
2.11 ANOTHER COUNTING PRINCIPLE

Definition:
Let G be a group and if $\mathrm{a}, \mathrm{b} \in \mathrm{G}$ then b is said to be conjugate to a in G , there exists an element c $\in G$ such that $\mathrm{b}=c^{-1} a c$. Symbolically $\mathrm{a} \sim \mathrm{c}$.

Lemma 2.11.1:

The above relation is an equivalence relation.

Or

Conjugacy is an equivalence relation on G.
Proof:

Now we have to prove that the above relation is an equivalence relation.
That is to prove that
i). Reflexive: $\mathrm{a} \sim \mathrm{a}$
ii). Symmetric: $\mathrm{a} \sim \mathrm{b} \rightarrow \mathrm{b} \sim \mathrm{a}$
iii). Transitive: $\mathrm{a} \sim \mathrm{b}, \mathrm{b} \sim \mathrm{c} \rightarrow \mathrm{a} \sim \mathrm{c}$
i). Reflexive:

Since e $\in G, \mathrm{a}=e^{-1} a e$

Therefore $\mathrm{a} \in G$.

Hence a ~ a

ii). Symmetric:

Let $\mathrm{a} \sim \mathrm{b}$.
Then $\mathrm{b}=c^{-1} a c$.
Now $\mathrm{cb} c^{-1}=\mathrm{b}=c^{-1} \operatorname{cac} c^{-1}$

$$
=\mathrm{e} a \mathrm{e}=\mathrm{a}
$$

Therefore $\mathrm{b} \sim \mathrm{a}$.

iii). Transitive:

Let $\mathrm{a} \sim \mathrm{b}$ and $\mathrm{b} \sim \mathrm{c}$.

Then there exists an element $x \in G$ such that $b=x^{-1} a x$ and also there exists an element $y \in G$ such that $\mathrm{c}=\mathrm{y}^{-1}$ ay.

Now c $\quad=y^{-1}$ ay

$$
=y^{-1}\left(x^{-1} a x\right) y
$$

$$
=\left(\mathrm{y}^{-1} \mathrm{x}^{-1}\right) \mathrm{a}(\mathrm{x} y)
$$

$$
=(x y)^{-1} \mathrm{a}(x y)
$$

$$
=z^{-1} \mathrm{a} \mathrm{z}
$$

Therefore, $\mathrm{a} \sim \mathrm{c}$.

Hence the conjugacy relation is an equivalence relation.

Hence the lemma.

Definition:

Let a in G. Then $C(a)=\{x \in G / x \sim a\}=\left\{x \in G / x=y^{-1} a y, y \in G\right\}$ where $C(a)$ is called the conjugate class of a.

Definition:

If a in G then $N(a)$ is the normalize of \mathbf{a} in \mathbf{G} such that $N(a)=\{x \in G / a x=x a\}$.

Lemma 2.11.2

Prove that $N(a)$ is a sub group of G.

Proof:

Given that g is a group.

To prove that $\mathrm{N}(\mathrm{a})$ is a subgroup of G .

It is enough to prove that N (a) satisfies
i). Closure
ii). Associative

By definition of $N(a), N(a)$ is a subset of G.

Since e and a in G, ae = ea

Hence e $\in N(a)$.

Therefore, $N(a)$ is non-empty.

Now to prove closure:

Let $x, y \in N(a)$.

Then $x a=a x$ and $y a=a y$.

Consider,

$$
\begin{aligned}
(x y) a & =x(y a) \\
& =x(a y) \\
& =(x a) y
\end{aligned}
$$

$$
=(a x) y
$$

That is, (xy)a $=a(x y)$

Therefore, $x y \in N(a)$.

Closure is satisfied.

Now to prove the inverse:
Let $x \in N(a)$.

Then $\mathrm{xa}=\mathrm{ax}$.

Consider

$$
\begin{aligned}
x^{-1} a & =\left(x^{-1} a\right)\left(x x^{-1}\right) \\
& =a x^{-1}
\end{aligned}
$$

Hence $x^{-1} \in N(a)$.

Thus inverse is satisfied.

Therefore $N(a)$ is a subgroup of G.

Hence the lemma proved.

Theorem 2.11.1 SECOND COUNTING PRINCIPLE

If G is a finite group, then $c_{a}=O(G) / O(N(a))$; in other words, the number of elements conjugate to a in G is the index of normalize of a in G .

Proof:

For $a \in G, c(a) \quad=\{x \in G / x \sim a\}$

$$
=\left\{x \in G / x=y^{-1} a y, y \in G\right\}
$$

Therefore $\mathrm{c}(\mathrm{a})$ consist exactly of all the elements $\mathrm{x}^{-1} \mathrm{ax}$ as x ranges over G .

Hence c_{a} measures the number of distinct $x^{-1} a x$ ' s.

Now to show that two elements in the same right coset of $N(a)$ in G yield the same conjugate of a whereas two elements in different right cosets of $\mathrm{N}(\mathrm{a})$ in G give rise to different conjugates of a .

In this way we shall prove that there exists a one-to-one correspondence between conjugates of a and right cosets of $\mathrm{N}(\mathrm{a})$.

Suppose that $x, y \in G$ are in the same right coset of $N(a)$ in G.
thus $y=n x$ where $n \in N(a)$.
So na $=$ an.
Therefore, since $y^{-1}=(n x)^{-1}=x^{-1} n^{-1}, y^{-1} a y=x^{-1} n^{-1} a n x=x^{-1} a x$.

Thus we proved that two elements in the same right coset of $\mathrm{N}(\mathrm{a})$ in G yield the same conjugate of a .

On the other hand, x and y are in different cosets of $N(a)$ in G.
We claim that $x^{-1} a x \neq y^{-1} a y$.
Let us assume that $x^{-1} a x=y^{-1} a y$.

Then $x \in N(a) x$ and $y \in N(a) y$

Now $x^{-1} a x=y^{-1} a y$.
Pre-multiply by x and post multiply by y^{-1} we get,
$N(a) x=N(a) y, w h i c h$ is a contradiction.

Hence two elements in different right cosets of $\mathrm{N}(\mathrm{a})$ in G give rise to different conjugates of a .
Thus we proved that one-to-one correspondence between conjugates of a and right cosets of $\mathrm{N}(\mathrm{a})$.

Therefore $\mathrm{c}_{\mathrm{a}}=\frac{O(G)}{O(N(a))}$.

Hence the theorem.

Corollary: CLASS EQUATION OF G

$$
\mathrm{O}(\mathrm{G})=\sum \frac{o(G)}{O(N(a))}
$$

where this sum runs over one element a in each conjugate class.

Proof:

By applying theorem 2.11.1, we have
$\mathrm{O}(\mathrm{G})=\sum \frac{O(G)}{O(N(a))}$
Now consider c_{a}, c_{b}, \ldots. are distinct conjugate classes and also $c_{a} \cup c_{b} \cup \ldots=G$.

Therefore, $\sum c_{a}=\mathrm{O}(\mathrm{G})$.

Hence the equation $\mathrm{O}(\mathrm{G})=\sum \frac{O(G)}{O(N(a))}$.
Hence the corollary was proved.

Sub Lemma 1:

Prove that $a \in Z$ if and only if $N(a)=G$. If G is finite, $a \in Z$ and only if $O(N(a))=O(G)$.

Proof:

Necessary Part:

Let a in $Z(G)$.

To prove that $\mathrm{N}(\mathrm{a})=\mathrm{G}$.

By definition of $N(a), N(a)$ is a subset of G.

By lemma 2.11.1, $\mathrm{N}(\mathrm{a})$ is a subgroup of G .
That is $\mathrm{N}(\mathrm{a}) \underline{C} \mathrm{G}$

Now to show that $G \underline{C} \mathrm{~N}(\mathrm{a})$.

Let g in G .

Then $\mathrm{ag}=\mathrm{ga}$.

Therefore g is in $\mathrm{N}(\mathrm{a})$.
Hence G $\underline{C} \mathrm{~N}(\mathrm{a})$

From equation (1) and (2), $\mathrm{G}=\mathrm{N}(\mathrm{a})$.

Sufficient Part:

Let $G=N(a)$.

To prove that a in $\mathrm{Z}(\mathrm{G})$.

Let x in G .

Then $x a=a x$.

Hence a in $Z(G)$.

Let G be a finite group.

Let a in $\mathrm{Z}(\mathrm{G})$.

Then $\mathrm{N}(\mathrm{a})=\mathrm{G}$.

Hence $O(N(a))=O(G)$.

Hence the lemma was proved.

Theorem 2.11.2

If $\mathrm{O}(\mathrm{G})=\mathrm{p}^{\mathrm{n}}$ where p is a prime number then $\mathrm{Z}(\mathrm{G}) \neq(\mathrm{e})$.

Proof:

Let G be a finite group.
given that $O(G)=p^{n}$ where p is a prime number.
To prove that $\mathrm{Z}(\mathrm{G}) \neq(\mathrm{e})$.
Let a in G.
Since $N(a)$ is a subgroup of G and G is a finite group then by Langrange's theorem $\frac{O(G)}{O(N(a))}$
Hence $\frac{p^{n}}{O(N(a))}$.
That is $\mathrm{O}(\mathrm{N}(\mathrm{a}))=\mathrm{p}^{\mathrm{na}}$, where $1 \leq a \leq \mathrm{n}$.
If a is not in centre of G then by sub lemma $1 \mathrm{O}(\mathrm{N}(\mathrm{a}))=\mathrm{O}(\mathrm{G})$.
Therefore $\mathrm{p}^{\mathrm{n}}=\mathrm{p}^{\mathrm{na}}$.
Hence $\mathrm{n}=\mathrm{na}$.
If a in $Z(G)$ then na $<n$.

Consider the class equation
$\mathrm{O}(\mathrm{G}) \quad=\sum \frac{O(G)}{O(N(a))}$.
$=\sum_{a \text { in } Z(G)} \frac{O(G)}{O(N(a))}+\sum_{a \text { not in } Z(G)} \frac{O(G)}{O(N(a))}$
$=\frac{p^{n}}{p^{n a}}+\sum_{a \text { not in } Z(G)} \frac{O(G)}{O(N(a))}$
$=\mathrm{Z}+\sum_{a \operatorname{not} \operatorname{in} Z(G)} \frac{O(G)}{O(N(a))}$
$p^{n} \quad=\mathrm{z}+\sum_{n<n a} \frac{p^{n}}{p^{n a}}$
$\mathrm{z}=p^{n}-\sum_{n<n a} \frac{p^{n}}{p^{n a}}$.
p divides the R.H.S of (1).
p divides the L.H.S of (1).

Therefore p divides z , which gives p is either 0 or integral power of p .

Hence z is not equal to 0 .

Therefore z must be a integral power of p .

Hence $Z(G) \neq(e)$.

Corollary:

If $\mathrm{O}(\mathrm{G})=p^{2}$ where p is a prime number then G is abelian.

Proof:

Suppose $\mathrm{O}(\mathrm{G})=p^{2}$ where p is a prime number
Now to prove that G is abelian.

It is enough to prove that $G=Z(G)$ is abelian, where $Z(G)=\{x$ in G such that $a x=x$ for all x in G \}.

Since G is a finite group and $Z(G)$ is a subgroup of G then by Lagrange's theorem, $\frac{O(G)}{O(Z(G))}$
That is, $\frac{p^{2}}{O(Z(G))}$.
that is $\mathrm{O}(\mathrm{Z}(\mathrm{G}))=1$ or p or p^{2}.
By theorem 2.11.2, $\mathrm{Z}(\mathrm{G}) \neq(\mathrm{e})$.
That is, $\mathrm{O}(\mathrm{Z}(\mathrm{G}) \neq 1$.
Hence the possibilities are either p or p^{2}.
Suppose $O(Z(G)=p$.

Then there exists an element a in G but not in $Z(G)$.

Since $\mathrm{N}(\mathrm{a})$ is a subgroup of G and G is a finite group again by lagrange's theorem $\frac{O(G)}{O(N(a))}$

That is $\frac{p^{2}}{O(N(a))}$.
Hence $\mathrm{O}(\mathrm{N}(\mathrm{a}))=1$ or p or p^{2}
Since $N(a)$ is a subgroup of G, a and e in $N(a)$ we have $O(N(a)) \neq 1$.
Thus either $\mathrm{O}(\mathrm{Na}))=\mathrm{p}$ or p^{2}
let z in $\mathrm{Z}(\mathrm{G})$.

Then $\mathrm{az}=\mathrm{za}$ for all a in G.

Hence $Z(G)$ is a subset of $N(a)$.
Since a in $N(a)$ and $Z(G)$ is not equal to $N(a)$ we have $O(N(a)) \neq p^{2}$.

Therefore $\mathrm{O}(\mathrm{N}(\mathrm{a}))=\mathrm{O}(\mathrm{G})$

Hence a is in $Z(G)$, which is a contradiction to our assumption that a does not belong to $Z(G)$.
Therefore $\mathrm{Z}(\mathrm{G})=\mathrm{G}$.

Thus G is abelian.

Example 2.11.1

A group of order 121 is an abelian group.

Solution:

Let $\mathrm{O}(\mathrm{G})=121=11^{2}$.

By using above corollary, a group of order 121 is an abelian group.

Theorem 2.11.3 CAUCHY

If p is a prime number and $\mathrm{p} \mid \mathrm{O}(\mathrm{G})$ then G has an element of order p .

Proof:

Suppose G is a finite group and $p \mid O(G)$, where p is a prime number.

To prove G has an element of order p.

To prove that there exists an element $\mathrm{a} \neq \mathrm{e} \in \mathrm{G}$ such that $\mathrm{a}^{\mathrm{p}}=\mathrm{e}$.

That is to prove that $O(a)=p$.
We prove this theorem by induction on $\mathrm{O}(\mathrm{G})$.
Let $\mathrm{O}(\mathrm{G})=1$.
Therefore $\mathrm{O}(\mathrm{G})=\{\mathrm{e}\}$ and $e^{1}=\mathrm{e}$.
Thus $\mathrm{O}(\mathrm{e})=1$.
Hence the theorem is true for $\mathrm{O}(\mathrm{G})=1$.

Assume that the theorem is true for all group of order is less than q .

Now we prove the theorem for $\mathrm{O}(\mathrm{G})$.

Then there exists a subgroup H which is not equal to G such that p divides $O(H)$.

Hence the theorem is true for H because $\mathrm{O}(\mathrm{H})<\mathrm{OG})$.

Therefore $\mathrm{O}(\mathrm{a})=\mathrm{p}$.

Since a is in H, a is also in G, there exists an element a is in G such that $O(a)=p$..

Thus we may assume that p is not a divisor of any proper subgroup of G .

Let $Z(G)$ be the centre of G.

Consider the class equation
$\mathrm{O}(\mathrm{G})=\sum \frac{O(G)}{O(N(a))}$.

$$
\begin{aligned}
& =\sum_{a \text { in } Z(G)} \frac{O(G)}{O(N(a))}+\sum_{a \operatorname{not} \operatorname{in} Z(G)} \frac{O(G)}{O(N(a))} \\
& =\mathrm{O}(Z(\mathrm{G}))+\sum_{a \text { not in } Z(G)} \frac{O(G)}{O(N(a))}
\end{aligned}
$$

$\mathrm{O}(\mathrm{Z}(\mathrm{G}))=\mathrm{O}(\mathrm{G})-\sum_{a \text { not } \operatorname{in} Z(G)} \frac{O(G)}{O(N(a))}$
Hence p divides $\mathrm{O}(\mathrm{Z}(\mathrm{G}))$.

Thus $Z(G)$ is a subgroup of G whose order is divisible by p.

But we may assume that p does not divide any proper subgroup of G .
Hence $Z(G)=G$.

Since Z is an abelian nd G is also an abelian group.

Therefore by applying Cauchy theorem for abelian group, the theorem is true for $\mathrm{O}(\mathrm{G})$.
Thus G has an element of order p .

Lemma 2.11.3

The number of conjugate classes in S_{n}, is $p(n)$, the number of partitions of n.

Proof:

Let the permutation be (12) in S_{n}. There are ($n-2$)!

Also (1, 2) commutes with itself.

This way we get $2(n-2)$! elements in the group generated by (12) and the $n(n-1) / 2$ transpositions and these are conjugates of $(1,2)$.

By counting principle
$\frac{n(n-1)}{2}=\frac{O\left(S_{n}\right)}{r}=\frac{n!}{r}$
Thus $\mathrm{r}=2(\mathrm{n}-2)$!.
That is the order of the normalize of $(1,2)$ is $2(n-2)$.

Now any n-cycle is conjugate to $(1,2, \ldots n)$ and there are ($n-1$)! distinct n-cycles in S_{n}.

Thus if u denotes the order of the normalize of $(1,2, . . n)$ in $S_{n}, O\left(S_{n}\right) / u=$ number of conjugates of $(1,2, \ldots n)$ in $S_{n}=(n-1)$!

Therefore $\mathrm{u}=\frac{n!}{(n-1)!}=\mathrm{n}$.
Hence the order of the normalize of $(1,2, \ldots n)$ in S_{n} is n.
The powers of $(1,2, \ldots n)$ having given as n such elements.
Hence the lemma was proved.

Theorem 2.12.1 First part of Sylow's Theorem

If P is a prime number and $P^{\alpha} \mid O(G)$ then G has a subgroup of order P^{α}.
Proof:
Given P is a prime number and ${ }^{\alpha} \mid \mathrm{O}(\mathrm{G})$
$\Rightarrow \mathrm{O}(\mathrm{G})=\mathrm{P}^{\alpha} \mathrm{m}$
We know that, $\mathrm{nC}_{\mathrm{k}}=\mathrm{n}$!
$\mathrm{k}!(\mathrm{n}-\mathrm{k})$! --------(1)
Let $\mathrm{n}=\mathrm{P}^{\alpha} \mathrm{m}$
Where P is a prime number and if $\mathrm{P}^{\alpha} \mid \mathrm{m}$ but $\mathrm{P}^{\alpha} \nmid \mathrm{m}$
Take $\mathrm{k}=\mathrm{P}^{\alpha}$ substitute this in (1)
We get, $\mathrm{P}^{\alpha} \mathrm{mCP}{ }^{\alpha}={ }^{\mathrm{P} \alpha} \mathrm{m}$!
$\mathrm{P}^{\alpha}!\left(\mathrm{P}^{\alpha} \mathrm{m}-\mathrm{P}^{\alpha}\right)!$
$=\mathrm{P}^{\alpha}\left(\mathrm{P}^{\alpha} \mathrm{m}_{-1}\right)\left(\mathrm{P}^{\alpha} \mathrm{m}-2\right) \ldots \ldots \ldots . . .\left(\mathrm{P}^{\alpha} \mathrm{m}-1\right) \ldots . .\left(\mathrm{P}^{\alpha} \mathrm{m}-\mathrm{P}^{\alpha}+1\right)$
$\mathrm{P}^{\alpha}\left(\mathrm{P}^{\alpha}-1\right) \ldots \ldots \ldots . .\left(\mathrm{P}^{\alpha}-\mathrm{i}\right) \ldots . . .\left(\mathrm{P}^{\alpha} \mathrm{m}-\mathrm{P}^{\alpha}+1\right)$

$$
=\mathrm{P}^{\alpha} \mathrm{m}\left(\mathrm{P}^{\alpha} \mathrm{m}-1\right) \ldots\left(\mathrm{P}^{\alpha} \mathrm{m}-1\right) \ldots\left(\mathrm{P}^{\alpha} \mathrm{m}-\mathrm{P}^{\alpha}+1\right) \mathrm{P}^{\alpha}\left(\mathrm{P}^{\alpha}-1\right) \ldots . . .\left(\mathrm{P}^{\alpha}-\mathrm{i}\right) \ldots3 .2 .1
$$

Now, we show that the power of P dividing $\left(\mathrm{P}^{\alpha} \mathrm{m}-\mathrm{i}\right)$ in the numerator is the same as the power of P dividing $\left(\mathrm{P}_{\mathrm{m}-\mathrm{i}}^{\alpha}\right)$ in the denominator.
Let $\mathrm{P}^{\alpha}\left(\mathrm{P}^{\alpha}-1\right)$ \qquad
$==>\mathrm{P}^{\alpha}-\mathrm{i}=\mathrm{aP}^{\mathrm{k}}$ where $\mathrm{k} \leq \alpha$
$=\Rightarrow-\mathrm{i}=\mathrm{aP}^{\mathrm{k}}-\mathrm{P}^{\alpha}$
Add both sides by $\mathrm{P}^{\alpha} \mathrm{m}$,
We get,
$\mathrm{P}^{\alpha} \mathrm{m}-\mathrm{i}=\mathrm{aP}^{\mathrm{k}}-\mathrm{P}^{\mathrm{k}}+\mathrm{P}^{\alpha} \mathrm{m}$
$=a P^{\mathrm{k}}+\mathrm{P}^{\alpha}(\mathrm{m}-1)$
$\mathrm{P}^{\alpha} \mathrm{m}-\mathrm{i}=\mathrm{P}^{\mathrm{k}}\left[\mathrm{a}+\mathrm{P}^{\alpha-\mathrm{k}}(\mathrm{m}-1)\right]$
$\Rightarrow \mathrm{P}^{\mathrm{k}} \mid \mathrm{P}^{\alpha} \mathrm{m}-\mathrm{i}$
Conversely,
Let P^{k} divides $\mathrm{P}^{\alpha} \mathrm{m}_{\mathrm{m}} \mathrm{i}$
$==>P^{\alpha} m-1=a P^{k}=P^{\alpha}-1$
$=\Rightarrow \mathrm{aP}^{\mathrm{k}}=\mathrm{P}^{\alpha}-\mathrm{i}$
$==>\mathrm{P}^{\mathrm{k}} \mid \mathrm{P}^{\alpha}-\mathrm{i}$

Hence, all the powers of P cancel out except the power which divides m .
Thus, $\mathrm{P}^{\mathrm{r}} \mid \mathrm{P}^{\alpha} \mathrm{mCP} \mathrm{P}^{\alpha}$ but $\mathrm{P}^{\mathrm{r}+1} \nmid \mathrm{P}^{\alpha} \mathrm{mCP} \mathrm{P}^{\alpha}$.
Let M be the set of all subsets of G which have P^{α} elements.
Thus, M has $\mathrm{P}^{\alpha} \mathrm{mC}_{\mathrm{P}} \alpha_{\text {elements. Given }} \mathrm{M}_{1}, \mathrm{M}_{2} \in \mathrm{M}$. Since M is a subset of G having P^{α} elements on likewise M_{1} define $\mathrm{M}_{1 \sim} \mathrm{M} 2$, if there exist an element $\mathrm{g} \in \mathrm{g}$ such that $\mathrm{m} 1=m 2 \mathrm{~g}$. Now To prove the relation, ' M ' is an equivalence relation on M,

1)Reflexive:

Since $\mathrm{M}_{1=\mathrm{Mle}} \therefore \mathrm{M}_{1}=\mathrm{M}_{2}$.

2)Symmetric:

Let $\mathrm{M}_{1} \sim \mathrm{M}_{2}$ then $\mathrm{M}_{1}={ }_{\mathrm{M} 2 \mathrm{~g}}$ where $\mathrm{g} \in \mathrm{G}$

$$
\therefore \mathrm{M}_{1} \mathrm{~g}_{1}=\mathrm{M}_{2}
$$

\therefore.there exist $\mathrm{g}^{-1} \in \mathrm{G}$ such that $\mathrm{M}_{2=\mathrm{M} 2 \mathrm{~g}}-1 \mathrm{M}_{2} \sim \mathrm{M}_{1}$

3. Transitive:

Let $\mathrm{M}_{1} \sim \mathrm{M}_{2}$ and $\mathrm{M}_{2} \sim \mathrm{M}_{3} \therefore$ There exist $\mathrm{g}_{1} \in \mathrm{G}$ such that $\mathrm{M}_{1}=\mathrm{M}_{2} \mathrm{~g}_{1}$ and
$\mathrm{g} 1 \in \mathrm{G}$ such that $\mathrm{M}_{2}=\mathrm{M} 3 \mathrm{~g} 2=\mathrm{M} 3$

$$
\mathrm{M} 3 \mathrm{~g} 2 \mathrm{~g} 1=\mathrm{M}_{3(\mathrm{~g} 2 \mathrm{~g} 1)}=\mathrm{M} 3 \mathrm{~g} \therefore \mathrm{M} 1 \sim \mathrm{M} 3 \text { Hence the relation ' } \sim \text { ' is an equivalence relation. }
$$

We claim that there is atleast on equivalent class of M such that the number of elements in the class is not a multiple of $\mathrm{P}^{\mathrm{r}+1}$ for if $\mathrm{P}^{\mathrm{r}+1}$ is a divisor of the size of each equivalence class then $\mathrm{P}^{\mathrm{r}+1}$ is also a divisor of the number of elements in M, which is not possible.

Since M has $P^{\alpha}{ }_{m C P}{ }^{\alpha}$ elements and $P^{r+1} \nmid P^{\alpha} m C P^{\alpha}$ Let $\left\{M_{1}, M_{2} \ldots . . M n\right\}$ be such an equivalence class in M where $\mathrm{Pr}+1$ does not divide n .

By our definition of equivalence class in $M, g \in G$ for each $i=1,2, \ldots . n$
$\mathrm{M}_{\mathrm{ig}}=\mathrm{M}_{\mathrm{i}}$ for some $\mathrm{j}, 1 \leq \mathrm{j} \leq \mathrm{n}$
Let $\mathrm{H}=\{\mathrm{g} \in \mathrm{G} / \mathrm{M} 1 \mathrm{~g}=\mathrm{M} 1\}$
Since $\mathrm{g} \in \mathrm{G}, \mathrm{H}$ is a subset of G

To prove: H is a subgroup of G

$$
\therefore \mathrm{e} \in \mathrm{H}
$$

Hence H is non-empty.
Let $\mathrm{g}_{1, \mathrm{~g} 2 \in \mathrm{H}}$ Then $_{\mathrm{M} 1 \mathrm{~g} 1}=\mathrm{M} 1$ and ${ }_{\mathrm{M} 1 \mathrm{~g} 2}=\mathrm{M} 1$
Now, $\left.\mathrm{M}_{1}(\mathrm{~g} 1 \mathrm{~g} 2)=\mathrm{M} 1 \mathrm{~g} 1\right) \mathrm{g} 2=\mathrm{M}_{1 \mathrm{~g} 2}=\mathrm{M} 1$
$\therefore g 1 \mathrm{~g} 2 \in \mathrm{H}$
\therefore Closure is satisfied.
Let $\mathrm{g} \in \mathrm{H}$ then $\mathrm{M} 1 \mathrm{~g}=\mathrm{M} 1$

$$
\begin{aligned}
& ==>\mathrm{M}_{1=\mathrm{Mlg}^{-1}} \\
& ==>\mathrm{g}^{-1} \in \mathrm{H}
\end{aligned}
$$

\therefore Inverse is also satisfied.

Hence H is a subgroup of G.
Now we show that there exist a one-one correspondence between the equivalence class $\left\{\mathrm{M}_{1}, \mathrm{M}_{2}\right.$, \qquad $\mathrm{Mn}\}$ and the set of all right cosets of H in $\mathrm{G}=\left\{\mathrm{H}_{\mathrm{g} / \mathrm{g} \in \mathrm{H}}\right\}$.

Let $\mathrm{M}_{1 \mathrm{~g} 1=\mathrm{M} 2 \mathrm{~g} 2}$
$\left\langle=>_{\mathrm{Mlglg} 2}{ }^{-1}=\mathrm{M}_{2}\right.$
$<==>g_{1 g 2}-1_{\in H}$
$\left\langle==>\mathrm{Hg} 1 \mathrm{~g} 2^{-1}=\mathrm{H}\left\langle==>\mathrm{Hg}_{1=\mathrm{Hg} 2}\right.\right.$
\therefore There exists a one-one correspondence between
thequivalence class and the set of all right coset of H in G .
Hence G is a finite group and H is a subgroup of G .
Then by Lagrange's theorem, o(G) $0(\mathrm{H})$
Again, by using $2^{\text {nd }}$ counting principle $o(G)$
$0(\mathrm{H})=$ the number of distinct right cosets
of H in G .
Here the number of elements in the equivalence class in n,
i.e, $o(G) O(H)^{=} n$
i.e, $o(G)=n 0(H)$
$\mathrm{P}^{\mathrm{r}+1} \nmid \mathrm{P}^{\alpha} \mathrm{mC}_{\mathrm{P}} \alpha_{\text {and }} \mathrm{Pr}+1_{\text {ł }}$
i.e, $\mathrm{P}^{\mathrm{r}+1} \nmid \mathrm{n} 0(\mathrm{H})$

It follows that $\mathrm{P}^{\alpha} \mid 0(\mathrm{H})$
$=>0(\mathrm{H}) \geq \mathrm{P}^{\alpha}$-----------(3)
Let if $m_{1} \in \mathrm{M}_{1}$ and $\forall \mathrm{h} \in \mathrm{H}$ Then $\mathrm{m}_{1 \mathrm{~h} \in \mathrm{H}}$ Thus, M_{1} has atleast order of H distinct element. However M_{1} is a subset containing P^{α} elements $\mathrm{P}^{\alpha} \geq 0(\mathrm{H})$
From equation (3) \& (4)
$\mathrm{P}^{\alpha}=0(\mathrm{H})$
Hence, H is a subgroup of G having P^{α} elements.

Hence the proof.

COROLLARY:

If $\mathrm{p}^{\mathrm{m}} / \mathrm{o}(\mathrm{G})$ and $\mathrm{p}^{\mathrm{m}+1} / \mathrm{o}(\mathrm{G})$ then G has a subgroup of order p^{m}.
Proof:

Suppose $\mathrm{p}^{\mathrm{m}} / \mathrm{o}(\mathrm{G}) \mathrm{p}^{\mathrm{m}+1} / \mathrm{o}(\mathrm{G})$
To prove: G has a subgroup of order p^{m}.
By using first part of sylow's theorem
We get a subgroup of order p^{m}.

Definition:

Let $\mathrm{n}(\mathrm{k})$ be defined by $\mathrm{p}^{(\mathrm{k})} / \mathrm{p}^{(\mathrm{k})}$! but $\mathrm{p}^{\mathrm{n}(\mathrm{k}+1)} / \mathrm{p}^{(\mathrm{k})}$!.

Definition :

subgroup of G of order p^{m} where $\mathrm{p}^{\mathrm{m}} / \mathrm{o}(\mathrm{G})$ but $\mathrm{p}^{\mathrm{m}+1} / \mathrm{o}(\mathrm{G})$ is called a p sylow subgroup of G .

Lemma 2.12.1

Prove that $n(k)=1+p+\ldots \ldots .+p^{k-1}$

Proof:
By the define of $n(k), p^{n(k)} / \mathrm{p}^{(k)}$, but $\mathrm{P}^{\mathrm{n}(\mathrm{k})+1} / \mathrm{p}^{(\mathrm{k})}$!
We know that

$$
\mathrm{P}!=1.2 \ldots \ldots \ldots(\mathrm{p}-1) \mathrm{p}
$$

Hence p / p ! but $\mathrm{p}^{2} / \mathrm{p}$! if $\mathrm{k}=1$ then $\mathrm{n}(1)=1$
Now $\mathrm{p}^{(\mathrm{k})}!=1.2 \ldots . .2 \mathrm{p} \ldots .3 \mathrm{p} \ldots . \mathrm{p}^{\mathrm{k}-1} \cdot \mathrm{p}$
It is the expansion of $\mathrm{p}^{(\mathrm{k})}$!
It is also the multiplies of p .
Hence the powers of p dividing $\mathrm{p}^{(\mathrm{k})}$!
$N(k)$ must be the powers of p which divides $(p)(2 p)(3 p) \ldots \ldots\left(p^{k-1} \cdot p\right)$.
(i.e) $(p)(2 p)(3 p) \ldots \ldots . .\left(p^{k-1} \cdot p\right)=p^{i(k-1)}\left(p^{k-1} j\right)$!

But $n(k)=n(k-1)+p^{k-1}$
\& also $n(k-1)-n(k-2)=p^{k-2}$

$$
\begin{aligned}
& N(k-2)-n(k-3)=p^{k-3} \\
& n(2)-n(1)=p^{-1}(\text { i.e }) n(1)=1
\end{aligned}
$$

Adding these we get
$\mathrm{n}(\mathrm{k}) \quad=\mathrm{p}^{\mathrm{k}-1}+\mathrm{p}^{\mathrm{k}-2}+\ldots \ldots .+1$ (i.e) $\mathrm{n}(\mathrm{k})=1+\mathrm{p}+\ldots \ldots . .+\mathrm{p}^{\mathrm{k}-1}$
Hence the Lamma.

Lemma 2.12.2

$\mathrm{S}_{\mathrm{p}}{ }^{\mathrm{k}}$ has a p-sylow subgroup
proof:

If $\mathrm{k}=1$, then the element ($12 \ldots \mathrm{p}$), is s_{p} is of order p , so generated a subgroup of order p .
since $n(1)=1$, suppose that the result is correct for $k-1$
we show that, it that must follow for k.Divide the integers $1,2, \ldots, p^{k}$ into p.

$$
\left\{1,2, \ldots, p^{k-1}\right\},\left\{p^{k-1}+1, p^{k-1}+2, \ldots ., 2 p^{k-1}\right\}, \ldots .\left\{(p-1) p^{k-1}+1, \ldots p^{k}\right\}
$$

The permutation σ defined by $\sigma=\left(1, p^{k-1}+1,2 p^{k-1}+1, \ldots,(p-1) p^{k-1}+1\right) \ldots\left(j, p^{k-1}+j, 2 p^{k-1}+j, \ldots,(p-1) p^{k-}\right.$ ${ }^{1}+1, .$.
each p_{i} is isomorphic to p_{1} so has order $\mathrm{p}^{\mathrm{n}(\mathrm{k}-1)}$
$\therefore \mathrm{p}=$ sylow subgroup of $\mathrm{s}_{\mathrm{p}}{ }^{\mathrm{k}}$.

DEFINITION :

Let G be a group,A,B two subgroups of G. if, $x, y \in G$ defined $x \sim y$ if $y=a x b$ where $a \in A, b \in B$.

Lemma : 2.12.3

The relation define above is an equivalence relation of G, the equivalence class $x \in G$ is the set, $A x B=\{a x b / a \in A, b \in B\}$.

Proof:

Here the set AxB is a double coset of a, b in G. Now to prove that the relation $\mathrm{x} \sim \mathrm{y}$.
If $y=a x b, a \in A, b \in B$ is an equivalence relation.

Reflextive :

To prove $x \sim x$
$\rho_{1} \in \mathrm{~A}, \rho_{2} \in \mathrm{~B}$. We can write x as $\rho_{1} \mathrm{x} \rho_{2}$

$$
\therefore \mathrm{x} \sim \mathrm{x} .
$$

Symmetric :

Let $\mathrm{x} \sim \mathrm{y}$

To prove $: y \sim x$. Here $x \sim y, y$ can be written as $y=a x b, a \in A, b \in B$ $a^{-1} \in A, b^{-1} \in B$, Now $a^{-1} y b^{-1}=a^{-1}(a x b) b^{-1}$

$$
\begin{aligned}
& =\left(a^{-1} a\right) x\left(b b^{-1}\right) \\
& =x .
\end{aligned}
$$

$$
\therefore \mathrm{y} \sim \mathrm{x}
$$

Transtive :
Let $\mathrm{x} \sim \mathrm{y} \& \mathrm{y} \sim \mathrm{z}$
To prove : $\mathrm{x} \sim \mathrm{z}$

$$
\begin{aligned}
x \sim y \dot{\Rightarrow} y & =a_{1} \times b_{1} \\
y \sim z \dot{\Rightarrow} z & =a_{2} \times b_{2}, a_{1} a_{2} \in A, b_{1} b_{2} \in B \\
& =a_{2}\left(a_{1} \times b_{1}\right) b_{2} \\
& =\left(a_{2} a_{1}\right) \times\left(b_{1} b_{2}\right) \\
& =c_{1} \times c_{2}
\end{aligned}
$$

$$
\therefore \mathrm{x} \sim \mathrm{z} .
$$

Here the given relation is an equivalence relation.

Definition :

A subgroup of G of order p^{m} where $\mathrm{p}^{\mathrm{m}} / \mathrm{o}(\mathrm{G})$ but $\mathrm{p}^{\mathrm{m}+1} / \mathrm{o}(\mathrm{G})$ is called a p sylow subgroup of G .

Lemma:2.12.4:

If A, B are finite subgroup of G then $o(A x B)=o(A) \cdot o(B) / o\left(A \cap x B x^{-1}\right)$
proof;
Given that Gis a finite group and A, B are finite subgroups of G .
To prove that: $o(A x B)=o(a) . o(b) / o\left(A \cap x B x^{-1}\right)$
The set $x B x^{-1}$ is defined as
$x B x^{-1}=\left\{x b x^{-1} / b \in B\right\}$
first we want to p.t $\times B x^{-1}$ is a subgroup of G.

$$
\text { let } \mathrm{xb}_{1} \mathrm{x}^{-1}, \mathrm{xb}_{2} \mathrm{x}^{-1} \in \mathrm{xBx} \mathrm{x}^{-1}, \mathrm{~b}_{1}, \mathrm{~b}_{2} \in \mathrm{~B}
$$

$\operatorname{Now}\left(\mathrm{xb}_{1} \mathrm{X}^{-1}\right)\left(\mathrm{xb}_{2} \mathrm{x}^{-1}\right)=\mathrm{xb}_{1} \mathrm{X}^{-1}, \mathrm{xb}_{2} \mathrm{X}^{-1}$

$$
=\mathrm{xb}_{1}\left(\mathrm{x}^{-1} \mathrm{x}\right) \mathrm{b}_{2} \mathrm{x}^{-1}=\mathrm{xBx}{ }^{-1}\left[\therefore \mathrm{~b}_{1} \mathrm{~b}_{2} \in \mathrm{~B}\right]
$$

$\therefore \mathrm{xBx}^{-1}$ is a subgroup of G .
Here, we get A and xBx^{-1} are two finite subgroup of G .
Now, By using "First counting principle"
" If $H \& K$ are finite subgroup of G then $o(H K)=o(H) o(K) / o(H \cap K)$
we write,

$$
\begin{aligned}
o\left(A x B x^{-1}\right) & =o(A) \cdot o\left(x B x^{-1}\right) / o\left(A \cap x^{-1}\right) \\
\text { (i.e) } o\left(A x B x^{-1}\right) & =o(A) \cdot o(B) / o\left(A \cap x B x^{-1}\right)-------(1)\left[\because o\left(x B x^{-1}\right)=o(B)\right]
\end{aligned}
$$

Now to prove thato $\left(A x B x^{-1}\right)=o(A x B)$.
consider the mapping $\mathrm{f}: \mathrm{AxB} \rightarrow \mathrm{AxBx}{ }^{-1}$ such that $\mathrm{f}(\mathrm{axb})=\mathrm{axb}^{-1}$, where $\mathrm{a} \in \mathrm{A}, \mathrm{b} \in \mathrm{B}$.
To prove : f is ono-one and onto
$\mathrm{a}_{1} \mathrm{xb}_{1}, \mathrm{a}_{2} \mathrm{xb}_{2} \in \mathrm{AxB}$
To prove f is one-one and onto
$\mathrm{axb}_{1}, \mathrm{a}_{2} \mathrm{xb}_{2} \in \mathrm{AxB}$

$$
\therefore \mathrm{f}\left(\mathrm{a}_{1} \mathrm{xb}\right)=\mathrm{f}\left(\mathrm{a}_{2} \mathrm{xb}_{2}\right)
$$

$$
\mathrm{a}_{1} \mathrm{xb}_{1}=\mathrm{a}_{2} \mathrm{xb}_{2}
$$

f is one-one

Now to prove : f is onto
Let $\mathrm{axbx}^{-1} \in A x B x^{-1}$, where $a \in A, b \in B a \in a x b \in A x B$,
Here $f(a x b)=a x b x^{-1}$

Hence f is on to.

Thus there is a onto corresponding between $\mathrm{AxB} \& \mathrm{AxBx}^{-1}$

$$
\therefore \mathrm{o}(\mathrm{AxB})=\mathrm{o}\left(\mathrm{AxBx}^{-1}\right)
$$

Substituting in equation (1) we get,

$$
\begin{aligned}
& o\left(\mathrm{AxBx}^{-1}\right)=[\mathrm{o}(\mathrm{~A}) \cdot \mathrm{o}(\mathrm{~B})] / \mathrm{o}\left(\mathrm{~A} \cap \mathrm{xBx}^{-1}\right) \rightarrow 1 \\
& \mathrm{o}(\mathrm{AxB})=[\mathrm{o}(\mathrm{~A}) \cdot 0(\mathrm{~B})] / \mathrm{o}(\mathrm{~A} \cap \mathrm{xB}-1)
\end{aligned}
$$

Hence proved.

Lemma 2.12.5

Let G be a finite group and suppose that G is a subgroup of the finite group M. suppose further that M has a sylow subgroup Q . Then G has a p -sylow subgroup p .In fact, $\mathrm{p}=\mathrm{G} \cap \mathrm{xQx}{ }^{-1}$ for some $x \in M$.

Proof :

suppose that $p^{m} / o(M), p^{m+1} \nprec o(M), Q$ is a subgroup of M of order p^{m}.
Let $\mathrm{o}(\mathrm{G})=\mathrm{p}^{\mathrm{n}} \mathrm{t}$ where $\mathrm{p} \nmid \mathrm{t}$
By Lemma 2.12.4
p is a subgroup of G and has order p^{n}, the lemma is proved.

THEOREM: 2.12.2 SECOND PART OF SYLOW'S THEOREM

If G is a finite group, P is a prime and $P^{n} \mid O(G)$ but $P^{n+1} \mid O(G)$ then any two
subgroup of G order P^{n} are conjugate.

Proof:

Let A, B be subgroup of G, each of order P^{n} where $\mathrm{P}^{\mathrm{n}} \mid \mathrm{O}(\mathrm{G})$

$$
\begin{gathered}
\text { but } \mathrm{P}^{\mathrm{n}+1} \nvdash(\mathrm{O})-\cdots---(1) \\
\therefore \mathrm{O}(\mathrm{~A})=\mathrm{O}(\mathrm{~B})=\mathrm{P}^{\mathrm{n}}
\end{gathered}
$$

To prove that A and B are conjugate in G .
It is enough to prove that $\mathrm{A}=\mathrm{gBg}^{-1}$ for some $\mathrm{g} \in \mathrm{G}$.
Let if equation (1) is possible then $\mathrm{A}=\mathrm{xB} \mathrm{x}^{-1} \forall \mathrm{x} \in \mathrm{G}$

Now we decompose G into double cosets of A and B.
$\therefore \mathrm{G}$ can be written as $\mathrm{G}=\mathrm{UAxB}$

Now by using $\mathrm{O}(\mathrm{AxB})=\mathrm{O}(\mathrm{A}) \mathrm{O}(\mathrm{B})$ \qquad
$\mathrm{O}\left(\mathrm{A} \cap \mathrm{xBx}^{-1}\right)$ Here A and B are subgroups of G and $\mathrm{O}(\mathrm{A})=\mathrm{O}(\mathrm{B})=\mathrm{P}^{\mathrm{n}}$ and also $\mathrm{A} \cap \mathrm{xB} \mathrm{x}^{-1}$ is a proper subgroup of G if $\mathrm{A} \neq \mathrm{xBx}^{-1} \forall \mathrm{x} \in \mathrm{G}$

Then $\mathrm{O}\left(\mathrm{A} \cap \mathrm{xBx}^{-1}\right)=\mathrm{P}^{\mathrm{m}}$ where $\mathrm{m}<\mathrm{n}$
\therefore Equation (2) becomes $\mathrm{O}(\mathrm{AxB})=\mathrm{P}^{\mathrm{n}} \cdot \mathrm{P}^{\mathrm{m}}=\mathrm{P}^{2 \mathrm{~m}-\mathrm{n}}$

$$
\begin{aligned}
& ==>n-m>0 \\
& ==>n-m \geq 1
\end{aligned}
$$

The above relation $\mathrm{P}^{\mathrm{n}+1} \mathrm{O}(\mathrm{AxB})$ for every x .

Since, $\mathrm{O}(\mathrm{G})=\Sigma \mathrm{O}(\mathrm{AxB})$ which is a contradiction to our assumption that $\mathrm{P}^{\mathrm{n}+1} \nmid \mathrm{O}(\mathrm{G})$.

Hence $A=\mathrm{gBg}^{-1}$ for some $\mathrm{g} \in \mathrm{G}$. Hence A and B are conjugate in G.

Lemma 2.12.6

The number of p-sylow subgroups in G equals $o(G) / o(N(p))$, Where p is any p sylow subgroup of G . In particular , this number is a divisor of $\mathrm{o}(\mathrm{G})$.

Proof:

P-sylow subgroups for a given prime p , in G .

Theorem: 2.12.3 THIRD PART OF SYLOW THEOREM:

Prove that the number of p-sylow subgroups in G for a given prime is of the form $1+\mathrm{kp}$.

Proof:

Let p be a p.sylow subgroup of G

To prove that the number of p -sylow subgroup in G is of the form $1+\mathrm{kp}$ where p is a prime number .

Now, we decompose G is a double cosets of p and p.

Thus G=Upxp

By using theorem 2.12.14
$o(p x p)=[o(p) . o(p)] / o\left(p \cap x p x^{-1}\right)---------(1)$
$\mathrm{o}(\mathrm{pxp})=(\mathrm{o}(\mathrm{p}))^{2} / \mathrm{o}\left(\mathrm{p} \cap \mathrm{xpx}^{-1}\right)$

Also $\mathrm{o}(\mathrm{G})=\sum o(\mathrm{pxp})---------------------(3)[B y \mathrm{eqn}(1)]$
If $\mathrm{p} \cap\left(\mathrm{xpx}^{-1}\right) \neq \mathrm{p}$ then $\mathrm{p}^{\mathrm{n}+1} / \mathrm{o}(\mathrm{pxp} 0$
where $o(p)=p^{n}$
Also, if $x \in N(p)$
then $\mathrm{pxp}=\mathrm{p}(\mathrm{xp})$

$$
=\mathrm{p}(\mathrm{px})=(\mathrm{pp}) \mathrm{x}
$$

(i.e) $p x p=p x$.
$\therefore \mathrm{u}(\mathrm{pxp})=\mathrm{Upx}$
Since $\mathrm{p}<\mathrm{N}(\mathrm{p}), \sum_{x \in N(p)} o(\mathrm{pxp})=\mathrm{o}(\mathrm{N}(\mathrm{p})$
eqn(5) becomes
$\mathrm{o}(\mathrm{G})=\sum_{x \in N(p)} o(\mathrm{pxp})+\sum_{x \notin N(p)} o(\mathrm{pxp})-\cdots---(6)$
where each sum runs over one element from each double cosets.
If $x \notin N(p)$ then $x p x^{-1} \neq p$
$\Rightarrow \mathrm{p} \cap \mathrm{xpx}^{-1}<\mathrm{p}$
$\Rightarrow \mathrm{o}\left(\mathrm{p} \cap \mathrm{xpx}^{-1}\right) / \mathrm{o}(\mathrm{p})$
$\Rightarrow \mathrm{o}\left(\mathrm{p} \cap \mathrm{xpx}^{-1)}=\mathrm{p}^{\mathrm{m}}\right.$ where $\mathrm{m}<\mathrm{n}$
Equation (3) becomes

$$
\begin{aligned}
& o(p x p)=p^{n} p^{m} / p^{m} \text { where } m<n, \\
& o(p x p)=p^{n+(n-m)}
\end{aligned}
$$

Since $n-m>0$ and $n-m \geq 1$, if follows
That $\mathrm{p}^{\mathrm{n}+1} / \mathrm{o}(\mathrm{pxp}) \forall \mathrm{x} \notin \mathrm{N}(\mathrm{p})$
$\Rightarrow \mathrm{P}^{\mathrm{n}+1} / \sum_{x \notin N(p)} o(p x p)=\mathrm{p}^{\mathrm{n}+1} \cdot \mathrm{u}--------(7)$ for some integer u
Using (5) and (7) in equation (6) we get
$\mathrm{O}(\mathrm{G})=\mathrm{o}(\mathrm{N}(\mathrm{p}))+\mathrm{p}^{\mathrm{n}+1} . \mathrm{u}$
$\mathrm{O}(\mathrm{G})\left(\mathrm{o}(\mathrm{N}(\mathrm{p}))=1+\left[\mathrm{p}^{\mathrm{n}+1} \cdot \mathrm{u}\right] / \mathrm{o}(\mathrm{N}(\mathrm{p}))\right.$

Since $N(p)$ is subgroup of G and G is finite group
By Lagrange's theorem.
$\mathrm{o}(\mathrm{G}) / \mathrm{o}(\mathrm{N}(\mathrm{p}))$ and it is an integers.
Since p is a p-sylow's subgroup of G and by defn $p^{n} / o(G)$ and $p^{n+1} / o(G)$
Hence $\mathrm{p}^{\mathrm{n}+1}$ cannot divide $\mathrm{o}(\mathrm{N}(\mathrm{p}))$.
But, $\mathrm{p}^{\mathrm{n}+1} \cdot \mathrm{u} / \mathrm{o}(\mathrm{N}(\mathrm{p}))$ must be divisible by p .
$p^{n+1} \cdot u / o(N(p))$ is of the form k_{p}.
where k is an integers.
(i.e) $\mathrm{p}^{\mathrm{n}+1} \cdot \mathrm{u} / \mathrm{o}(\mathrm{N}(\mathrm{p}))=\mathrm{kp}$

Eqn(8) becomes,
$\mathrm{o}(\mathrm{G}) / \mathrm{o}(\mathrm{N}(\mathrm{p}))=1+\mathrm{kp}$,

Hence, the number of P - sylow's sub groups in $\mathrm{G}=1+\mathrm{kp}$.

UNIT II - FIELDS, VECTORS SPACES, MODULES
18hrs

Direct products - Finite abelian groups - Modules
Chapter 2: Sections 2.13 and 2.14 [only theorem 2.14.1]

Chapter 4: Section 4.5

2.13 DIRECT PRODUCTS

Section 2.13 GROUPS AND MODULES

Introduction

Let A and B be any two groups and consider the Cartesian product $G=A \times B$ of A and B.
G consist of all ordered pairs A, B. where $a \in B, b \in B$. In this way we define the product of $\left(a_{1}, b_{1}\right) \&\left(a_{2}, b_{2}\right)$ is $\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right)=\left(a_{1} b_{1}, a_{2} b_{2}\right)$. Now we prove the Cartesian product $G=A \times B$ is a group.
(i) Closure

Let a_{1}, b_{1} and $a_{2}, b_{2} \in A \times B=G$ Where $a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B$

Now, $\left(a_{1}, b_{1}\right) .\left(a_{2}, b_{2}\right)=\left(a_{1} a_{2} b_{1} b_{2}\right) \in G$

$$
=A \times B
$$

Therefore closure is satisfied.

(ii) Associative

Let $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right) \in G=A \times B$
Consider, $\left(a_{1}, b_{1}\right)\left[\left(a_{2}, b_{2}\right)\left(a_{3}, b_{3}\right)\right]=\left(a_{1}, b_{1}\right),\left(a_{2} a_{3}, b_{2} b_{3}\right)=\left(a_{1} a_{2} a_{3}, b_{1} b_{2} b_{3}\right)--\cdots--(1)$
Similarly

$$
\left[\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right)\right]\left(a_{3}, b_{3}\right)=\left(a_{1} a_{2}, b_{1} b_{2}\right),\left(a_{3}, b_{3}\right)=\left(a_{1} a_{2} a_{3}, b_{1} b_{2} b_{3}\right)-\cdots-\cdots(2)
$$

(iii) Identity

Let e and f be the identity elements of A and B respectively,
$\operatorname{Now}(\mathrm{a}, \mathrm{b})(\mathrm{e}, \mathrm{f})=(\mathrm{ae}, \mathrm{bf})=(\mathrm{a}, \mathrm{b})$

Also (e,f) . $(\mathrm{a}, \mathrm{b})=(\mathrm{ea}, \mathrm{fb})=(\mathrm{a}, \mathrm{b})$
(iv) Inverse

Let $\left(a_{1}, \mathrm{~b}_{1}\right),\left(a_{1}^{-1}, b_{1}{ }^{-1}\right) \in \mathrm{G}$

Now $\left(a_{1}, \mathrm{~b}_{1}\right) \cdot\left(a_{1}^{-1},{b_{1}}^{-1}\right)=\left(a_{1} a_{1}^{-1} \cdot b_{1} b_{1}^{-1}\right) \mathrm{b}$

$$
=(\mathrm{e}, \mathrm{f})
$$

Hence $G=A \times B$ is a group.

Internal direct product

Let G be a group and $N_{1}, N_{2}, N_{3} \ldots N_{n}$ be the normal subgroups of G such that,

1) $G=N_{1}, N_{2}, N_{3} \ldots N_{n}$.
2) Given $g \in G$ then $g=m_{1,} m_{2} \ldots m_{n}$ where $m_{i} \in N_{i}$ in a unique way then we can say that G is the internal direct product of $\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3} \ldots \mathrm{~N}_{\mathrm{n}}$.

Result

If G is the internal direct product of the groups A and B then G is the internal direct product of \bar{A} and \bar{B} where $\bar{A}=\{(\mathrm{a}, \mathrm{f}) / \mathrm{a} \in \mathrm{A}\}$ and $\{(\mathrm{e}, \mathrm{b}) / \mathrm{b} \in \mathrm{B}\}$. Here e and f are identity elements of A and B respectively. Also prove that, $\mathrm{A} \cong \bar{A}$ and $\mathrm{B} \cong \bar{B}$ (or)

If $\mathrm{G}=\mathrm{A} \times \mathrm{B}$ then prove that, $\mathrm{G}=\bar{A} \bar{B}$

Proof:
Given, $\mathrm{G}=\mathrm{A} \times \mathrm{B}$
Where A and B are any two groups of G
To prove that, $\mathrm{A} \cong \bar{A}$ and $\mathrm{B} \cong \bar{B}$
Define a mapping $\emptyset: \mathrm{A} \rightarrow \bar{A}$ by $\emptyset(\mathrm{a})=(\mathrm{a}, \mathrm{f})$ for all $\mathrm{a} \in \mathrm{A}$

Now to prove one to one , Let $\emptyset\left(\mathrm{a}_{1}\right)=\emptyset\left(\mathrm{a}_{2}\right)$ that is $\left(\mathrm{a}_{1}, \mathrm{f}\right)=\left(\mathrm{a}_{2}, \mathrm{f}\right) \Rightarrow \mathrm{a}_{1}=\mathrm{a}_{2}$

Therefore \varnothing is one to one.

Now to prove, \varnothing is onto
Let, $(\mathrm{a}, \mathrm{f}) \in \bar{A} \Rightarrow \mathrm{a} \in \mathrm{A}$ and f is the identity element of \bar{A}

Therefore $\emptyset(\mathrm{a})=(\mathrm{a}, \mathrm{f}), \quad$ Hence \emptyset is onto

Now to prove, \varnothing is homomorphism,

Let, $\left(a_{1}, a_{2}\right) \in A$ then (i) $\left(a_{1} a_{2}, f\right)=\left(a_{1}, f\right) \cdot\left(a_{2}, f\right)$ that is $\emptyset\left(a_{1}, a_{2}\right)=\emptyset\left(a_{1}\right) . \emptyset\left(a_{2}\right)$
(ii) $\left(a_{1+} a_{2}, f\right)=\left(a_{1}, f\right)+\left(a_{2}, f\right)$ that is $\emptyset\left(a_{1+} a_{2}\right)=\emptyset\left(a_{1}\right)+\emptyset\left(a_{2}\right)$

Therefore \emptyset is homomorphism. Hence, $\mathrm{A} \cong \bar{A}$
Similarly We can prove that $\mathrm{B} \cong \bar{B}$
Next we want to prove that G is the internal direct product of \bar{A} and \bar{B} that is to prove that,
(i) \bar{A} is the normal subgroup of G and \bar{B} is the normal subgroup of G
(ii) Every element $\mathrm{g} \in \mathrm{G}$ can be written $\mathrm{G}=\bar{a} \bar{b}$ for all $\mathrm{a} \in \mathrm{A}, \mathrm{b} \in B, \bar{a} \in \bar{A}, \bar{b} \in \bar{B}$

Now to prove \bar{A} is the normal subgroup of G , Let $(\mathrm{a}, \mathrm{f}),(\mathrm{b}, \mathrm{f}) \in \bar{A}$,
Now, $(\mathrm{a}, \mathrm{f}) \cdot(\mathrm{b}, \mathrm{f})^{-1}=(\mathrm{a}, \mathrm{f}) \cdot\left(\mathrm{b}^{-1}, \mathrm{f}\right)$
Therefore \bar{A} is a subgroup of G. since, $\bar{A} \subset \mathrm{G}=\mathrm{A} \times \mathrm{B}$ and $(\mathrm{a}, \mathrm{f}) \in \bar{A}$ that is $(\mathrm{a}, \mathrm{f}) \in \mathrm{G}$
Therefore, $\bar{A} \subset \mathrm{G}$
Let, $(\mathrm{a}, \mathrm{b}) \in \mathrm{G}$ and $(\mathrm{a}, \mathrm{f}) \in \bar{A}$
Now, $(a, b)(a, f)(a, b)^{-1}=(a, b)(a, f)\left(a^{-1} b^{-1}\right)$

$$
\begin{aligned}
& =\left(\mathrm{aaa}^{-1}, \mathrm{bfb}^{-1}\right) \\
& =\left(\mathrm{ae}, \mathrm{fbb}^{-1}\right) \\
& =(\mathrm{a}, \mathrm{f}) \in \bar{A}
\end{aligned}
$$

Therefore \bar{A} is normal subgroup of G
Similarly \bar{B} is normal subgroup of G
Hence we have an isomorphic copy \bar{A} of A and \bar{B} of B in G which is a normol subgroup of G .

Now we claim that $\mathrm{G}=\bar{A} \bar{B}$ for all $\mathrm{g} \in \mathrm{G}$ is a uniquedecomposition in the form, $\mathrm{g}=\bar{a} \bar{b}$. where, $\bar{a} \in \bar{A}, \bar{b} \in \bar{B}$

Now, $G=A \times B$
Let $\mathrm{g} \in \mathrm{G}$, then $\mathrm{g}=(\mathrm{a}, \mathrm{b})$, where $\mathrm{a} \in \mathrm{A}, \mathrm{b} \in B$

$$
=(\mathrm{a}, \mathrm{e}) .(\mathrm{f}, \mathrm{~b})
$$

Since, $(\mathrm{a}, \mathrm{e}) \in \bar{A}$ and $(\mathrm{f}, \mathrm{b}) \in \bar{B}$
Therefore $\mathrm{g}=\bar{a} \bar{b}$ with $\bar{a}=(\mathrm{a}, \mathrm{e}), \bar{b}=(\mathrm{f}, \mathrm{b})$ that is $\mathrm{g} \in \bar{A} \bar{B}$

Now to prove, this representation is unique.
Let $\mathrm{G}=\bar{x} \bar{y}$, where $\bar{x}=(\mathrm{x}, \mathrm{e})$ and $\bar{y}=(\mathrm{f}, \mathrm{y})$ then,

$$
\begin{aligned}
g & =(x, e) \cdot(f, y) \\
& =(x f, e y) \\
& =(x, y)
\end{aligned}
$$

But $\mathrm{g}=\bar{a} \bar{b}$, Therefore, $\mathrm{a}=\mathrm{x}$ and $\mathrm{b}=\mathrm{y}$
Hence G is the internal direct product of \bar{A} and \bar{B}.

Lemma 2,13.1

Suppose that G is the internal direct product of $\mathrm{N}_{1,} \mathrm{~N}_{2} \ldots \mathrm{~N}_{\mathrm{n}}$ then for $\mathrm{i} \neq \mathrm{j}, \mathrm{N}_{\mathrm{i}} \cap \mathrm{N}_{\mathrm{j}}=\{\mathrm{e}\}$ and if $a \in N_{i}, b \in N_{j}$ then $a b=b a$.

Proof:

Given that, G is the internal direct product of $N_{1,} \mathrm{~N}_{2} \ldots \mathrm{~N}_{\mathrm{n}}$.
Therefore $\mathrm{N}_{1}, \mathrm{~N}_{2} \ldots \mathrm{~N}_{\mathrm{n}}$

Where, $\mathrm{N}_{1}, \mathrm{~N}_{2} \ldots \mathrm{~N}_{\mathrm{n}}$ are normal subgroup of G .

If $g \in G$ then by definition of internal direct product of $g=m_{1,} m_{2} \ldots m_{n}$ in a unique way.

Where, $\mathrm{m}_{\mathrm{i}} \subseteq \mathrm{N}_{\mathrm{i}}$

Now to prove $\mathrm{N}_{\mathrm{i}} \cap \mathrm{N}_{\mathrm{j}}=\{\mathrm{e}\}$ for all $\mathrm{i} \neq \mathrm{j}$
Suppose that, $x \in N_{i} \cap N_{j} \Rightarrow x \in N_{i}$ and $x \in N_{j}$ then we can write ' x ' as
$x=e_{1}, e_{2} \ldots e_{i-1} X e_{i+1}+\ldots e_{j} \ldots e_{n--------(I)}$

Where $\mathrm{e}_{\mathrm{t}}=\mathrm{e}$,viewing x as an element in N_{i}.
Similarly We can write, x as $x=e_{1}, e_{2} \ldots e_{i} \ldots e_{j-1} x_{j+1} \ldots e_{n}---------(I I)$

Where $e_{t}=e$, viewing x as an element in N_{j}, But, x as a unique representation in the form $m_{1}, m_{2} \ldots m_{n}$, Where $m_{1} \in N_{1}, m_{2} \in N_{2} \ldots m_{n} \in N_{n}$

From the equations (I) and (II)

The two decomposition in these form for ' x ' must coincide, the entry from N_{i} in each must be equal. In our first decomposition(I). This entry is ' x ' in the $2{ }^{\text {nd }}$ decomposition

Hence, $x=e$, Thus $N_{i} \cap N_{j}=\{e\}$ for all $i \neq j$
Suppose $a \in N_{i}, b \in N_{j}$ and $i \neq j$ then $a b a^{-1} \in N_{j}$ and since N_{j} is the normal subgroup of G.
Thus, $\quad a b a^{-1} b^{-1} \in N_{j},\left(\right.$ since $\left.b \in N_{j}, b^{-1} \in N_{j}\right)$
Similarly, $a^{-1} \in N_{i}, b a^{-1} b^{-1} \in N_{i}$, where $a b a^{-1} b^{-1} \in N_{i}$,
But then $\mathrm{aba}^{-1} \mathrm{~b}^{-1} \in \mathrm{~N}_{\mathrm{i}} \cap \mathrm{N}_{\mathrm{j}}=\{\mathrm{e}\}$

$$
\begin{aligned}
& a b a^{-1} b^{-1}=e \\
& a b(b a)^{-1}=e \\
& a b=e(b a) \text { Hence the proof. }
\end{aligned}
$$

Lemma 2.131

Let G be a group and suppose that G is the internal direct product of $N_{1}, N_{2} \ldots N_{n}$.

Let $\mathrm{T}=\mathrm{N}_{1} \times, \mathrm{N}_{2} \times \ldots \times \mathrm{N}_{\mathrm{n}}$. then G and T are isomorphic.

Proof:

Given that, G is the group and also G is the internal direct product of $N_{1,} N_{2} \ldots N_{n}$.

Also given that, $T=N_{1} \times N_{2} \times \ldots \times N_{n}$
To prove, G and T are isomorphic. Define the mapping, $\psi: T \rightarrow G$ by $\psi\left(b_{1}, b_{2} \ldots b_{n}\right)=b_{1}, b_{2} \ldots b_{n}$ Where, each $b_{i} \in N_{i}, i=1,2, \ldots n$. We claim that ψ is the isomorphic of T onto G.

Now to Prove, ψ is one to one.
Let, $\mathrm{x}, \mathrm{y} \in \mathrm{T}$ then $\mathrm{x}=\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \mathrm{a}_{\mathrm{n}}\right)$ and $\mathrm{y}=\left(\mathrm{b}_{1}, \mathrm{~b}_{2} \ldots \mathrm{~b}_{\mathrm{n}}\right)$ such that, $\psi(\mathrm{x})=\psi(\mathrm{y})$

$$
\begin{aligned}
& \Rightarrow \psi\left(a_{1}, a_{2}, \ldots a_{n}\right)=\psi\left(b_{1}, b_{2} \ldots b_{n}\right) \\
& \Rightarrow\left(a_{1}, a_{2}, \ldots a_{n}\right)=\left(b_{1}, b_{2} \ldots b_{n}\right) \\
& \Rightarrow x_{i}=y_{i} \\
& \Rightarrow x=y
\end{aligned}
$$

Therefore ψ is one to one.

Now to prove, ψ is onto

Since,G is the internal direct product of $N_{1}, N_{2} \ldots N_{n}$ and if $x \in G$ then $x=\left(a_{1}, a_{2}, \ldots a_{n}\right)$ for some $a_{1} \in N_{1}, a_{2} \in N_{2}, \ldots a_{n} \in N_{n}$. But then,

$$
\psi\left(a_{1}, a_{2}, \ldots a_{n}\right)=a_{1}, a_{2}, \ldots a_{n}=x \text {,Therefore } \psi \text { is onto }
$$

The mapping ψ is one to one by uniqueness of the representation of every element as a product of element of the form, $N_{1}, N_{2} \ldots N_{n}$. For if, $\psi\left(a_{1}, a_{2}, \ldots a_{n}\right)=c_{1}, c_{2}, \ldots c_{n}$. Where, $a_{i} \in N_{i}, c_{i} \in N_{i}$, for i $=1,2, \ldots \mathrm{n}$.

Then by definition of $\psi, a_{1}, a_{2}, \ldots a_{n}=c_{1}, c_{2}, \ldots c_{n}$.

$$
\Rightarrow a i=c_{i}, \quad i=1,2 \ldots n .
$$

Thus ψ is one to one

Now to show that, ψ is a homomorphism of T onto G.

If $x\left(a_{1}, a_{2}, \ldots a_{n}\right), y=\left(b_{1}, b_{2} \ldots b_{n}\right)$ are the elements of T.

$$
\text { Then, } \begin{aligned}
\psi(x y) & =\psi\left[\left(a_{1}, a_{2}, \ldots a_{n}\right)\left(b_{1}, b_{2} \ldots b_{n}\right)\right] \\
& =\psi\left(a_{1} b_{1}, a_{2} b_{2}, \ldots a_{n} b_{n}\right) \\
& =a_{1} b_{1}, a_{2} b_{2}, \ldots a_{n} b_{n} \quad \text { by lemma(2.13.1) } \\
a_{i} b_{j} & =b_{j} a_{i} \text { for } i \neq j
\end{aligned}
$$

This gives, $a_{1} b_{1} \cdot a_{2} b_{2} \ldots a_{n} b n=a_{1} a_{2} \ldots a_{n}, b_{1} b_{2} \ldots b_{n}$
Therefore $\psi(x y)=a_{1} a_{2} \ldots a_{n}, b_{1} b_{2} \ldots b_{n}$

$$
\begin{aligned}
& =\left(a_{1}, a_{2}, \ldots a_{n}\right)\left(b_{1}, b_{2} \ldots b_{n}\right) \\
& =\psi(x) \cdot \psi(y)
\end{aligned}
$$

That is $\psi(x y)=\psi(x) \cdot \psi(y)$
Ψ is homomorphism.

Hence, ψ is an isomorphism of T onto G .

Therefore G and T are isomorphic.

2.14 FINITE ABELIAN GROUPS

A finite abelian group is a group satisfying the following equivalent conditions.
(i) It is isomorphic to a direct product of finitely many finite cyclic groups.
(ii) It is isomorphic to a direct product of abelian groups of prime power order.
(iii) It is isomorphic to a direct product of cyclic groups of prime power order.

Theorem 2.14.1

Statement

Every finite abelian group is the direct product of cyclic groups

Proof:

Every finite abelian group G is finitely generated

Hence it is generated by the finite set consisting of all its elements.
Therefore Applying this theorem,
Let R be a Euclidean Ring, then any finitely generated R -Module, M is the direct sum of the finite number of cyclic sub-modules.

Proof:

Let M be the finitely generated R-Module. To prove that the theorem for ring of integers. Since the ring of integers is also a Euclidean ring. Hence we assume that M is an abelian group which has a finite generating set.

Now we prove the theorem by the induction on the rank of M .
Step-1: If the rank of M is one. Then M is generated has a single element.
$\therefore \mathrm{M}$ is cyclic, Hence the theorem is proved for rank one.
Step-2: Let us assume that the theorem is proved for all abelian group of rank less than q .
That is the result is true for all abelian groups of rank for $\mathrm{r}-1$, Hence any R -Module where rank is $\mathrm{q}-1$ is the direct sum of finite number of cyclic sub-module.

Step-3: Now we prove the theorem for rank $M=q$. Let $a_{1}, a_{2} \ldots . a_{q}$ be the minimal generating set of M. If any relation of the form $r_{1} a_{1}+r_{2} a_{2}+\ldots .+r_{q} a_{q}=0$. Where $r_{1}, r_{2} \ldots r_{q}$ are integers then $r_{1} a_{1}=0, r_{2} a_{2}=$ $0 \ldots . \mathrm{r}_{\mathrm{q}} \mathrm{a}_{\mathrm{q}}=0$. Hence M is the direct sum of $\mathrm{M}_{1}, \mathrm{M}_{2} \ldots \mathrm{M}_{\mathrm{q}}$, where each M_{i} is the cyclic subModule generated by a_{i}.

Step-4: Let us assume that given any minimal generating set $b_{1}, b_{2} \ldots b_{q}$ of M must be integers r_{1}, $r_{2} \ldots . r_{q}$ such that $r_{1} b_{1}+r_{2} b_{2}+\ldots+r_{q} b_{q}=0$ and in which not all $r_{1} a_{1}, r_{2} a_{2}, \ldots, r_{q} a_{q}$ are zero.

Among all possible such relations for all minimal generating set, there is a smallest possible +ve integers occurring as coefficient. Let this integer be s_{1} and let the generating set for which if occurs be $\mathrm{a}_{1}, \mathrm{a}_{2} \ldots . \mathrm{a}_{\mathrm{q}}$ thus $\mathrm{s}_{1} \mathrm{a}_{1}+\mathrm{s}_{2} \mathrm{a}_{2}+\ldots .+\mathrm{s}_{\mathrm{q}} \mathrm{a}_{\mathrm{q}}=0 .------(1)$

We claim that if $r_{1} a_{1}+r_{2} a_{2}+\ldots+r_{q} a_{q}=0$. \qquad
if not $r_{1}=\mathrm{ms}_{1}+\mathrm{t}----------(3)$ where $0 \leq t \leq s_{1}$.
Now (1) multiplying by m and subtracting from eqn. (2) we get
(2)-(1) $\mathrm{Xm} \Rightarrow\left(\mathrm{r}_{1}-\mathrm{ms}_{1}\right) \mathrm{a}_{1}+\ldots \ldots+\left(\mathrm{r}_{\mathrm{q}}-\mathrm{ms}_{\mathrm{q}}\right) \mathrm{a}_{\mathrm{q}}=0$.

That is $\mathrm{ta}_{1}+\left(\mathrm{r}_{2}-\mathrm{ms}_{2}\right) \mathrm{a}_{2}+\ldots \ldots+\left(\mathrm{r}_{\mathrm{q}}-\mathrm{ms}_{q}\right) \mathrm{a}_{\mathrm{q}}=0$. Since $\mathrm{t}<\mathrm{s}_{1}$ and s_{1} is the smallest possible +ve integer in such a relation. We must have $\mathrm{t}=0$.
\therefore eqn.(3) becomes $\mathrm{r}_{1}=\mathrm{ms}_{1}$, therefore $\mathrm{s}_{1} / \mathrm{n}$.
Now we claim that $\mathrm{s}_{1} / \mathrm{s}_{\mathrm{i}}$ for $\mathrm{I}=1,2 \ldots . \mathrm{q}$
Suppose not then s_{1} does not divide s_{2}, therefore $\mathrm{s}_{2}=\mathrm{m}_{2} \mathrm{~s}_{1}+\mathrm{t}--------(\mathrm{A})$, where $0 \leq \mathrm{t}<\mathrm{s}_{1}$.
Now $a_{1}{ }^{1}=a_{1}+m_{2} a_{2}, a_{2}, a_{3}, \ldots a_{q}$ is also generated by m. Hence we have from eqn. (1)
$\mathrm{s}_{1} \mathrm{a}_{1}+\mathrm{s}_{2} \mathrm{a}_{2}+\ldots .+\mathrm{s}_{\mathrm{q}} \mathrm{a}_{\mathrm{q}}=0$
i.e., $s_{1}\left(a_{1}{ }^{1}-m_{2} a_{2}\right)+s_{2} a_{2}+\ldots .+s_{q} a_{q}=0$
i.e., $\mathrm{s}_{1} \mathrm{a}_{1}{ }^{1}-\mathrm{s}_{1} \mathrm{~m}_{2} \mathrm{a}_{2}+\mathrm{s}_{2} \mathrm{a}_{2}+\ldots . .+\mathrm{s}_{\mathrm{q}} \mathrm{a}_{\mathrm{q}}=0$
i.e., $\mathrm{s}_{1} \mathrm{a}_{1}{ }^{1}-\left(\mathrm{s}_{2}-\mathrm{s}_{1} \mathrm{~m}_{2}\right) \mathrm{a}_{2}+\ldots+\mathrm{s}_{\mathrm{q}} \mathrm{a}_{\mathrm{q}}=0$
i.e., $\mathrm{s}_{1} \mathrm{a}_{1}{ }^{1}+\mathrm{ta}_{2}+\ldots \ldots+\mathrm{s}_{\mathrm{q}} \mathrm{a}_{\mathrm{q}}=0$ (by using (4))

Thus t occurs us a coefficient in some relation among elements of a minimal generating set. \therefore
By the very choice of s_{1} that $t=0$. Hence $s_{2}=m_{2} s_{1} \Rightarrow s_{1} / s_{2}$.
Similarly for the other s_{i}, hence we write $\mathrm{s}_{\mathrm{i}}=\mathrm{ms}_{1}$ and also $\mathrm{s}_{1} / \mathrm{s}_{\mathrm{i}}, \mathrm{i}=1,2,3 \ldots \mathrm{q}$
Consider the elements $a_{1}{ }^{*}=a_{1}+m_{2} a_{2}+m_{3} a_{3}+\ldots .+m_{q} a_{q}, a_{2}, \ldots, a_{q}$ where $a_{2}, a_{3}, \ldots, a_{q}$ generate M.
Moreover, $\mathrm{s}_{1} \mathrm{a}_{1}{ }^{*}=\mathrm{s}_{1} \mathrm{a}_{1}+\mathrm{s}_{1} \mathrm{~m}_{2} \mathrm{a}_{2}+\mathrm{s}_{1} \mathrm{~m}_{3} \mathrm{a}_{3}+\ldots .+\mathrm{s}_{1} \mathrm{~m}_{\mathrm{q}} \mathrm{a}_{\mathrm{q}}=\mathrm{s}_{1} \mathrm{a}_{1}+\mathrm{s}_{2} \mathrm{a}_{2}+\ldots .+\mathrm{s}_{\mathrm{q}} \mathrm{a}_{\mathrm{q}}$.

If $r_{1} a_{1}{ }^{*}+r_{2} a_{2}+\ldots . .+r_{q} a_{q}=0$. Substitute for $a_{1}{ }^{*}$, we get
$\mathrm{r}_{1}\left(\mathrm{a}_{1}+\mathrm{m}_{2} \mathrm{a}_{2}+\mathrm{m}_{3} \mathrm{a}_{3}+\ldots .+\mathrm{m}_{\mathrm{q}} \mathrm{a}_{\mathrm{q}}\right)+\mathrm{r}_{2} \mathrm{a}_{2}+\ldots . .+\mathrm{r}_{\mathrm{q}} \mathrm{a}_{\mathrm{q}}=0 . \mathrm{r}_{1} \mathrm{a}_{1}+\left(\mathrm{r}_{1} \mathrm{~m}_{2}+\mathrm{r}_{2}\right) \mathrm{a}_{2}+\ldots . .+\left(\mathrm{r}_{1} \mathrm{~m}_{\mathrm{q}}+\mathrm{r}_{\mathrm{q}}\right) \mathrm{a}_{\mathrm{q}}=0$.
Therefore the coefficient of a_{1} is r_{1}, hence $r_{1} a_{1}{ }^{*}=0$.
If M_{1} is the cyclic sub-module generated by $\mathrm{a}_{1}{ }^{*}$ and M_{2} is the sub-module of M generated by a_{2}, a_{3}, \ldots, a_{q}. We have $M_{1} \cup M_{2}=\{e\}$ and $M_{1}+M_{2}=M$. since $a_{1}{ }^{*}, a_{2}, a_{3}, \ldots, a_{q}$ generate M and M is the direct sum of M_{1} and M_{2}. Since M_{2} is the sub-module generated by $a_{2}, a_{3}, \ldots, a_{q}$ and its rank is atmost $\mathrm{q}-1$. Hence by induction hypothesis M_{2} is the direct sum of cyclic sub-modules.

Since M_{1} is the cyclic sub-modules generated by $\mathrm{a}_{1}{ }^{*}$ and hence M is the direct sum of cyclic sub-modules $\mathrm{M}_{1} \& \mathrm{M}_{2}$ whose rank is q . Now the proof can be modified to the Euclidean ring R as follows. Instead of taking s_{1}, let us take the elements of the ring R, whose value is maximal and whenever we take of t , where $\mathrm{r}_{1}=\mathrm{ms}_{1}+\mathrm{t}$ either $\mathrm{t}=0$ or $\mathrm{d}(\mathrm{t})<\mathrm{d}(\mathrm{s})$

Hence the Euclidean ring R-Module is the direct sum of finite number of cyclic sub-module.
We get any finite abelian group is the direct product of cyclic group.

Section 4.5

Modules

Let R be any ring. A non-empty set M is said to be an R -Module over R . If M is an abelian group under the operation ' + ' such that for every $\mathrm{r} \in R, \mathrm{~m} \in M$ there exist an element rm in M subject to
(i) $\quad r(a+b)=r(a)+r(b)$
(ii) $\mathrm{r}(\mathrm{sa})=(\mathrm{rs}) \mathrm{a}$
(iii) $(r+s) a=r a+s a \quad$ for all $a, b \in M, r, s \in R$

Unital R-Module:

If R has a unit element one and if $1 . \mathrm{m}=\mathrm{m}$ for every element m in M . Then M is called a unital R-Module.

Definition:

An additive subgroup A of the R -Module is called sub-module of M , if whenever $\mathrm{r} \in R, \mathrm{a} \in A$, $\mathrm{ra} \in A$.

Examples:

(i) Every abelian group G is a module over the ring of integers.
(ii) Let R be any ring and let M be the left idle of R . Then M is an R -Module.

Definition:

If M is an R -Module and if $\mathrm{M}_{1}, \mathrm{M}_{2}, \ldots . \mathrm{M}_{\mathrm{s}}$ are the sub-module of M , then M is said to be the direct sum of $\mathrm{M}_{1}, \mathrm{M}_{2}, \ldots . \mathrm{M}_{\mathrm{s}}$
i.e., $\mathrm{M}=\mathrm{M}_{1} \oplus \mathrm{M}_{2} \oplus \ldots \oplus \mathrm{M}_{\mathrm{s}}$, if every element $\mathrm{m} \in M$ can be written in a unique manner as $\mathrm{m}_{1}+\mathrm{m}_{2}+\ldots .+\mathrm{m}_{\mathrm{s}}$, where $\mathrm{m}_{1} \in \mathrm{M}_{1}, \mathrm{~m}_{2} \in \mathrm{M}_{2} \ldots . . \mathrm{m}_{\mathrm{s}} \in \mathrm{M}_{\mathrm{s}}$.

Definition:

An R-Module is said to be cyclic if there is an element $m_{0} \in M$, such that every $m \in M$ is of the form $\mathrm{m}=\mathrm{rm}_{0}$ where $\mathrm{r} \in R$.

Definition:

An R-Module is said to be finitely generated if there exist elements $a_{1}, a_{2}, \ldots . . a_{n} \in M$, such that every M is of the form $r_{1} a_{1}+r_{2} a_{2}+\ldots .+r_{n} a_{n}$.

Definition:

If M is finitely generated R -Module. Then a generating set having a few elements as possible is called the minimal generating set.

Definition:

The number of elements in a minimal generating set is called rank of M.

Result:

Prove that the intersection of two sub-Modules is again a Sub-Module.

Proof:

Let M be an R -Module and s_{1} and s_{2} be the sub-modules of M .

To prove that $s_{1} \cap s_{2}$ is a subset of M, we have, $s_{1} \cap s_{2} \neq \emptyset$.

We know that $\mathrm{s}_{1} \cap \mathrm{~s}_{2}$ is a additive subgroup of M . (since the number of two subgroups is again a subgroup)

Let $a, b \in s_{1} \cap s_{2} \Rightarrow a \in s_{1}, a \in s_{2}$ and $b \in s_{1}, b \in s_{2}$.

Therefore $(a, b) \in s_{1} \cap s_{2}$

Therefore $\left(s_{1},+\right) \&\left(s_{2},+\right)$ is a additive subgroup.

Let $r \in R$ and $s \in s_{1} \cap s_{2} \Rightarrow r \in R$ and $s \in s_{1}$ and $s \in s_{2}$.
$\Rightarrow \mathrm{rs} \in \mathrm{s}_{1}$ and $\mathrm{rs} \in \mathrm{s}_{2}$.
$\Rightarrow \mathrm{rs} \in \mathrm{s}_{1} \cap \mathrm{~s}_{2}$, Therefore $\mathrm{s}_{1} \cap \mathrm{~s}_{2}$ is sub-module.

Theorem:4.5.1: Fundamental theorem on finitely generated R-Module.

Let R be a Euclidean Ring, then any finitely generated R -Module, M is the direct sum of the finite number of cyclic sub-modules.

Proof:

Let M be the finitely generated R-Module. To prove that the theorem for ring of integers. Since the ring of integers is also a Euclidean ring. Hence we assume that M is an abelian group which has a finite generating set.

Now we prove the theorem by the induction on the rank of M .

Step-1: If the rank of M is one. Then M is generated has a single element.
$\therefore \mathrm{M}$ is cyclic, Hence the theorem is proved for rank one.

Step-2: Let us assume that the theorem is proved for all abelian group of rank less than q .

That is the result is true for all abelian groups of rank for $\mathrm{r}-1$, Hence any R-Module where rank is $\mathrm{q}-1$ is the direct sum of finite number of cyclic sub-module.

Step-3: Now we prove the theorem for rank $M=q$. Let $a_{1}, a_{2} \ldots . a_{q}$ be the minimal generating set of M. If any relation of the form $r_{1} a_{1}+r_{2} a_{2}+\ldots .+r_{q} a_{q}=0$. Where $r_{1}, r_{2} \ldots r_{q}$ are integers then $r_{1} a_{1}=0, r_{2} a_{2}=$ $0 \ldots . \mathrm{r}_{\mathrm{q}} \mathrm{a}_{\mathrm{q}}=0$. Hence M is the direct sum of $\mathrm{M}_{1}, \mathrm{M}_{2} \ldots \mathrm{M}_{\mathrm{q}}$, where each M_{i} is the cyclic subModule generated by a_{i}.

Step-4: Let us assume that given any minimal generating set $b_{1}, b_{2} \ldots b_{q}$ of M must be integers r_{1}, $r_{2} \ldots . r_{q}$ such that $r_{1} b_{1}+r_{2} b_{2}+\ldots+r_{q} b_{q}=0$ and in which not all $r_{1} a_{1}, r_{2} a_{2}, \ldots, r_{q} a_{q}$ are zero.

Among all possible such relations for all minimal generating set, there is a smallest possible +ve integers occurring as coefficient. Let this integer be s_{1} and let the generating set for which if occurs be $\mathrm{a}_{1}, \mathrm{a}_{2} \ldots . \mathrm{a}_{\mathrm{q}}$ thus $\mathrm{s}_{1} \mathrm{a}_{1}+\mathrm{s}_{2} \mathrm{a}_{2}+\ldots .+\mathrm{s}_{\mathrm{q}} \mathrm{a}_{\mathrm{q}}=0 .-\cdots----(1)$

We claim that if $\mathrm{r}_{1} \mathrm{a}_{1}+\mathrm{r}_{2} \mathrm{a}_{2}+\ldots+\mathrm{r}_{\mathrm{q}} \mathrm{a}_{\mathrm{q}}=0$.
if not $r_{1}=\mathrm{ms}_{1}+\mathrm{t}----------(3)$ where $0 \leq \mathrm{t} \leq \mathrm{s}_{1}$.

Now (1) multiplying by m and subtracting from eqn. (2) we get
(2)-(1) $\mathrm{Xm} \Rightarrow\left(\mathrm{r}_{1}-\mathrm{ms}_{1}\right) \mathrm{a}_{1}+\ldots \ldots+\left(\mathrm{r}_{\mathrm{q}}-\mathrm{ms}_{\mathrm{q}}\right) \mathrm{a}_{\mathrm{q}}=0$.

That is $\mathrm{ta}_{1}+\left(\mathrm{r}_{2}-\mathrm{ms}_{2}\right) \mathrm{a}_{2}+\ldots \ldots+\left(\mathrm{r}_{\mathrm{q}}-\mathrm{ms}_{q}\right) \mathrm{a}_{\mathrm{q}}=0$. Since $\mathrm{t}<\mathrm{s}_{1}$ and s_{1} is the smallest possible +ve integer in such a relation. We must have $\mathrm{t}=0$.
\therefore eqn.(3) becomes $\mathrm{r}_{1}=\mathrm{ms}_{1}$, therefore $\mathrm{s}_{1} / \mathrm{n}$.
Now we claim that $\mathrm{s}_{1} / \mathrm{s}_{\mathrm{i}}$ for $\mathrm{I}=1,2 \ldots \mathrm{q}$

Suppose not then s_{1} does not divide s_{2}, therefore $\mathrm{s}_{2}=\mathrm{m}_{2} \mathrm{~s}_{1}+\mathrm{t}-------(\mathrm{A})$, where $0 \leq \mathrm{t}<\mathrm{s}_{1}$.
Now $a_{1}{ }^{1}=a_{1}+m_{2} a_{2}, a_{2}, a_{3}, \ldots . a_{q}$ is also generated by m. Hence we have from eqn. (1)
$\mathrm{s}_{1} \mathrm{a}_{1}+\mathrm{s}_{2} \mathrm{a}_{2}+\ldots .+\mathrm{s}_{\mathrm{q}} \mathrm{a}_{\mathrm{q}}=0$
i.e., $\mathrm{s}_{1}\left(\mathrm{a}_{1}{ }^{1}-\mathrm{m}_{2} \mathrm{a}_{2}\right)+\mathrm{s}_{2} \mathrm{a}_{2}+\ldots .+\mathrm{s}_{\mathrm{q}} \mathrm{a}_{\mathrm{q}}=0$
i.e., $s_{1} a_{1}{ }^{1}-s_{1} m_{2} a_{2}+s_{2} a_{2}+\ldots . .+s_{q} a_{q}=0$
i.e., $\mathrm{s}_{1} \mathrm{a}_{1}{ }^{1}-\left(\mathrm{s}_{2}-\mathrm{s}_{1} \mathrm{~m}_{2}\right) \mathrm{a}_{2}+\ldots .+\mathrm{s}_{\mathrm{q}} \mathrm{a}_{\mathrm{q}}=0$
i.e., $\mathrm{s}_{1} \mathrm{a}_{1}{ }^{1}+\mathrm{ta}_{2}+\ldots \ldots+\mathrm{s}_{\mathrm{q}} \mathrm{a}_{\mathrm{q}}=0$ (by using (4))

Thus t occurs us a coefficient in some relation among elements of a minimal generating set. \therefore By the very choice of s_{1} that $\mathrm{t}=0$. Hence $\mathrm{s}_{2}=\mathrm{m}_{2} \mathrm{~s}_{1} \Rightarrow \mathrm{~s}_{1} / \mathrm{s}_{2}$.

Similarly for the other s_{i}, hence we write $\mathrm{s}_{\mathrm{i}}=\mathrm{ms}_{1}$ and also $\mathrm{s}_{1} / \mathrm{s}_{\mathrm{i}}, \mathrm{i}=1,2,3 \ldots \mathrm{q}$
Consider the elements $a_{1}{ }^{*}=a_{1}+m_{2} a_{2}+m_{3} a_{3}+\ldots+m_{q} a_{q}, a_{2}, \ldots, a_{q}$ where $a_{2}, a_{3}, \ldots, a_{q}$ generate M.
Moreover, $\mathrm{s}_{1} \mathrm{a}_{1}{ }^{*}=\mathrm{s}_{1} \mathrm{a}_{1}+\mathrm{s}_{1} \mathrm{~m}_{2} \mathrm{a}_{2}+\mathrm{s}_{1} \mathrm{~m}_{3} \mathrm{a}_{3}+\ldots .+\mathrm{s}_{1} \mathrm{~m}_{\mathrm{q}} \mathrm{a}_{\mathrm{q}}=\mathrm{s}_{1} \mathrm{a}_{1}+\mathrm{s}_{2} \mathrm{a}_{2}+\ldots .+\mathrm{s}_{\mathrm{q}} \mathrm{a}_{\mathrm{q}}$.
If $r_{1} a_{1}{ }^{*}+r_{2} a_{2}+\ldots . .+r_{q} a_{q}=0$. Substitute for $a_{1}{ }^{*}$, we get
$\mathrm{r}_{1}\left(\mathrm{a}_{1}+\mathrm{m}_{2} \mathrm{a}_{2}+\mathrm{m}_{3} \mathrm{a}_{3}+\ldots .+\mathrm{m}_{\mathrm{q}} \mathrm{a}_{\mathrm{q}}\right)+\mathrm{r}_{2} \mathrm{a}_{2}+\ldots . .+\mathrm{r}_{\mathrm{q}} \mathrm{a}_{\mathrm{q}}=0 . \mathrm{r}_{1} \mathrm{a}_{1}+\left(\mathrm{r}_{1} \mathrm{~m}_{2}+\mathrm{r}_{2}\right) \mathrm{a}_{2}+\ldots . .+\left(\mathrm{r}_{1} \mathrm{~m}_{\mathrm{q}}+\mathrm{r}_{\mathrm{q}}\right) \mathrm{a}_{\mathrm{q}}=0$.
Therefore the coefficient of a_{1} is r_{1}, hence $r_{1} a_{1}{ }^{*}=0$.
If M_{1} is the cyclic sub-module generated by $a_{1}{ }^{*}$ and M_{2} is the sub-module of M generated by a_{2}, a_{3}, \ldots, a_{q}. We have $M_{1} \cup M_{2}=\{e\}$ and $M_{1}+M_{2}=M$. since $a_{1}{ }^{*}, a_{2}, a_{3}, \ldots, a_{q}$ generate M and M is the direct sum of M_{1} and M_{2}. Since M_{2} is the sub-module generated by $a_{2}, a_{3}, \ldots, a_{q}$ and its rank is atmost $\mathrm{q}-1$. Hence by induction hypothesis M_{2} is the direct sum of cyclic sub-modules.

Since M_{1} is the cyclic sub-modules generated by $\mathrm{a}_{1}{ }^{*}$ and hence M is the direct sum of cyclic sub-modules $\mathrm{M}_{1} \& \mathrm{M}_{2}$ whose rank is q . Now the proof can be modified to the Euclidean ring R as follows. Instead of taking s_{1}, let us take the elements of the ring R, whose value is maximal and whenever we take of t , where $\mathrm{r}_{1}=\mathrm{ms}_{1}+\mathrm{t}$ either $\mathrm{t}=0$ or $\mathrm{d}(\mathrm{t})<\mathrm{d}(\mathrm{s})$

Hence the Euclidean ring R-Module is the direct sum of finite number of cyclic sub-module.

Corollary: Fundamental theorem on finite abelian groups:

Statement:

Any finite abelian group is the direct product of cyclic groups.

Proof:

Every finite abelian group G is finitely generated. Hence it is generated by the finite set consisting of all its elements. Therefore applying the theorem of Fundamental theorem on finitely generated R-Module. Hence Any finite abelian group is the direct product of cyclic groups.

Solvability by Radicals - Galois groups over the Rationals

Chapter 5: Sections: 5.7 and 5.8

5.7 Solvability by radicals:

Solvable:

A graph G is said to be solvable if we can find a finite chain of subgroups $N_{0} \supset N_{1} \supset N_{2} \ldots$ $\supset \mathrm{N}_{\mathrm{k}}=\{\mathrm{e}\}$ where N_{i} is a normal subgroup of $\mathrm{N}_{\mathrm{i}-1}$ and such that every factor group $\frac{N_{i-1}}{N_{i}}$ is abelian.

Result:

Prove that abelian group is solvable.

Proof:

Let G be am abelian group. To prove that G is solvable.
We take $N_{0}=G$ and $N_{1}=\{e\}$ such that $G=N_{0} \supset N_{1}=\{e\}$. To prove N_{1} is a normal subgroup $N_{0}=$ G. Let $\mathrm{g} \in \mathrm{G}$, Now $\mathrm{geg}^{-1}=\left(\mathrm{gg}^{-1}\right) \mathrm{e}=\mathrm{ee}=\mathrm{e} \in \mathrm{G}$. Therefore $\mathrm{gg}^{-1} \in \mathrm{~N}_{1}$.

Hence N_{1} is a normal subgroup of $\mathrm{N}_{0}=\mathrm{G}$. Now to prove $\frac{N_{0}}{N_{1}}$ is abelian. Here the factor group $\frac{N_{0}}{N_{1}}=$ $\frac{G}{\{e\}}=\{e x=x e / x \in G\}$. Since G is abelian, $\frac{N_{0}}{N_{1}}$ is abelian. Hence G is solvable.

Every abelian is solvable.

Definition:

Let G be a group and the elements $\mathrm{a}, \mathrm{b} \in \mathrm{G}$, then the commutator of a and bis the elements $a^{-1}, b^{-1}, a b$.

Definition:

The commutator subgroup G'of G is the subgroup of G generated by all the commutators in G.

Result:

Prove that the commutator subgroup G^{\prime} is a subgroup of G .

Proof:

Let G be a group and $S=\left\{a^{-1} b^{-1} a b\right.$ such that $\left.a, b \in G\right\}$ the commutator subgroup
$G^{\prime}=\left\{S_{1}, S_{2} \ldots S_{m} / S_{i} \in G\right\}, M$ is arbitrary. Let $s \in S$ then $S=a^{-1} b^{-1}$ ab for some $a, b \in G$.
Consider $\left(a^{-1} b^{-1} a b\right)^{-1}=b^{-1} a^{-1}$ ba $\in S$
No to prove G^{\prime} is a subgroup of G, Let $x, y \in G^{\prime}$ then $x=S_{1}, S_{2} \ldots . S_{m}, S_{i} \in S$, m is arbitrary and $\mathrm{y}=\mathrm{S}_{1}{ }^{\prime}, \mathrm{S}_{2}{ }^{\prime} \ldots . \mathrm{S}_{\mathrm{n}}{ }^{\prime}, \mathrm{S}_{\mathrm{i}}{ }^{\prime} \in \mathrm{S}, \mathrm{n}$ is arbitrary.

Consider, $\mathrm{xy}^{-1}=\left(\mathrm{S}_{1}, \mathrm{~S}_{2} \ldots . \mathrm{S}_{\mathrm{m}}\right)\left(\mathrm{S}_{1}{ }^{\prime}, \mathrm{S}_{2}{ }^{\prime} \ldots . \mathrm{S}_{\mathrm{n}}{ }^{\prime}\right)^{-1}=\left(\mathrm{S}_{1}, \mathrm{~S}_{2} \ldots . \mathrm{S}_{\mathrm{m}}\right)\left(\mathrm{S}_{1}{ }^{,-1}, \mathrm{~S}_{2}{ }^{,-1} \ldots \mathrm{~S}_{\mathrm{n}}{ }^{,-1}\right)$
Therefore xy^{-1} is a finite product of finite number of elements of S .
Therefore xy^{-1} is a finite product of finite number of elements of G.
$\therefore \mathrm{xy}^{-1} \in \mathrm{G}^{\prime}$, Hence G^{\prime} is a subgroup of G .

Result:

Prove that the commutator subgroup G^{\prime} is a normal subgroup of G.

Proof:

Let G be a group and G^{\prime} be the commutator subgroup of G. Let $x \in G$ and $a \in G^{\prime}$
Consider, $\operatorname{xax}^{-1}=\left(\operatorname{xax}^{-1}\right)\left(\mathrm{a}^{-1} \mathrm{a}\right)$

$$
=\left(\operatorname{xax}^{-1} \mathrm{a}^{-1}\right) \mathrm{a} \in \mathrm{G}^{\prime}
$$

By lemma(1), $x^{-1} a^{-1} \in S$ and $s \in G^{\prime}$
Hence G^{\prime} is a normal subgroup of G.

Result:

Let G be a group and G^{\prime} be a commutator subgroup of G, then
(i) G / G^{\prime} is abelian
(ii)If H is any normal subgroup of G such that G / H is a abelian than $\mathrm{G}^{\prime} \mathrm{CH}$.

Proof:

Given G is a group and G^{\prime} is the commutator subgroup of G.
i) To prove: G / G^{\prime} is abelian. since G^{\prime} is normal in $G, G / G^{\prime}$ is a factor group and G / G^{\prime} : $\left\{\mathrm{aG}^{\prime} / \mathrm{a} \in \mathrm{G}\right\}$.

Let $\mathrm{aG}^{\prime}, \mathrm{bG}^{\prime} \in \frac{G}{G^{\prime}}$, where $\mathrm{a}, \mathrm{b} \in \mathrm{G}$

Now, $\mathrm{aG}^{\prime} . \mathrm{bG}^{\prime}=\mathrm{abG}{ }^{\prime}, \mathrm{bG}^{\prime} \cdot \mathrm{aG}^{\prime}=\mathrm{baG}^{\prime}$
Now consider $(\mathrm{ab})^{-1} \mathrm{ba} \in \mathrm{G}^{\prime}$

$$
(\mathrm{ab})^{-1} \mathrm{ba} \mathrm{G}^{\prime}=\mathrm{G}^{\prime} \rightarrow \mathrm{baG}^{\prime}=\mathrm{G}^{\prime}(\mathrm{ab}) \rightarrow \mathrm{baG}^{\prime}=\mathrm{abG}
$$

Therefore $\mathrm{bG}^{\prime} \cdot \mathrm{aG}^{\prime}=\mathrm{aG}^{\prime} . \mathrm{bG}^{\prime}$
Hence G/G' is abelian.
ii) Let G / H is a abelian

To prove G' $\subset \mathrm{H}$
since G / H is a abelian
$\mathrm{aH} . \mathrm{bH}=\mathrm{bH} \cdot \mathrm{aH} \rightarrow \mathrm{abH}=\mathrm{baH} \rightarrow(\mathrm{ba})^{-1}(\mathrm{ab}) \mathrm{H}=\mathrm{H}$
$\rightarrow(\mathrm{ba})^{-1}(\mathrm{ab}) \mathrm{H} \in \mathrm{H}$
$\therefore a^{-1} b^{-1} a b \in H$
therefore H contains all the elements of the form $\mathrm{a}^{-1} \mathrm{~b}^{-1} \mathrm{a}$.
Hence G' $\subset H$.

Lemma-5.7.1:

G is solvable $\leftrightarrow G^{(k)}=\{e\}$ for some integer k.

Proof:

Necessary part:

Let $G^{(k)}=\{\mathrm{e}\}$
To prove G is solvable
Let $\mathrm{N}_{0}=\mathrm{G}, \mathrm{N}_{1}=\mathrm{G}^{1}, \mathrm{~N}_{2}=\mathrm{G}^{(2)} \ldots . . \mathrm{N}_{\mathrm{k}}=\mathrm{G}^{(\mathrm{k})}=\{\mathrm{e}\}$ we have $\mathrm{G}=\mathrm{N}_{0} \subset \mathrm{~N}_{1} \subset \mathrm{~N}_{2} \ldots \ldots \subset \mathrm{~N}_{\mathrm{k}}=\{\mathrm{e}\}$
where each N_{i} is normal in G . By lemma (2) $\mathrm{G}^{(\mathrm{i}+1)}$ is a normal subgroup of $\mathrm{G}^{(\mathrm{i})}$. Therefore $\frac{N_{i+1}}{N_{i}}$ $=\frac{G^{(i-1)}}{G^{(i)}}=\frac{G^{(i-1)}}{G^{(i-1)^{1}}}$

By lemma $3, \frac{G^{(i)}}{G^{(i+1)}}$ is an abelian group.
Hence G is solvable.

Sufficient part:

Let G be a solvable group, To prove $G^{(k)}=\{\mathrm{e}\}$
Since G is solvable there exist a chain $G=N_{0} C N_{1} C N_{2} \ldots . . C N_{k}=\{e\}$ and N_{i} is a normal subgroup $\mathrm{N}_{\mathrm{i}-1}$ and also $\frac{N_{i-1}}{N_{i}}$ is abelian. But then commutator subgroup $\left(\mathrm{N}_{\mathrm{i}-1}\right)$ ' must be contained in N_{i}.
i.e., $\mathrm{N}_{\mathrm{i}-1} \subset \mathrm{~N}_{\mathrm{i}}$.

Thus, $\mathrm{N}_{\mathrm{i}} \sqsupset \mathrm{N}_{0}$,
$\mathrm{N}_{2} \supset \mathrm{~N}_{1}{ }^{\prime}=\left(\mathrm{G}^{\prime}\right)^{\prime}=\mathrm{G}^{(2)} \ldots \ldots \mathrm{N}_{\mathrm{k}} \quad \supset \mathrm{N}_{\mathrm{k}-1}=\mathrm{G}^{(\mathrm{k})}--\cdots---(1)$
Also $\mathrm{N}_{\mathrm{k}}=\{\mathrm{e}\}$ Eqn (1) which implies $\mathrm{G}^{(\mathrm{k})}=\{\mathrm{e}\}$.
Hence the theorem.

Corollary:

If G is a solvable group and \bar{G} is homomorphism image of G , then \bar{G} is solvable. Prove that homomorphic image of solvable group is solvable.

Proof:

Let $\emptyset: \mathrm{G} \rightarrow \bar{G}$ be a onto homomorphism
Let $S=\left\{a^{-1} b^{-1} a b / a, b \in G\right\}$ and $G^{\prime}=\left\{s_{1}, s_{2} \ldots s_{m} / s_{i} \in S, m\right.$ is arbitrary $\}$
Let $\bar{S}=\left\{\bar{a}^{-1} \bar{b}^{-1} \bar{a} \bar{b} / \bar{a} \bar{b} \in \bar{G}\right\}$
$\bar{G},=\left\{\overline{s_{1}}, \overline{s_{2}} \ldots \overline{s_{n}} / \overline{s_{i}} \in \bar{S}, n\right.$ is arbitrary $\}$
To prove: $\emptyset(\mathrm{S})=\bar{S}$
Let $s \in S$, then $S=a^{-1} b^{-1} a b$ where $a, b \in G$
Now, $\varnothing(S)=\varnothing\left(\mathrm{a}^{-1} \mathrm{~b}^{-1} \mathrm{ab}\right)$

$$
\begin{align*}
& =\emptyset\left(\mathrm{a}^{-1}\right) \emptyset\left(\mathrm{b}^{-1}\right) \emptyset(\mathrm{a}) \emptyset(\mathrm{a}) \\
& =\left(\varnothing\left(\mathrm{a}^{-1}\right)\right)^{-1}\left(\emptyset\left(\mathrm{~b}^{-1}\right)\right)^{-1} \emptyset(\mathrm{a}) \emptyset(\mathrm{b}) \\
& =\bar{a}^{-1} \bar{b}^{-1} \bar{a} \bar{b} \tag{1}
\end{align*}
$$

$\varnothing(\mathrm{S}) \in \bar{S}$

Let $(\bar{a})^{-1}(\bar{b})^{-1} \bar{a} \bar{b} \in \bar{S}$, where $\bar{a} \bar{b} \in \bar{G}$
since \emptyset is onto there exist a,b $\in \mathrm{G}$ such that $\emptyset(\mathrm{a})=\bar{a}, \emptyset(\mathrm{~b})=\bar{b}$
$\operatorname{Now}(\bar{a})^{-1}(\bar{b})^{-1} \bar{a} \bar{b}=\left(\emptyset\left(\mathrm{a}^{-1}\right)\right)^{-1}\left(\varnothing\left(\mathrm{~b}^{-1}\right)\right)^{-1} \emptyset(\mathrm{a}) \emptyset(\mathrm{b})$

$$
=\emptyset\left(\mathrm{a}^{-1} \mathrm{~b}^{-1} \mathrm{ab}\right) \in \emptyset(\mathrm{S})
$$

$\therefore \bar{S} C \emptyset(\mathrm{~S})------(2)$
From (1) and (2) $\quad \emptyset(S)=\bar{S}$
Now to prove $\emptyset\left(\mathrm{G}^{\prime}\right)=\bar{G}^{\prime}$
Let $s_{1}, s_{2} \ldots s_{m} \in G^{\prime}, s_{i} \in S, m$ is arbitrary.
Now $\emptyset\left(\mathrm{s}_{1}, \mathrm{~s}_{2} \ldots \mathrm{~s}_{\mathrm{m}}\right)=\emptyset\left(\mathrm{s}_{1}\right) \emptyset\left(\mathrm{s}_{2}\right) \ldots \emptyset\left(\mathrm{s}_{\mathrm{m}}\right)$

$$
\begin{equation*}
=\overline{s_{1}}, \overline{s_{2}} \ldots \overline{s_{m}} \in \bar{G}^{\prime} \tag{3}
\end{equation*}
$$

$\emptyset\left(\mathrm{G}^{\prime}\right) \subset \bar{G}^{\prime}$
Now to prove $\bar{G}^{\prime} C \emptyset\left(\mathrm{G}^{\prime}\right)$
Let $\bar{x}=\overline{s_{1}}, \overline{s_{2}} \ldots \overline{s_{m}} \in \bar{G}^{\prime}$
since \emptyset is onto there exist $\mathrm{s}_{\mathrm{i}} \in \mathrm{S}$, such that $\emptyset\left(\mathrm{s}_{\mathrm{i}}\right)=\overline{s_{i}}$,
Let $\mathrm{x}=\mathrm{s}_{1}, \mathrm{~s}_{2} \ldots . \mathrm{s}_{\mathrm{m}} \in \mathrm{G}^{\prime}$
$\emptyset(\mathrm{x})=\emptyset\left(\mathrm{s}_{1}, \mathrm{~s}_{2} \ldots \mathrm{~s} \mathrm{~s}\right)=\overline{s_{1}}, \overline{s_{2}} \ldots \overline{s_{m}}$
$\bar{G}^{\prime} \supset \emptyset\left(\mathrm{G}^{\prime}\right)$
From (3) and (4) $\varnothing\left(\mathrm{G}^{\prime}\right)=\bar{G}^{\prime}$
Hence \bar{G}^{\prime} is a homomorphic image of $\mathrm{G}^{(1)}$. implies that $\left(\bar{G}^{\prime}\right)$ ' is a homomorphic image of $\mathrm{G}^{(2)} \ldots .\left(\bar{G}^{(k-1)}\right)$ 'is a homomorphic image of $\mathrm{G}^{(\mathrm{k})}$

Also $\left(\mathrm{G}^{(\mathrm{k})}\right)^{\prime}=\{\bar{e}\}$ where \bar{e} is the identity element of \bar{G}
A group G is solvable $\mathrm{G}^{(\mathrm{k})}=\{\mathrm{e}\}$. Here \bar{G} is a homomorphic image of G and also $\bar{G}^{(\mathrm{k})}$ is the image of $\mathrm{G}^{(\mathrm{k})}$.

Hence \bar{G} is solvable.

Result:

Prove that subgroup of a solvable group is solvable.

Proof:

Let G be a solvable group and H its subgroup.
To prove that H is solvable
Since G is solvable, then by definition of solvable group
(i) $\mathrm{G}=\mathrm{G}=\mathrm{N}_{0} \supset \mathrm{~N}_{1} \ldots . \supset \mathrm{N}_{\mathrm{k}}=\{\mathrm{e}\}$
(ii) $\quad \mathrm{N}_{\mathrm{i}}$ is normal subgroup of $\mathrm{N}_{\mathrm{i}-1}$
(iii) $\frac{N_{i-1}}{N_{i}}$ is an abelian group, here $\mathrm{G}=\mathrm{G}=\mathrm{N}_{0} \supset \mathrm{~N}_{1} \ldots \supset \supset_{\mathrm{k}}=\{\mathrm{e}\}$

Now, $\mathrm{H} \cap \mathrm{G}=\mathrm{H} \cap \mathrm{N}_{0} \supset \mathrm{H} \cap \mathrm{N}_{1} \ldots . \supset \mathrm{H} \cap \mathrm{N}_{\mathrm{k}}=\{\mathrm{e}\}$
i.e., $\mathrm{H}=\mathrm{H}_{0} \supset \mathrm{H}_{1} \ldots \supset \supset \mathrm{H}_{\mathrm{k}}=\{\mathrm{e}\}$

Let $\mathrm{H} \cap \mathrm{N}_{\mathrm{i}}=\mathrm{H}_{\mathrm{i}} \forall \mathrm{i}$, we know that N_{i} is a normal subgroup of $\mathrm{N}_{\mathrm{i}-1}$, then $\mathrm{H} \cap \mathrm{N}_{\mathrm{i}}$ is a normal subgroup of $\mathrm{H} \cap \mathrm{N}_{\mathrm{i}-1}$.

Implies that H_{i} is a normal subgroup of $\mathrm{H}_{\mathrm{i}-1}$.
Now, let us define the mapping F: $\mathrm{H}_{\mathrm{i}} \rightarrow \frac{N_{i-1}}{N_{i}}$, $\mathrm{f}(\mathrm{x})=\mathrm{xN}_{\mathrm{i}+1}, \forall \mathrm{x} \in \mathrm{H}_{\mathrm{i}}$
To prove F is well defined
Here $\mathrm{H}_{\mathrm{i}}=\mathrm{H} \cap \mathrm{N}_{\mathrm{i}} \subset \mathrm{N}_{\mathrm{i}}, \therefore \mathrm{H}_{\mathrm{i}} \subset \mathrm{N}_{\mathrm{i}}$.
Let $x \in H_{i}$ implies that $x \in N_{i}$.
Therefore $\mathrm{xN}_{\mathrm{i}+1} \in \frac{N_{i}}{N_{i+1}}$,
$\therefore \mathrm{f}$ is well defined.
Now to prove f is homomorphism
Let $\mathrm{x}, \mathrm{y} \in \mathrm{H}_{\mathrm{i}}$
i) $\quad f(x+y)=(x+y) N_{i+1}=x N_{i+1}+y N_{i+1}=f(x)+f(y)$.
ii) $\quad f(x y)=(x y) N_{i+1}=\left(x N_{i+1}\right)\left(y N_{i+1}\right)=f(x) f(y)$.

Now to prove f is onto
$\mathrm{xN}_{\mathrm{i}+1} \in \frac{N_{i}}{N_{i+1}} \Rightarrow \mathrm{x} \in \mathrm{N}_{\mathrm{i}}$.

$$
\Rightarrow \mathrm{x} \in \mathrm{H} \cap \mathrm{~N}_{\mathrm{i}} \Rightarrow \mathrm{x} \in \mathrm{H}_{\mathrm{i}} .
$$

$\therefore \mathrm{f}(\mathrm{x})=\mathrm{xN}_{\mathrm{i}+1}$
Now to prove kerf $=\mathrm{H}_{\mathrm{i}+1}, \forall \mathrm{i}$
We know that kerf $=\left\{x \in H_{i} / f(x)=N_{i+1}\right\}$
Let $\mathrm{x} \in \operatorname{kerf} \Leftrightarrow \mathrm{f}(\mathrm{x})=\mathrm{N}_{\mathrm{i}+1} \Leftrightarrow \mathrm{xN}_{\mathrm{i}+1}=\mathrm{N}_{\mathrm{i}+1} \Leftrightarrow \mathrm{x} \in \mathrm{N}_{\mathrm{i}+1} \Leftrightarrow \mathrm{x} \in \mathrm{H} \cap \mathrm{N}_{\mathrm{i}+1}$

$$
\Leftrightarrow \mathrm{x} \in \mathrm{H}_{\mathrm{i}+1} \Leftrightarrow \mathrm{kerf}=\mathrm{H}_{\mathrm{i}+1}
$$

Hence f is a onto homomorphism.
i.e.,f: $\mathrm{H}_{\mathrm{i}} \rightarrow$ onto $\frac{N_{i}}{N_{i+1}}$, homomorphism with kerf $=\mathrm{H}_{\mathrm{i}+1}$, By using fundamental theorem of homomorphism $\frac{H_{i}}{H_{i+1}} \cong \frac{N_{i}}{N_{i+1}}$, Here $\frac{N_{i}}{N_{i+1}}$ and $\frac{H_{i}}{H_{i+1}}$ is an abelian group.

Hence H is an solvable group.

Lemma 5.7.2:

Prove that if $G=S_{n}$, where $n \geq 5$ then $G^{(k)}$ for $k=1,2 \ldots$. Contains every 3- cycle of S_{n}.

Proof:

Let $G=S_{n}, n \geq 5$, to prove $G^{(k)}$ for $k=1,2 \ldots$ Contains every 3 cycle of S_{n}.
We know that if N ' is a normal subgroupof G then N ' must also be a normal subgroup of G.

Step-1:

We claim that if N is a normal subgroup of $\mathrm{G}=\mathrm{S}_{\mathrm{n}}$, where $\mathrm{n} \geq 5$ which contains evry 3-cycle in S_{n}.
Suppose $\mathrm{a}=(1,2,3), \mathrm{b}=(1,4,5)$ are in N . Then $\mathrm{a}^{-1}=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right)=\left(\begin{array}{lll}3 & 2 & 1\end{array}\right)$
Also $b=\left(\begin{array}{lll}1 & 4 & 5 \\ 4 & 5 & 1\end{array}\right) \quad b^{-1}=\left(\begin{array}{lll}1 & 4 & 5 \\ 5 & 4 & 1\end{array}\right)$
Then, $a^{-1} b^{-1} a b=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right)\left[\begin{array}{lll}1 & 4 & 5 \\ 5 & 1 & 4\end{array}\right) \quad\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right) \quad\left(\begin{array}{lll}1 & 4 & 5 \\ 4 & 5 & 1\end{array}\right)$ $=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right)=\left(\begin{array}{lll}1 & 4 & 2\end{array}\right)$ is a commutators of elements

$$
\begin{array}{lllll}
4 & 1 & 3 & 2 & 5
\end{array}
$$

Of N must be in N^{\prime}. since N^{\prime} is a normal subgroup of G equal to S_{n} for any $\pi \in S_{n}$, $\pi^{-1}\left(\begin{array}{lll}1 & 4 & 2\end{array}\right) \pi$ must also be in N^{\prime}.
$\therefore \pi^{-1}\left(\begin{array}{lll}1 & 4 & 2\end{array}\right) \pi \subset N^{\prime}$. Now let i_{1}, i_{2}, i_{3} be three distinct integer in the range from $i=1,2,3 \ldots n$.
To prove $i_{1}, i_{2}, i_{3} \in N^{\prime}$, i.e., To prove $\pi^{-1}\left(\begin{array}{lll}1 & 4 & 2\end{array}\right) \pi=\left(i_{1}, i_{2}, i_{3}\right)$ is in N^{\prime}.
Since i_{1}, i_{2}, i_{3} are 3-cycle in S_{n}. Choose $\pi \in S_{n}$ such that $\pi(1)=i_{1}, \pi(4)=i_{2}, \pi(2)=i_{3}$, where (i_{1}, $\mathrm{i}_{2}, \mathrm{i}_{3}$) are 3 distinct ineger range from $\mathrm{i}=1,2,3 \ldots$.

Step-2:

Let $\mathrm{G}=\mathrm{S}_{\mathrm{n}}$ which is normal in G and contains all the 3-cycle in G . Also we have $\mathrm{N}^{\prime}=\mathrm{G}^{\prime}, \mathrm{N}^{\prime}$ contains every 3-cycle of S_{n}, we have G' also contains every 3-cycle of S_{n}.

Now, $\left(G^{\prime}\right)^{(1)}=G^{(2)}$ contains every 3-cycle of S_{n}. Since $G^{(2)}$ is normal in $G, G^{(2)}$ containing every 3-cycle of S_{n}. Also, $\left(G^{(2)}\right)^{(1)}=G^{(3)}$ is normal in $G, G^{(3)}$ containing in this way we get $G^{(k)}$ contains every 3-cycle of S_{n} for arbitrary k.

Theorem: 5.7.1:

Prove that S_{n} is not solvable for $\mathrm{n} \geq 5$.

Proof:

Let $\mathrm{G}=\mathrm{S}_{\mathrm{n}}$, where $\mathrm{n} \geq 5$,
Then by using lemma 5.7.2, $\mathrm{G}^{(\mathrm{k})}$ contains every 3-cycle of S_{n}
Hence $\mathrm{G}=\mathrm{S}_{\mathrm{n}}$ is not solvable for $\mathrm{n} \geq 5$.

SECTION 5.8 GALOIS GROUPS OVER THE RATIONALS

In Theorem, Let $f(x) \in F(x)$ be of degree $n \geq 1$. Then there is an E of F of degree at most $n!$ in which $f(x)$ has n roots. We saw that given a field F and a polynomial $p(x)$ over F has degree at most n ! over F. In the preceding section we saw that this upper limit of n ! is indeed, taken on for some choice of F and some polynomial $p(x)$ of degree n over F. In fact, if F_{0} is any field and if F
is the field of rational functions in the variables $a_{1}, a_{2}, \ldots . . a_{\mathrm{n}}$ over F_{0}, it was shown that the splitting field K, of the polynomial $p(x)=x^{\mathrm{n}}+a_{1} x^{\mathrm{n}-1}+\ldots+a_{\mathrm{n}}$ over F has degree exactly n ! over F. Moreover, it was shown that the Galois group of K over F is S_{n}, the symmetric group of degree n. This turned out to be the basis for the fact that the general polynomial of degree n, with $n \geq 5$, is not solvable by radicals.

We shall make use of the fact that polynomials with rational coefficients have their roots in the complex field

Theorem 5.8

Let $q(x)$ is an irreducible polynomial of degree p, p a prime, over the field Q of rational numbers. Suppose that $q(x)$ has exactly two non real roots in the field of complex numbers then the Galois group of $q(x)$ over Q is S_{p}, the symmetric group of degree p . Thus the splitting field of $q(x)$ over Q has degree p over Q

Proof: Let K be the splitting field of the polynomial $q(x)$ over Q
If α is a root of $q(x)$ in K, since $q(x)$ is irreducible over 2 , then by theorem 5.1.3 $[Q(\alpha): Q]=p$
Since $K \supset Q(\alpha) \supset Q$ and according to theorem 5.1.1
$[K: Q]=[K: Q(\alpha)][Q(\alpha): Q]=[K: Q(\alpha)] p$
By theorem 5.6.4 $O(G)=[K: F]$. Thus $p / O(G)$
Hence by Cauchy's theorem, G has an element σ of order p to this point we have not used our hypothesis that $q(x)$ has exactly two non real roots. We use it now α_{1}, α_{2} are these non-real roots, then $\alpha_{1}=\overline{\alpha_{2}}, \alpha_{2}=\overline{\alpha_{1}}$ where the bar denotes the complex conjugate.

If $\alpha_{3}, \ldots \ldots . \alpha_{p}$ are the other roots since they are real $\overline{\alpha_{i}}=\alpha_{1}, i \geq 3$
Thus the complex conjugate mapping takes K into itself, is an automorphism τ of K over Q and interchanges α_{1}, α_{2} leaving the other roots of $q(x)$ fixed.

Now the elements of G take roots of $q(x)$ into roots of $q(x)$. So induces permutations of $\alpha_{1}, \alpha_{2}, \ldots . . \alpha_{p}$

In this way we imbed G in S_{p}. The automorphism τ described above is the transposition (1, 2)
Since $\tau\left(\alpha_{1}\right)=\alpha_{2}, \quad \tau\left(\alpha_{2}\right)=\alpha_{1}$, and $\tau\left(\alpha_{i}\right)=\alpha_{i}, i \geq 3$
What about the element $\sigma \in G$. Which we mentioned above has order p ? As an element of S_{p}. σ has order p , but the only elements of order p in S_{p} are p cycles. Thus S must be a p cycles

Therefore G has a subgroup of S_{p} contains a transposition and p cycles
To prove that any transposition and only p cycles in S_{p} generates S_{p}. Thus σ and τ genetrates S_{p}, but since they are in G, the group generated by σ and τ must be in G. $G=S_{\mathrm{p}}$

In otherwords, the Galois group of $q(x)$ over Q indeed S_{p}

UNIT - IV - LINEAR TRANSFORMATIONS
18hrs

Linear Transformations: Canonical forms- Triangular form -Nilpotent transformations.
-Jordan form

Chapter 6: Sections 6.4, 6.5, 6.6

SECTION 6.4

CANONICAL FORM AND TRIANGULAR FORM

Definition: Linear Transformation

Let V be a vector space over a field F a mapping $T: V \rightarrow V$ is called a Linear transformation. If it satisfies the following conditions

$$
\begin{array}{ll}
\text { (i) } & \left(v_{1}+v_{2}\right) T=T\left(v_{1}\right)+T\left(v_{2}\right) \tag{i}\\
\text { (ii) } & \alpha(v T)=\alpha v(T)
\end{array}
$$

Note: $\operatorname{Hom}(V, V)$ is the set of all homomorphism of V into itself and $\operatorname{Hom}(V, V)$ is a vector space and it is denoted by $A(V)$ and it is the set of all linear transformation from V to V

Definition: Matrices

Let V be an n-dimensional vector space over a field F. Let $\left\{v_{1}, v_{2}, \ldots \ldots . . v_{n}\right\}$ be a basis of V over F. If $T \in A(V)$ then T is determined by any vectors depends on the basis of V. Since $T \in A(V), T\left(v_{1}\right), T\left(v_{2}\right), \ldots \ldots . T\left(v_{n}\right)$ are belonging to V
$T\left(v_{1}\right)=\alpha_{11} v_{1}+\alpha_{12} v_{2}+\ldots \ldots .+\alpha_{1 n} v_{n}$
$T\left(v_{2}\right)=\alpha_{21} v_{1}+\alpha_{22} v_{2}+\ldots \ldots .+\alpha_{2 n} v_{n}$
..........
$. T\left(v_{n}\right)=\alpha_{n 1} v_{1}+\alpha_{n 2} v_{2}+\ldots \ldots .+\alpha_{n n} v_{n}$, where $\alpha_{i j} \in F$

This system of linear equation can be written as $T\left(v_{i}\right)=\sum_{j=1}^{n} \alpha_{i j} v_{j}, \quad i=1,2, \ldots . n$. Then the matrix of T is the basis $\left\{v_{1}, v_{2}, \ldots \ldots v_{n}\right\}$ is written as $m(T)=\left(\begin{array}{llll}\alpha_{11} & \alpha_{12} & \ldots & \alpha_{1 n} \\ \alpha_{21} & \alpha_{22} & \ldots . & \alpha_{2 n} \\ \ldots . . & & \\ \alpha_{n 1} & \alpha_{n 2} & \ldots . & \alpha_{n n}\end{array}\right)$

Invariant: Let W be the subspace of a vector V over F. Suppose W is invariant under the transformation $T \in A(V)$ if $W(T) \subseteq W$

Invertible (or) Regular: An element $T \in A(V)$ is said to be invertible (or) regular. If there exist an element $S \in A(V)$ such that $S T=T S=1$

Similar Linear Transformation: The Linear transformation $S, T \in A(V)$ is said to be similar transformation if there exist an invertible element $C \in A(V)$ such that $T \in C S C^{-1}$ then we say that S and T are similar to each other

Similar matrices: Let F_{n} be the set of all nxn matrices over F. The matrices $A, B \in F_{n}$ are said to similar if there exist an invertible matrix $C \in F_{n}$ such that $B=C A C^{-1}$

Minimal Polynomial: Let V be a n-dimensional vector space over F than for any element $T \in A(V)$ there exist a non-trivial polynomial $q(x) \in F(x)$ such that $q(T)=0$

A non-trivial polynomial of lowest degree satisfying this property is called the minimal polynomial of T over F

Result: If $p(x)$ is the minimal polynomial of T and if T satisfies $h(x) \in F(x)$ then $p(x)$ is the divisor of $h(x)$

Proof: Given that $p(x)$ is the minimal polynomial of T.
Therefore $p(x)$ is the least degree polynomial of T and $p(T)=0$. Also given that T satisfies $h(x)$
Therefore $h(T)=0$
Since $p(x), h(x) \in F(x)$ there exist $q(x), r(x) \in F(x)$ such that $h(x)=p(x) q(x)+r(x)$
\Rightarrow either $r(x)=0$ (or) $\operatorname{deg} r(x)<\operatorname{deg} p(x)$ since $h(T)=0$
$\Rightarrow h(T)=p(T) q(T)+r(T)$
Now $r(T)=0$ we get $h(x)=p(x) q(x) \Rightarrow p(x) / h(x)$

Hence $p(x)$ is a divisor of $h(x)$

Lemma: 6.4.1

If $W \subset V$ is invariant under T then T induces a linear mapping \bar{T} on V / W defined by $(v+W) \bar{T}=v T+W$. If T satisfies the polynomial $q(x) \in F(x)$ then so does \bar{T} (or)

If $p_{1}(x)$ is the minimal polynomial for \bar{T} over F and if $p(x)$ is that for T then $p_{1}(x) / p(x)$
Proof:
Given that $W \subset V$ is invariant under $T \Rightarrow W(T) \subseteq W$
Define the mapping $\bar{T}: \frac{V}{W} \rightarrow \frac{V}{W}$ by $(v+W) \bar{T}=v T+W$
(i) To prove \bar{T} is well defined

Let $v_{1}+W, v_{2}+W \in \frac{V}{W}$ such that $v_{1}+W=v_{2}+W$
$\Rightarrow v_{1}-v_{2}+W=W \Rightarrow v_{1}-v_{2} \in W$
$\Rightarrow\left(v_{1}-v_{2}\right) T \in W T \subset W$
$v_{1} T-v_{2} T+W=W$
$\left(v_{1} T+W\right)-\left(v_{2} T+W\right)=W$
$\left(v_{1} T+W\right)=\left(v_{2} T+W\right)$
$\left(v_{1}+W\right) \bar{T}=\left(v_{2}+W\right) \bar{T}$
Therefore \bar{T} is well defined.
(ii) To Prove \bar{T} is a linear transformation
(1) $\left(v_{1}+W+v_{2}+W\right) \bar{T}=v_{1} T+v_{2} T+W$
$=\left(v_{1}+W\right) \bar{T}+\left(v_{2}+W\right) \bar{T}$
(2)
$\alpha(v+W) \bar{T}=\alpha(v T+W)$
$=\alpha v T+W=(\alpha v+W) \bar{T}$

Therefore \bar{T} is a linear transformation V / W
Let us take $q(x)=\alpha_{\circ}+\alpha_{1} x+\ldots \ldots .+\alpha_{m} x^{m}$ be minimal polynomial for T and its satisfy $q(T)=0$
Now $\mathrm{q}(\bar{T})=0$
Consider, $\left(v_{1}+W\right) \bar{T}^{2}=v T^{2}+W=(v+W) \bar{T}^{2}$
$\Rightarrow \overline{T^{2}}=(\bar{T})^{2}$
Similarly we can prove $\overline{T^{k}}=(\bar{T})^{k}$
Now consider $(v+W) q(\bar{T})=v q(T)+W$

$$
\begin{aligned}
& =v\left(\alpha_{\circ}+\alpha_{1} T+\ldots \ldots+\alpha_{m} T^{m}\right)+W \\
& =\alpha_{\circ}(v+W)+\alpha_{1}(v T+W)+\ldots . .+\alpha_{m}\left(v T^{m}+W\right) \\
& =\alpha_{\circ}(v+W)+\alpha_{1}(v+W) \bar{T}+\ldots \ldots+\alpha_{m}(v+W) \bar{T}^{m} \\
& =(v+W)\left(\alpha_{\circ}+\alpha_{1} \bar{T}+\ldots \ldots+\alpha_{m} \bar{T}^{m}\right) \\
& (v+W) \overline{q(T)}=(v+W) q(\bar{T}) \Rightarrow \overline{q(T)}=q(\bar{T})
\end{aligned}
$$

Therefore for any $q(x) \in F(x)$ with $\mathrm{q}(\mathrm{T})=0$, Since ${ }^{\overline{0}}$ is the 0 transformation on V / W and have $\overline{q(T)}=q(\bar{T})=0$
\bar{T} satisfies the minimal polynomial $q(x) \in F(x)$ then by using the result " If $p(x)$ is the minimal polynomial of T and if T satisfies $h(x)$ then $p(x)$ is the divisor of $h(x)$ "

We get $p_{1}(x) / q(x)$
Therefore $p(x)$ is the minimal polynomial for T over F then $p(T)=0$ hence $\mathrm{p}\left({ }^{\bar{T}}\right)=0$
Again by using the result $p_{1}(x) / p(x)$
Definition: If $T \in A(V) \& \lambda \in F$ is called a characteristic root (or) Eigen value of T then $\lambda-T$ is singular

Definition: The matrix A is called triangular if all the entries of above the main diagonal (or) above the main diagonal are zero

Definition: If T is linear transformation on V over F then matrix of T in the basis $\left\{v_{1}, v_{2}, \ldots \ldots . v_{n}\right\}$ if triangular if
$v_{1} T=\alpha_{11} v_{1}$
$v_{2} T=\alpha_{21} v_{1}+\alpha_{22} v_{2}$
$v_{n} T=\alpha_{n 1} v_{1}+\alpha_{n 2} v_{2}+\ldots \ldots+\alpha_{n n} v_{n}$

Theorem: 6.4.1

If $T \in A(V)$ has all its characteristic root in F then there is a basis of V in which the matrix of T is triangular

Proof:

We shall prove this theorem by induction on n, where n is the dimension of V over F that is $\operatorname{dim}_{F} V=n$

Step 1:

Let $\operatorname{dim}_{F} V=1$ then V has the basis with 1 element. Therefore $m(T)$ is a one by one matrix.
Hence the theorem is true for $n=1$
Step 2:
Assume that the theorem is true for all vector spaces over F of dimension $n-1$
Step 3:
Let V be of dimension n over F
To prove the matrix of T is triangular in the basis of V over F
Let $\lambda_{1} \in F$ be the characteristic root of T then there exist a non-zero vector ${ }^{v_{1}}$ such that $v_{1} T=\lambda_{1} v_{1} \ldots$. (1)

Since by the property of characteristic root $\lambda \in F, T \in A(V)$ then $v T=\lambda v, \nu \neq 0$
Let $W=\left\{\alpha v_{1} / \alpha \in F\right\}$ \qquad
Here W is a one-dimensional subspace of V
To prove W is invariant under T

That is to prove $W(T) \subseteq W$
Let $\alpha v_{1} T \in w T$
$\alpha v_{1} T=\left(\alpha \lambda_{1}\right) v_{1} \in W_{\text {by equation(1) }}$
Therefore $W(T) \subseteq W$
Hence W is invariant under T
Let $\bar{V}=\frac{V}{W}, \therefore \operatorname{dim} \bar{V}=\operatorname{dim} V-\operatorname{dim} W=n-1$
By lemma 6.4.1, T induces in linear transformation \bar{T} on \bar{V} whose minimal polynomial over F divides the minimal polynomial of T over F

Thus all the roots of the minimal polynomial of \bar{T} being the roots of the minimal polynomial of T, must be lie in F
\bar{T} on \bar{V} satisfies the hypothesis of the theorem, since \bar{V} is $\mathrm{n}-1$ dimensional over F, our induction hypothesis there is a basis $\overline{v_{2}}, \overline{v_{3}}, \ldots . . \overline{v_{n}}$ over F such that
$\overline{v_{2}} \bar{T}=\alpha_{22} \overline{v_{2}}$
$\overline{v_{3}} \bar{T}=\alpha_{32} \overline{v_{2}}+\alpha_{33} \overline{v_{3}}$
$\overline{v_{n}} \bar{T}=\alpha_{n 2} \overline{v_{2}}+\alpha_{n 3} \overline{v_{3}}+\ldots \ldots .+\alpha_{n n} \overline{v_{n}}$
Let $\left\{v_{2}, v_{3}, \ldots \ldots v_{n}\right\}$ be the elements of V into $\overline{v_{2}}, \overline{v_{3}}, \ldots . . \overline{v_{n}}$ respectively
To prove $\left\{v_{1}, v_{2}, v_{3}, \ldots . . . v_{n}\right\}$ forms a basis of V over F
That is to prove that (i) $\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots v_{n}\right\}$ are linearly independent (ii) Any element $v \in V$ is a linear combination of $\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots v_{n}\right\}$

Let $\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots . .+\alpha_{n} v_{n}=0, \quad \alpha_{i} \in F$
Now to prove all constants $\alpha_{i}=0$
Equation (3) implies $\alpha_{2} v_{2}+\ldots . .+\alpha_{n} v_{n}=-\alpha_{1} v_{1} \in W$
$\alpha_{2}\left(v_{2}+W\right)+\ldots \ldots+\alpha_{n}\left(v_{n}+W\right)=W$
$\alpha_{2} \overline{v_{2}}+\ldots \ldots . .+\alpha_{n} \overline{v_{n}}=W$
Since $\overline{v_{2}}, \overline{v_{3}}, \ldots . \overline{v_{n}}$ is a basis of V / W and $\alpha_{2} \overline{v_{2}}+\ldots \ldots . .+\alpha_{n} \overline{v_{n}}=W, \alpha_{2}=\alpha_{3}=\ldots . . \alpha_{n}=0$
Therefore eqn(3) becomes $\alpha_{1} v_{1}=0 \Rightarrow \alpha_{1}=0 \because v_{1} \neq 0$
Let $v \in V$ then $\bar{v}=v+W \in \frac{V}{W}=\bar{V}$
Let $v=\sum_{i=2}^{n} \alpha_{i} v_{i}$
$v+W=\sum_{i=2}^{n} \alpha_{i} v_{i}+W$
$v-\sum_{i=2}^{n} \alpha_{i} v_{i}+W=W$
$v=\alpha_{1} v_{1}+\sum_{i=2}^{n} \alpha_{i} v_{i}$
$v=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots \ldots .+\alpha_{n} v_{n}$
Hence any element $v \in V$ is a linear combination of $\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots v_{n}\right\}$

Now to prove the matrix of T is triangular in the basis $\left\{v_{1}, v_{2}, v_{3}, \ldots . . v_{n}\right\}$
Now by (1) $v_{1} T=\lambda_{1} v_{1}=\alpha_{11} v_{1}$
$\overline{v_{2}} \bar{T}=\alpha_{22} \overline{v_{2}}$
$v_{2} T-\alpha_{22} v_{2}+W=W$
$v_{2} T-\alpha_{22} v_{2} \in W=W$
$v_{2} T=\alpha_{21} v_{1}+\alpha_{22} v_{2}$
$v_{3} T=\alpha_{31} v_{1}+\alpha_{32} v_{2}+\alpha_{33} v_{3}$
Similarly we can prove that $v_{n} T=\alpha_{n 1} v_{1}+\alpha_{n 2} v_{2}+\ldots \ldots+\alpha_{n n} v_{n}$

Hence $m(T)=\left(\begin{array}{llll}\alpha_{11} & 0 & 0 \ldots & 0 \\ \alpha_{21} & \alpha_{22} & 0 \ldots . & 0 \\ \alpha_{31} & \alpha_{32} & \alpha_{33} . & 0 \\ \ldots . . & & \\ \alpha_{n 1} & \alpha_{n 2} & \alpha_{n 3} \ldots & \alpha_{n n}\end{array}\right)$

Therefore $m(T)$ is triangular

Alternate form of theorem 6.4.1:

If the matrix $A \in F_{n}$ has all its characteristic roots in F then there is a matrix $C \in F_{n}$ such that $C A C^{-1}$ is triangular

Theorem 6.4.2:

If V is an n-dimensional vector space over F and if $T \in A(V)$ all has its characteristic roots in F then T satisfies the polynomial of degree n over F

Proof: Let V be an n-dimensional vector space over F
Suppose that $T \in A(V)$ has all its characteristic roots in F then by theorem 6.4.1, we can find a basis $\left\{v_{1}, v_{2}, v_{3}, \ldots . . v_{n}\right\}$ of V over F such that
$v_{1} T=\lambda_{1} v_{1}=\alpha_{11} v_{1}$
$v_{2} T=\alpha_{21} v_{1}+\alpha_{22} v_{2}$
$v_{3} T=\alpha_{31} v_{1}+\alpha_{32} v_{2}+\alpha_{33} v_{3}$
Here the above can be rewritten as
$v_{1} T=\lambda_{1} v_{1}$
$v_{1}\left(T-\lambda_{1}\right)=0 \cdots \ldots$ (1)
Also $v_{2}\left(T-\lambda_{2}\right)=\alpha_{21} v_{1} \ldots \ldots$ (2)

Similarly we can write $v_{n}\left(T-\lambda_{n}\right)=\alpha_{n 1} v_{1}+\alpha_{n 2} v_{2}+\ldots \ldots .+\alpha_{n-1} v_{n-1}$
Also $\left(T-\lambda_{1}\right)\left(T-\lambda_{2}\right)=\left(T-\lambda_{2}\right)\left(T-\lambda_{1}\right)$

Continuing in this way, we get
$\left(T-\lambda_{1}\right)\left(T-\lambda_{2}\right) \ldots \ldots\left(T-\lambda_{n}\right)=0$
Multiplying both side by $\left(T-\lambda_{1}\right)$ in eqn(2) we get
$\nu_{2}\left(T-\lambda_{2}\right)\left(T-\lambda_{1}\right)=\alpha_{21} \nu_{1}\left(T-\lambda_{1}\right)=0$
Proceeding in this manner we get
$v_{n}\left(T-\lambda_{n}\right) \ldots \ldots\left(T-\lambda_{1}\right)=0$
Let $S=\left(T-\lambda_{1}\right)\left(T-\lambda_{2}\right) \ldots \ldots . .\left(T-\lambda_{n}\right)$ which satisfies
$v_{1} S=0, v_{2} S=0, \ldots \ldots v_{n} S=0$
Hence $S=0, v_{i} \neq 0, i=1,2,3, \ldots . n$
$\left(T-\lambda_{1}\right)\left(T-\lambda_{2}\right) \ldots \ldots . .\left(T-\lambda_{n}\right)=0$
Therefore T is satisfies the polynomial $\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \ldots \ldots . .\left(x-\lambda_{n}\right) \in F[x]$ of degree n
Hence T satisfies the polynomial of degree n over F

Section 6.5

Canonical Transformation - Nilpotent Transformation

Lemma: 6.5.1

If $\mathrm{V}=\mathrm{v}_{1} \oplus \mathrm{v}_{2} \oplus \ldots \ldots \oplus \mathrm{v}_{\mathrm{k}}$ where each subspace v_{i} is of dimension n_{i} and is invariant under T , then a basis of V can be found so that, the matrix of T in this basis if of the form,

$$
\left(\begin{array}{ccc}
A_{1} & 0 \ldots & 0 \\
0 & A_{2} \ldots & 0 \\
\vdots & \vdots & \vdots \\
0 & 0 \ldots & A_{k}
\end{array}\right)
$$

Where each A_{i} is $n_{i} \times m_{i}$ matrix and the linear transformation induced by T on v_{i}.

Proof:

Choose a basis V as follows:
$\left\{\mathrm{v}_{1}{ }^{(1)}, \mathrm{v}_{2}{ }^{(1)} \ldots . . \mathrm{v}_{\mathrm{n} 1}{ }^{(1)}\right\}$ is a basis of V_{1}
$\left\{\mathrm{v}_{1}{ }^{(2)}, \mathrm{v}_{2}{ }^{(2)} \ldots . . \mathrm{v}_{\mathrm{n} 2}{ }^{(2)}\right\}$ is a basis of $\mathrm{V}_{2} \ldots \ldots$
$\left\{\mathrm{v}_{1}{ }^{(\mathrm{n})}, \mathrm{v}_{2}{ }^{(\mathrm{n})} \ldots . . \mathrm{v}_{\mathrm{nk}}{ }^{(\mathrm{n})}\right\}$ is a basis of V_{k}
Since each V_{i} is invariant under $T, v_{j}{ }^{(i)} T \in V_{i}, i=1 . . k$ and so it is a linear combination of $\mathrm{v}_{1}{ }^{(\mathrm{i})}$, $\mathrm{v}_{2}{ }^{(\mathrm{i})} \ldots . . \mathrm{v}_{\mathrm{ni}}{ }^{(\mathrm{i})}$. thus the matrix of T this basis is the desired form.
ie, the matrix of T, in this basis is of the form $n_{i} \times n_{i}$
Let this matix be A_{i}. ie, each A_{i} is a matrix of T_{i} and T_{i} is the linear transformation induced by T on V_{i}

Hence we get, the matrix of T in the above basis of V as

$$
\left(\begin{array}{ccc}
A_{1} & 0 \ldots & 0 \\
0 & A_{2} \ldots & 0 \\
\vdots & \vdots & \vdots \\
0 & 0 \ldots & A_{k}
\end{array}\right)
$$

Hence the theorem.

Definition of Nilpotent:

An element $T \in A(V)$ is said to be an invertable then there exist an element $S \in A(V)$ such that $\mathrm{ST}=\mathrm{TS}=1$

Lemma: 6.5.2.

If $\mathrm{T} \in \mathrm{A}(\mathrm{V})$ is nilpotent then $\propto_{0} . \propto_{0}+\propto_{1} T+\cdots . \propto_{m} T^{m}$ where the $\propto_{i} \in \mathrm{~F}$ is invertable $\propto_{0} \neq 0$.

Proof:

Suppose that T is nilpotent, the definition of nilpotent have exist an integer r such that $\propto^{r}=0$.
To prove $\propto_{0}+\propto_{1} T+\cdots . \propto_{m} T^{m}$ is invertible if $\propto_{0} \neq 0$.

Let $S=\propto_{0}+\propto_{1} T+\cdots . \propto_{m} T^{m}$. Now to prove $\propto_{0}+S$ is invertible.
Consider, $\mathrm{S}^{\mathrm{r}}=\left(\propto_{1} T+\cdots . \propto_{m} T^{m}\right)^{r}$

$$
\begin{aligned}
& =\left(\mathrm{T}\left(\propto_{1}+\cdots \cdot \propto_{m} T^{m}\right)^{r}\right) \\
& =\mathrm{T}^{\mathrm{r}}\left(\propto_{1}+\cdots \cdot \propto_{m} T^{m}\right)^{r} \\
& =0\left(\mathrm{~T}^{\mathrm{r}}=0\right)
\end{aligned}
$$

Consider, $\left(\propto_{0}+S\right)=\left(\frac{1}{\alpha_{0}}-\frac{S}{\alpha_{0}{ }^{2}}+\frac{S^{2}}{\alpha_{0}{ }^{3}}+\cdots .+\frac{(-1)^{r-1} s^{r-1}}{\alpha_{0}{ }^{r}}\right)$

$$
\begin{aligned}
& =1-\frac{s}{\alpha_{0}}+\ldots . .+\frac{(-1)^{r-1} s^{r-1}}{\alpha_{0} r-1}+\frac{S}{\alpha_{0}}-\frac{s^{2}}{\alpha_{0}{ }^{2}}+\ldots .+\frac{(-1)^{r-1} s^{r}}{\alpha_{0}{ }^{r}} \\
& =1+\frac{(-1)^{r-1} s^{r}}{\alpha_{0}{ }^{r}} \\
& =1\left(\text { since } S^{r}=0\right)
\end{aligned}
$$

Hence $\propto_{0}+S$ is invertible. $\propto_{0}+\propto_{1} T+\cdots . \propto_{m} T^{m}$ is invertible if $\propto_{0} \neq 0$.

Definition:

If $T \in A(V)$ is nilpotent then k is called the index of nilpotent of T. If $T^{k}=0$ but $T^{k-1} \neq 0$.

Theorem 6.5.1:

If $T \in A(V)$ is nilpotent, of index of nilpotent n_{1} then a basis of V can be found such that the matrix of T in $\left.\begin{array}{c}\text { this } \\ \\ \qquad\left(\begin{array}{ccc}A_{1} & 0 \ldots & 0 \\ 0 & A_{2} \ldots & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 \ldots & A_{k}\end{array}\right)\end{array}\right)$ form

Where $\mathrm{n}_{1} \geq \mathrm{n}_{2} \geq \ldots \ldots \ldots . . \mathrm{n}_{\mathrm{r}}$ and where $\mathrm{n}_{1}+\ldots . .+\mathrm{n}_{\mathrm{r}}=\operatorname{dim}_{\mathrm{F}} \mathrm{V}$

Proof:

Given that $\mathrm{T} \in \mathrm{A}(\mathrm{V})$ is nilpotent. $\mathrm{T}^{\mathrm{n}}=0$
Also given that, T is of index of nilpotents $\mathrm{n}_{1} . \mathrm{T}^{\mathrm{n} 1}=0$ but $\mathrm{T}^{\mathrm{nl-1}} \neq 0 .---(1)$
Now we can find a vector $\mathrm{v} \in V$ such that $\mathrm{v} \mathrm{T}^{\mathrm{n} 1-1} \neq 0$.
We claim that the vectors $\mathrm{v}, \mathrm{v} \mathrm{T} \ldots . \mathrm{v}^{\mathrm{n} 1-1}$ are linearly independent over F

Suppose that the above vectors are not linearly independent then
$\propto_{1} v+\propto_{2} v T+\cdots . \propto_{n 1} v T^{n l-1}=0$ where $\propto_{i} \in \mathrm{~F}$, here all the \propto^{\prime} 's are not zero. Let \propto 's be the first non zero coefficient of the above equation.
$\propto_{\mathrm{s} \mathrm{v} \mathrm{T}} \mathrm{T}^{\mathrm{s}-1}+\ldots . .+\propto_{\mathrm{n} 1} \mathrm{v} \mathrm{T}^{\mathrm{n} 1-1}=0$
$\mathrm{v}^{\mathrm{s}-1}\left(\propto_{\mathrm{s}}+\ldots . .+\propto_{\mathrm{n} 1} \mathrm{~T}^{\mathrm{n} 1-\mathrm{s}}\right)=0$
since $\propto \mathrm{s} \neq 0$ by using lemma 6.5.2, we $\operatorname{get}\left(\propto_{\mathrm{s}}+\propto_{\mathrm{s}} \mathrm{T}+\ldots . .+\propto_{\mathrm{n} 1} \mathrm{~T}^{\mathrm{n} 1-\mathrm{s}}\right)$ is invertible.
Equation (2) becomes
$v^{s-1} \mathrm{I}=0$
$\mathrm{vT}^{\mathrm{s}-1} \mathrm{II}^{-1}=0 \mathrm{I}^{-1}=0$
$\mathrm{vT}^{\mathrm{s}-1}=0$. Which is a contradiction to $\mathrm{vT}^{\mathrm{nl}-1} \neq 0$ for $\mathrm{s}<\mathrm{n}_{1}$.
Hence $\mathrm{v}, \mathrm{vT}, \ldots \mathrm{vT}^{\mathrm{nl-1}}$ are lineary independent . Let v_{1} be the subspace of V spanned by $\mathrm{v}_{1}=\mathrm{v}, \mathrm{v}_{2}=\mathrm{vT} \ldots . . \mathrm{v}_{\mathrm{n} 1}=\mathrm{vT}^{\mathrm{nl}-1}$
$\mathrm{v}_{1} \mathrm{~T} \subset \mathrm{~V}$. Hence v_{1} is invariant under T

Thus in this bais the linear transformation induced by T on v_{1} has the matrix $M_{n 1}$

$$
\mathrm{M}_{\mathrm{n} 1}=\left(\begin{array}{ccc}
0 & 1 \ldots & 0 \\
0 & 0 \ldots & 0 \\
\vdots & \vdots & \vdots \\
0 & 0 \ldots & 1
\end{array}\right)
$$

Now to prove the rest of the theorem we need the following lemma's

Lemma: 6.5.3.

If $u \in V_{1}$ is such that $u v T^{n 1-k}=0$ where $0<k \leq n_{1}$ then $u=\operatorname{uoT}^{k}$ some $u_{0} \in V_{1}$
Proof:

Given that $u \in V_{1}$ and V_{1} is a subspace of V spanned by $v, v T, \ldots v T^{n 1-1}$. Also given that $\mathrm{u} \mathrm{T}^{\mathrm{nl-k}}=0 .----(3)$

$$
\text { Then } u=\propto_{1} v+\propto_{2} v T+\cdots . \propto_{n 1} v T^{n l-1}
$$

$\mathrm{u} \mathrm{T}^{\mathrm{nl-k}}=\left(\propto_{1} v+\propto_{2} v T+\cdots . \propto_{n 1} v T^{n l-1}\right) \mathrm{T}^{\mathrm{n} 1-\mathrm{k}}$

$$
\begin{aligned}
& =\propto_{1} v T^{n 1-k}+\propto_{2} v T^{n 1-k+1}+\cdots \cdot \propto_{n 1} v T^{2 n 1-k-1} \\
& =0
\end{aligned}
$$

$v T^{n 1-k}, \ldots \ldots v T^{2 n 1-k-1}$ are linearly independent
Hence $\alpha_{1}=\alpha_{2}=\cdots .=\propto_{k}=0$
$\mathrm{u}=\propto_{(\mathrm{k}+1)} \mathrm{vT}^{\mathrm{k}}+\ldots . .+\propto_{\mathrm{n} 1} T^{n 1-1}=\mathrm{uoT}^{\mathrm{k}}$
$\mathrm{uo}=\propto_{(\mathrm{k}+1)} \mathrm{V}+\ldots . .+\propto_{\mathrm{n} 1} T^{n 1-k-1} \in \mathrm{~V}_{1}$

Lemma: 6.5.4.

There exist a subspace W of V , invariant under T such that $\mathrm{V}=\mathrm{v}_{1} \oplus \mathrm{w}$

Proof:

Let w be a subspace of v which is the largest possible such that
(i) $\quad \mathrm{V}_{1} \cap \mathrm{~W}=\{0\}$
(ii) W is invariant under T

To show that $V=V_{1}+W$. where V_{1} is the subspace of V which is invariant under T

Suppose not $\mathrm{V} \neq \mathrm{V}_{1}+\mathrm{W}$. Then there exist an element $\mathrm{z} \in \mathrm{V}$ such that z does not belongs to $\mathrm{V}_{1}+\mathrm{W}$. since $\mathrm{T}^{\mathrm{n} 1}=0$, there exist an integer $\mathrm{k}, \mathrm{o}<\mathrm{k} \leq \mathrm{n}_{1}$ such that $\mathrm{zT}^{\mathrm{k}} \in \mathrm{V}_{1}+\mathrm{W}$ and such that zT^{i} does not belongs to $\mathrm{V}_{1}+\mathrm{W}$, for $\mathrm{i}<\mathrm{k}$

Thus $\mathrm{zT}^{\mathrm{k}}=\mathrm{u}+\mathrm{w}$ where $\mathrm{u} \in \mathrm{V}_{1} \& \mathrm{w} \in \mathrm{W}-$
$\mathrm{zT}^{\mathrm{n} 1}=0$
$\left(\mathrm{zT}^{\mathrm{k}}\right) \mathrm{T}^{\mathrm{n} 1-\mathrm{k}}=0$
$(\mathrm{u}+\mathrm{w}) \mathrm{T}^{\mathrm{n} 1-\mathrm{k}}=0$
$u^{\mathrm{n} 1-\mathrm{k}}+\mathrm{w} \mathrm{T}^{\mathrm{n} 1-\mathrm{k}}=0------(6)$

Since W is invariant under $\mathrm{T}, \mathrm{uT} \in \mathrm{V}_{1}, \mathrm{wT} \in W$
$\mathrm{u} \mathrm{T}^{\mathrm{n} 1-\mathrm{k}} \in \mathrm{V}_{1} \& \mathrm{w}^{\mathrm{n} 1-\mathrm{k}} \in W$

Equation (6) becomes
$\mathrm{ur}^{\mathrm{n} 1-\mathrm{k}}+\mathrm{w}^{\mathrm{n} 1-\mathrm{k}} \in \mathrm{V}_{1} \cap \mathrm{~W}=\{0\}$

$$
\mathrm{uT}^{\mathrm{n} 1-\mathrm{k}}=-\mathrm{w} \mathrm{~T}^{\mathrm{n} 1-\mathrm{k}} \in \mathrm{~V}_{1} \cap \mathrm{~W}=\{0\}
$$

$\mathrm{u} \mathrm{T}^{\mathrm{n} 1-\mathrm{k}}=0$

Now by using lemma 6.5.3.
There exist an integer $u_{0} \in V_{1}$ Show that $u=$ uoT k

Equation (5) becomes

$$
\begin{aligned}
& \mathrm{zT}^{\mathrm{k}}=\mathrm{u}+\mathrm{w} \\
& =\mathrm{uoT}^{\mathrm{k}}+\mathrm{w} \\
& \mathrm{zT}^{\mathrm{k}}=\mathrm{uoT}^{\mathrm{k}}=\mathrm{w} \\
& \mathrm{~T}^{\mathrm{k}}(\mathrm{z}-\mathrm{uo})=\mathrm{w} \in \mathrm{~W}
\end{aligned}
$$

Let $\mathrm{u}_{1}=\mathrm{z}$-uo then $\mathrm{T}^{\mathrm{k}} \mathrm{uo}=\mathrm{w} \in \mathrm{W}$

Since W is invariant under $T, w T \subset W$
u. $T^{\mathrm{k}} \mathrm{T} \in \mathrm{W}$
$\mathrm{u}_{1} \mathrm{~T}^{\mathrm{m}} \in \mathrm{W}, \mathrm{m}>\mathrm{k}$
on the other hand if $\mathrm{i}>\mathrm{k}$ then,
$\mathrm{u}_{1} \mathrm{~T}^{1}=(\mathrm{z}-\mathrm{uo}) \mathrm{T}^{\mathrm{i}}$

$$
=\left(\mathrm{zT}^{\mathrm{i}}-\mathrm{uo} \mathrm{~T}^{\mathrm{i}}\right)
$$

Does not contains $\mathrm{V}_{1}+\mathrm{W}$
For otherwise $u_{1} T^{i} \in V_{1}+W$. Which is a contradiction to equation (4)
Let W be the subspace of V spanned by $\mathrm{W} \& \mathrm{z}_{1}, \mathrm{Z}_{1} \mathrm{~T} \ldots . . \mathrm{z}_{1} \mathrm{~T}^{\mathrm{k}-1}$
Since $\mathrm{w} \in \mathrm{W}$ and $\mathrm{W} \subset \mathrm{w}_{1}$ Then $\operatorname{dim} \mathrm{W}<\operatorname{dim} \mathrm{w}_{1}$
dim w_{1} must be larger than that of W

Since $\mathrm{z}_{1} \mathrm{~T}^{\mathrm{k}} \in \mathrm{W}$

If W is invariant under $\mathrm{T}, \mathrm{w}_{1}$ must be invariant under T
To prove $\mathrm{w}_{1} \mathrm{~T} \in \mathrm{~W}_{1}$ Where $\mathrm{w}_{1} \in \mathrm{~W}_{1}$. Here $\mathrm{w}_{1}=\mathrm{w}_{0}+\propto_{1} \mathrm{z}_{1} \mathrm{~T}+\ldots+\propto_{k} \mathrm{Z}_{1} \mathrm{~T}^{\mathrm{k}-1}$
$\mathrm{w}_{1} \mathrm{~T}=\mathrm{w}_{0} \mathrm{~T}+\propto_{1} \mathrm{z}_{1} \mathrm{~T}^{2}+\ldots+\propto_{k} \mathrm{z}_{1} \mathrm{~T}^{\mathrm{k}}$
$\mathrm{w}_{0} \mathrm{~T} \in \mathrm{~W} \& \mathrm{z}_{1} \mathrm{~T}^{\mathrm{k}} \in \mathrm{W}$
$\mathrm{w}_{1} \mathrm{~T} \in \mathrm{~W}_{1}$
hence W_{1} is invariant under T . We have $\mathrm{V}_{1} \cap \mathrm{~W}_{1} \neq\{0\}$, otherwise this will affect the maximum matrix of W . There exist an element $\mathrm{w}_{0} \in \mathrm{~W}$ is of the form, $\propto_{0}+\propto_{1} \mathrm{z}_{1}+\ldots+\propto_{k}$ $\mathrm{z}_{1} \mathrm{~T}^{\mathrm{k}} \neq 0---(8)$ in $\mathrm{V}_{1} \cap \mathrm{~W}$ have all the scalars $\propto_{1} \ldots \propto_{k}$ are non- zero. But $\mathrm{w}_{0} \in \mathrm{~W} \subset \mathrm{~W}_{1}$
$\mathrm{w}_{0} \neq 0$, which is a contradiction to our assumption that $\mathrm{V}_{1} \cap \mathrm{~W}_{1}=\{0\}$,

Let $\propto s$ be the first non-zero coefficient of equation (7)

$$
\begin{gathered}
\mathrm{w}_{0}+\propto_{1} \mathrm{z}_{1}+\ldots . .+\propto_{k} \mathrm{z}_{1} \mathrm{~T}^{\mathrm{k}-1} \neq 0 \in \mathrm{~V}_{1} \\
\mathrm{w}_{0}+\mathrm{z}_{1} \mathrm{~T}^{\mathrm{s}-1}\left(\propto_{\mathrm{s}}+\ldots \ldots+\propto_{k} \mathrm{z}_{1} \mathrm{~T}^{\mathrm{k}-\mathrm{s}}\right) \in \mathrm{V}_{1}
\end{gathered}
$$

Since $\propto \mathrm{s} \neq 0$ by using lemma 6.5.2., we get
$\propto_{s}+\propto_{s+1} \mathrm{~T}+\ldots . .+\propto_{\mathrm{k}} \mathrm{Z}_{1} \mathrm{~T}^{\mathrm{k}-\mathrm{s}}=\frac{1}{R}---(9)$
Equation (9) becomes $\mathrm{w}_{0}+\mathrm{Z}_{1} \mathrm{~T}^{\mathrm{s}-1}=\frac{1}{R} \in \mathrm{~V}_{1}$
ie) $\mathrm{w}_{0} \mathrm{R}+\mathrm{z}_{1} \mathrm{~T}^{\mathrm{s}-1} \in \mathrm{~V}_{1} \mathrm{R} \subset \mathrm{V}_{1}$
ie) $\mathrm{z}_{1} \mathrm{~T}^{\mathrm{s}-1} \in \mathrm{~V}_{1}+\mathrm{W}$, since $\mathrm{s}-1<\mathrm{k}$ which is impossible.
Our assumption that $\mathrm{V}_{1}+\mathrm{W} \neq \mathrm{V} . \mathrm{V}=\mathrm{V}_{1}+\mathrm{W}$. Already we have $\mathrm{V}_{1} \cap \mathrm{~W}=\{0\}$. Hence we get, $\mathrm{V}=\mathrm{V}_{1} \oplus \mathrm{~W}$.

Proof the main theorem, here $\mathrm{V}=\mathrm{V}_{1} \oplus \mathrm{~W}$. Where W is invariant under T , Then by using lemma 6.5.1., the matrix of T in the basis $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots . \mathrm{v}_{\mathrm{n}}$ has the form $\left(\begin{array}{cc}M_{n 1} & 0 \\ 0 & n_{2}\end{array}\right)$. Where A_{2} is the matrix of $T_{2} \& T_{2}$ is the linear transformation induced by T on W. since $T^{n 1}=0, T^{n 2}=0$ for some $\mathrm{n}_{2} \leq \mathrm{n}_{1}$ repeating the above argument used for T on V for T_{2} on W . Hence we get a basis of V in which $\begin{array}{ccc}\text { the } & \text { matrix } & \text { of is the form }\end{array}$
$\left.\qquad \begin{array}{cccc}M_{n 1} & 0 \ldots & 0 \\ 0 & M_{n 2} \ldots & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 \ldots & n r\end{array}\right)$

Where $n_{1} \geq n_{2} \geq \ldots \ldots n_{\text {r }}$. Since the size of the matrix is $n \times n$. Hence we have,
$\mathrm{n}_{1}+\mathrm{n}_{2}+\ldots \ldots+\mathrm{n}_{\mathrm{r}}=\operatorname{dim} \mathrm{V}$
(ie) $\operatorname{dim} V=n$
Hence the Theorem

Definition - 1:

The integer $n_{1}, n_{2}, \ldots \ldots n_{r}$ are called the invariants of T

Definition-2:

If $\mathrm{T} \in \mathrm{A}(\mathrm{V})$ is nilpotent, the subspace M of V is of dimension m which is invariant under T is called cyclic with respect to T . If (i) $\mathrm{MT}^{\mathrm{m}}=0, \mathrm{MT}^{\mathrm{m}-1} \neq 0$
(ii)There is an element $\mathrm{z} \in \mathrm{M}$ such that $\mathrm{z}, \mathrm{zT}, \ldots \mathrm{ZT}^{\mathrm{m}-1}$ form a basis of M .

Lemma: 6.5.5.

If M is of dimension m is cyclic with respect to T . Then the dimension of MT^{k} is $\mathrm{m}-\mathrm{k}$ for all $h \subseteq M$

Proof:

Given that M is cyclic with respect to T and M is of dimension m .
To prove that $\operatorname{dim} \mathrm{MT}^{\mathrm{k}}=\mathrm{m}-\mathrm{k}$, for all $\mathrm{k} \leq \mathrm{m}$.
Since M is cyclic with respect to then by definition of cyclic
(i) $\mathrm{MT}^{\mathrm{m}}=0, \mathrm{MT}^{\mathrm{m}-1} \neq 0$
(ii)There is an element $\mathrm{z} \in \mathrm{M}$ such that $\mathrm{z}, \mathrm{zT}, \ldots \mathrm{ZT}^{\mathrm{m}-1}$ form a basis of M .

Claim:

$\mathrm{z}, \mathrm{zT}, \ldots \ldots . \mathrm{zT}^{\mathrm{m}-1}$ of M leads to a basis $\mathrm{zT}^{\mathrm{k}}, \mathrm{zT}^{\mathrm{k}+1}, \ldots \mathrm{zT}^{\mathrm{m}-1}$ of mT^{k}.
First we want to prove, $\mathrm{zT}^{\mathrm{k}}, \mathrm{zT}^{\mathrm{k}+1} \ldots . . \mathrm{zT}^{\mathrm{m}-1}$ are linearly independent
Let $\propto_{1} \mathrm{zT}^{\mathrm{k}}+\propto_{2} \mathrm{zT}^{\mathrm{k}+1}+\ldots+\propto_{\mathrm{m}-\mathrm{k}^{2}} \mathrm{zT}^{\mathrm{m}-1}=0$
$0 . \mathrm{z}+0 . \mathrm{zT}+\ldots . . \propto_{1} \mathrm{zT}^{\mathrm{k}}+\propto_{2} \mathrm{zT}^{\mathrm{k}+1}+\ldots+\propto_{\mathrm{m}-\mathrm{k}} \mathrm{zT}^{\mathrm{m}-1}=0$
$\alpha_{I}=\mathrm{o}$ for all i
$\left\{\mathrm{zT}^{\mathrm{k}}, \mathrm{zT}^{\mathrm{k}+1}, \ldots \mathrm{zT}^{\mathrm{m}-1}\right\}$ is linearly independent
Now to prove every element of mT^{k} is linear combination of $\left\{\mathrm{zT}^{\mathrm{k}}, \mathrm{zT}^{\mathrm{k}+1}, \ldots \mathrm{zT}^{\mathrm{m}-1}\right\}$. Let $\mathrm{x} \in \mathrm{M}$
ie) $\mathrm{x}=\propto_{1} \mathrm{z}+\propto_{2} \mathrm{zT}^{\mathrm{k}}+\ldots+\propto_{\mathrm{m}} \mathrm{zT}^{\mathrm{m}-1}$
$\mathrm{xT}^{\mathrm{k}}=\propto_{1} \mathrm{zT}^{\mathrm{k}}+\propto_{2} \mathrm{zT}^{\mathrm{k}+1}+\ldots+\propto_{\mathrm{m}} \mathrm{zT}^{\mathrm{m}+\mathrm{k}-1}$
$\mathrm{xT}^{\mathrm{k}} \in \mathrm{MT}^{\mathrm{k}}$
Every element of MT^{k} is a linear combination of $\left\{\mathrm{zT}^{\mathrm{k}}, \mathrm{zT}^{\mathrm{k}+1}, \ldots \mathrm{zT}^{\mathrm{m}-1}\right\}$ form a basis of MT^{k}.
$\operatorname{dim} \mathrm{MT}^{\mathrm{k}}=\mathrm{m}-\mathrm{k}$

Hence the lemma.

Theorem: 6.5.2.

Two nilpotent linear transformation are similar iff they have the sae invariants.

Proof:

Necessary Part:

Let T\& S be to similar nilpotent linear transformations.

To prove that, $\mathrm{T} \& \mathrm{~S}$ have the same invariants

Given that T is a nilpotent linear transformation. By using 6.5.1. theorem, we can find a integers $\mathrm{n}_{1} \geq \mathrm{n}_{2} \geq \ldots \ldots . . \geq \mathrm{n}_{\mathrm{r}}$ and subspaces $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{r}}$ of V cyclic with respect to T and of dimensions $\mathrm{n}_{1}, \mathrm{n}_{2}, . . \mathrm{n}_{\mathrm{r}}$ respectively such that $\mathrm{V}=. \mathrm{v}_{1} \oplus \mathrm{v}_{2} \oplus \ldots \oplus \mathrm{v}_{\mathrm{r}}$

Again given that s is a nilpotent linear transformation then by using theorem 6.5.1.

We can find another integer, $\mathrm{m}_{1} \geq \mathrm{m}_{2} \geq \ldots . . \mathrm{m}_{\mathrm{s}}$ and subspaces $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots . \mathrm{u}_{\mathrm{s}}$ of cyclic with respect to S and such of dimensions $\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots \mathrm{~m}_{\mathrm{s}}$ respectively such that that $\mathrm{V}=\mathrm{U}_{1} \oplus \mathrm{U}_{2} \oplus \ldots \oplus \mathrm{U}_{\mathrm{s}}$

Claim:

$\mathrm{r}=\mathrm{s}, \mathrm{n}_{1}=\mathrm{m}_{1,} \mathrm{n}_{2}=\mathrm{m}_{2} \ldots \mathrm{n}_{\mathrm{r}}=\mathrm{m}_{\mathrm{s}}$. Let us assume that the above one is not true. (ie) there exist atleast one integer k such that $\mathrm{nk} \neq \mathrm{mk}$.

Let I be the first integer such that $n_{i} \neq m_{i}$, where $n_{1}=m_{1,} n_{2}=m_{2} \ldots n_{i-1}=m_{i-1}$ without loss of generality, let $m_{i}<n_{i}$. Since $V=v_{1} \oplus v_{2} \oplus \ldots \oplus v_{r}$ Now $V T^{m i}=v_{1} T^{m i} \oplus v_{2} T^{m i} \oplus \ldots \oplus v_{r} T^{m i}$ $\operatorname{dim}\left(\mathrm{VT}^{\mathrm{mi}}\right)=\operatorname{dim} \mathrm{v}_{1} \mathrm{~T}^{\mathrm{mi}}+\ldots \ldots+\operatorname{dim} \mathrm{v}_{\mathrm{r}} \mathrm{T}^{\mathrm{mi}}$

$$
\geq\left(\mathrm{n}_{1}-\mathrm{m}_{\mathrm{i}}\right)+\left(\mathrm{n}_{2}-\mathrm{m}_{\mathrm{i}}\right)+\ldots+\left(\mathrm{n}_{\mathrm{r}}-\mathrm{m}_{\mathrm{i}}\right) \text { also } \mathrm{V}=\mathrm{U}_{1} \oplus \mathrm{U}_{2} \oplus \ldots \oplus \mathrm{U}_{\mathrm{s}}
$$

Now $V^{m i}=U_{1} T^{m i} \oplus U_{2} T^{m i} \oplus \ldots \oplus U_{s} T^{m i}$
$\operatorname{dim}\left(\mathrm{VT}^{\mathrm{mi}}\right)=\operatorname{dim} \mathrm{U}_{1} \mathrm{~T}^{\mathrm{mi}}+\ldots \ldots+\operatorname{dim} \mathrm{U}_{\mathrm{s}} \mathrm{T}^{\mathrm{mi}}$
$\geq\left(m_{1}-m_{i}\right)+\left(m_{2}-m_{i}\right)+\ldots+\left(m_{s}-m_{i}\right), I$ is $n_{1}=m_{1}, n_{2}=m_{2} \ldots . \mathrm{n}_{\mathrm{i}}=\mathrm{m}_{\mathrm{i}}=1$
Where $\mathrm{VT}^{\mathrm{mi}}=\left(\mathrm{n}_{1}-\mathrm{m}_{\mathrm{i}}\right)+\left(\mathrm{n}_{2}-\mathrm{m}_{\mathrm{i}}\right)+\ldots+\left(\mathrm{n}_{\mathrm{i}-1}-\mathrm{m}_{\mathrm{i}}\right)$
Which is contradiction to dimension of, $\operatorname{dim}\left(\mathrm{VT}^{\mathrm{mi}}\right) \geq\left(\mathrm{n}_{\mathrm{i}}-\mathrm{m}_{\mathrm{i}}\right) \ldots\left(\mathrm{n}_{\mathrm{r}}-\mathrm{m}_{\mathrm{i}}\right)$

Thus there is a unique set of integer, $n_{1} \geq n_{2} \geq \ldots \ldots . . \geq n_{r}$. Such that V is the direct sum of subspaces, cyclic with respect to T of dimensions $\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots . \mathrm{n}_{\mathrm{r}}$ thus they have the same invariants.

Sufficient Part:

Assume that two nilpotent linear transformation T \& S have the same invariant. To prove that T \& S are similar.

Let the invariants $T \& S$ be $n_{1} \geq n_{2} \geq \ldots \ldots n_{r}$, then by theorem 6.5.1., there exist a basis $\left\{\mathrm{v}_{1}, \mathrm{v}_{2} . . \mathrm{v}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{w}_{1}, \mathrm{w}_{2} . . . \mathrm{w}_{\mathrm{n}}\right\}$ of V . Such that the matrix of T and the matrix of S are equal
$\mathrm{M}(\mathrm{T})=\left(\begin{array}{ccc}M_{n 1} & 0 \ldots & 0 \\ 0 & M_{n 2} \ldots & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 \ldots & M_{n r}\end{array}\right)$
But if A is a linear transformation defined on V by $\mathrm{v}_{\mathrm{i}} \mathrm{A}=\mathrm{w}_{\mathrm{i}}$. Then $\mathrm{S}=\mathrm{ATA}^{-1}$ (Since by using the result. Let $\mathrm{T} \& \mathrm{~S}$ be linear transformation defined on V such that the matrix of T in one basis is equal to the matrix of S in another basis. Then a transformation A on B such that $T=A S A^{-1}$)

Thus T and S are similar linear transformations.

6.6 Canonical Forms: A Decomposition of V : Jordan Form

Lemma 6.6.1

Suppose that $V=V_{1} \oplus V_{2}$, where V_{1} and V_{2} are subspaces of V invariant under T.

Let T_{1} and T_{2} be the linear transformations induced by T on V_{1} and V_{2} respectively. If the minimal polynomial of T_{1} over F is $p_{1}(x)$ while that of T_{2} is $p_{2}(x)$, then the minimal polynomial for T over F is the least common multiple of $p_{1}(x)$ and $p_{2}(x)$.

Proof:

Given that $V=V_{1} \oplus V_{2}$, where V_{1} and V_{2} are subspaces of V invariant under T.

Let $p(x)$ be the minimal polynomial for T over F . Then $p(T)=0$.

Therefore, $p\left(\mathrm{~T}_{1}\right)=0$ and $p\left(\mathrm{~T}_{2}\right)=0$.

Since $\mathrm{p}_{1}(\mathrm{x})$ is a minimal polynomial of T_{1}, we have $\mathrm{p}_{1}\left(\mathrm{~T}_{1}\right)=0$, which implies $\mathrm{p}_{1}(\mathrm{x}) \mid p(x)$.

Similarly, $\mathrm{p}_{2}(\mathrm{x})$ is a minimal polynomial of T_{2}, we have $\mathrm{p}_{2}\left(\mathrm{~T}_{2}\right)=0$, which implies $\mathrm{p}_{2}(\mathrm{x}) \mid p(x)$.

Hence, the L.C.M of $\mathrm{p}_{1}(\mathrm{x})$ and $\mathrm{p}_{2}(\mathrm{x})$ must divide $p(x)$.

Let $q(x)$ be the L.C.M of $\mathrm{p}_{1}(\mathrm{x})$ and $\mathrm{p}_{2}(\mathrm{x})$ then $q(\mathrm{x}) \mid p(x)$
Since $q(x)$ is the L.C.M of $\mathrm{p}_{1}(\mathrm{x})$ and $\mathrm{p}_{2}(\mathrm{x})$, we have $\mathrm{p}_{1}(\mathrm{x}) \mid q(x)$.
$\Rightarrow q(x)=\mathrm{p}_{1}(\mathrm{x}) h(x)$ where $h(x) \in F[x]$.

Also, $q\left(\mathrm{~T}_{1}\right)=\mathrm{p}_{1}\left(\mathrm{~T}_{1}\right) h\left(\mathrm{~T}_{1}\right) \Rightarrow q\left(\mathrm{~T}_{1}\right)=0, \quad\left(\right.$ since $\left.\mathrm{p}_{1}\left(\mathrm{~T}_{1}\right)=0\right)$

Consider, $v_{1} \in V_{1}$, then $v_{1} q(T)=v_{1} q\left(\mathrm{~T}_{1}\right)$,

$$
=v_{1} \mathrm{p}_{1}\left(\mathrm{~T}_{1}\right) h\left(\mathrm{~T}_{1}\right)=0,\left(\text { since } \mathrm{p}_{1}\left(\mathrm{~T}_{1}\right)=0\right) .
$$

Similarly, $v_{2} \in V_{2}$, then $v_{2} q(T)=v_{2} q\left(\mathrm{~T}_{2}\right)$,

$$
=v_{2} \mathrm{p}_{2}\left(\mathrm{~T}_{2}\right) h\left(\mathrm{~T}_{2}\right)=0,\left(\text { since } \mathrm{p}_{2}\left(\mathrm{~T}_{2}\right)=0\right)
$$

Let $v \in V$, then $v_{1}+v_{2}=v, v_{1} \in V_{1}$ and $v_{2} \in V_{2}$
Now, $\quad v q(T)=\left(v_{1}+v_{2}\right) q(T)$

$$
=v_{1} q(\mathrm{~T})+v_{2} q(\mathrm{~T})
$$

$$
\begin{equation*}
v q(T)=0 \Rightarrow q(T)=0 \tag{2}
\end{equation*}
$$

From (1) and (2),
$q(x)$ is the minimal polynomial of T which is the L.C.M of $p_{1}(x)$ and $p_{2}(x)$.

Corollary:

If $V=V_{1} \oplus V_{2} \oplus \ldots \oplus V_{k}$, where V_{i} is invariant under T and if $\mathrm{p}_{\mathrm{i}}(\mathrm{x})$ is the minimal polynomial over F of T_{i}, the linear transformation induced by T on V_{i}, then the minimal polynomial of T over F is the least common multiple of $\mathrm{p}_{1}(\mathrm{x}), \mathrm{p}_{2}(\mathrm{x}) \ldots, \mathrm{p}_{\mathrm{k}}(\mathrm{x})$.

Proof:

We prove this result by induction on k.

For $k=1$, the result is obvious.

For $k=2$ then $V=V_{1} \oplus V_{2}$.
\therefore By using previous theorem, we get the result.
Assume that, the result is true for $k-1$, then by induction hypothesis the minimal polynomial $\mathrm{p}_{\mathrm{i}}(\mathrm{x})$ of T_{i} is the L.C.M of $\mathrm{p}_{1}(\mathrm{x}), \mathrm{p}_{2}(\mathrm{x}) \ldots, \mathrm{p}_{k-1}(\mathrm{x})$.

Now, $T=\mathrm{T}_{\mathrm{i}}+\mathrm{T}_{\mathrm{k}}$, then by using previous lemma,
The minimal polynomial of T over F is the L.C.M of $\mathrm{p}_{1}(\mathrm{x}), \mathrm{p}_{2}(\mathrm{x}) \ldots, \mathrm{p}_{k-1}(\mathrm{x})$.

Theorem: 6.6.1 [Jordan Theorem]

For each $i=1,2, \ldots k, V_{i} \neq(0)$ and $V=V_{1} \oplus V_{2} \oplus \ldots \oplus V_{k}$. The minimal polynomial of T_{i} is $\mathrm{q}_{\mathrm{i}}(\mathrm{x})^{\mathrm{l}_{\mathrm{i}}}$. (OR) Let $\mathrm{T} \in \mathrm{A}(\mathrm{V})$ and $\mathrm{p}(\mathrm{x})=\mathrm{q}_{1}(\mathrm{x})^{\mathrm{l}_{1}} \cdot \mathrm{q}_{2}(\mathrm{x})^{\mathrm{l}_{2}} \ldots \mathrm{q}_{\mathrm{k}}(\mathrm{x})^{\mathrm{l}_{\mathrm{k}}}$, where $\mathrm{q}_{\mathrm{i}}(\mathrm{x})^{\mathrm{l}_{\mathrm{i}}}$ are distinct irreducible polynomial over F be the minimal polynomial for T over F then $V=V_{1} \oplus$ $V_{2} \oplus \ldots \oplus V_{k}$, where each $V_{i} \neq(0)$ and $T\left(V_{i}\right) \subseteq V_{i}$ is a subspace of V is invariant under T. Then the minimal polynomial for T_{i} is the linear transformation induced by T on V_{i} is $\mathrm{q}_{\mathrm{i}}(\mathrm{x})^{\mathrm{l}_{\mathrm{i}}}$.

Proof:

Claim 1

To prove, each V_{i} is invariant under T.
If $k=1$, then $V=V_{1}$ and $p(x)=\mathrm{q}_{1}(\mathrm{x})^{\mathrm{l}_{1}}$.
Then, $\mathrm{p}(\mathrm{T})=\mathrm{q}_{1}(\mathrm{~T})^{\mathrm{l}_{1}}=0$.
$\Rightarrow \mathrm{V}$ is the subspace and T is the minimal $p(x)$, a power of the irreducible polynomial.
\therefore The theorem is true for $\mathrm{k}=1$.
Let $\mathrm{k}>1$, then $\mathrm{p}(\mathrm{x})=\mathrm{q}_{1}(\mathrm{x})^{\mathrm{l}_{1}} \cdot \mathrm{q}_{2}(\mathrm{x})^{\mathrm{l}_{2}} \ldots \mathrm{q}_{\mathrm{k}}(\mathrm{x})^{\mathrm{l}_{\mathrm{k}}}$.
Let $\quad V_{1}=\left\{v \in V \mid v \mathrm{q}_{1}(\mathrm{~T})^{\mathrm{l}_{1}}=0\right\}$

$$
V_{2}=\left\{v \in V \mid v \mathrm{q}_{2}(\mathrm{~T})^{\mathrm{I}_{2}}=0\right\}
$$

$$
\vdots
$$

$$
V_{i}=\left\{v \in V \mid v \mathrm{q}_{\mathrm{i}}(\mathrm{~T})^{\mathrm{l}_{\mathrm{i}}}=0\right\}
$$

$$
\vdots
$$

$$
V_{k}=\left\{v \in V \mid v \mathrm{q}_{\mathrm{k}}(\mathrm{~T})^{\mathrm{l}_{\mathrm{k}}}=0\right\}
$$

Clearly, $V_{1}, V_{2}, \ldots V_{k}$ are subspaces of V. Also if $v \in V_{i}$ then $v \mathrm{q}_{\mathrm{i}}(\mathrm{T})^{\mathrm{l}_{\mathrm{i}}}=0$.
To prove $v T \in V_{i}$ for $v \in V_{i}, \quad$ i.e. To prove, $v \mathrm{Tq}_{\mathrm{i}}(\mathrm{T})^{\mathrm{l}_{\mathrm{i}}}=0$.
Now, $v \mathrm{Tq}_{\mathrm{i}}(\mathrm{T})^{\mathrm{l}_{\mathrm{i}}}=v\left(\mathrm{q}_{\mathrm{i}}(\mathrm{T})^{\mathrm{l}_{\mathrm{i}}}\right) \mathrm{T}=0$
$\therefore V_{i}$ is invariant under T.

Claim 2

Now, $h_{1}(x)=q_{2}(x)^{\mathrm{I}_{2}} \cdot \mathrm{q}_{3}(\mathrm{x})^{\mathrm{I}_{3}} \ldots \mathrm{q}_{\mathrm{k}}(\mathrm{x})^{\mathrm{I}_{\mathrm{k}}}$

$$
h_{2}(x)=\mathrm{q}_{1}(\mathrm{x})^{\mathrm{l}_{1}} \cdot \mathrm{q}_{3}(\mathrm{x})^{\mathrm{l}_{3}} \ldots \mathrm{q}_{\mathrm{k}}(\mathrm{x})^{\mathrm{l}_{\mathrm{k}}}
$$

:
$h_{i}(x)=\prod_{j \neq 0} \mathrm{q}_{\mathrm{j}}(\mathrm{x})^{\mathrm{l}_{\mathrm{j}}}$
:

$$
h_{k}(x)=\mathrm{q}_{1}(\mathrm{x})^{\mathrm{I}_{1}} \cdot \mathrm{q}_{3}(\mathrm{x})^{\mathrm{l}_{3}} \ldots \mathrm{q}_{\mathrm{k}-1}(\mathrm{x})^{\mathrm{l}_{\mathrm{k}-1}}
$$

Since $p(x)$ is the minimal polynomial for T, we have $p(T)=0$.
Also $\operatorname{de} g\left(h_{i}(x)\right)<\operatorname{deg}(p(x))$
$\Rightarrow h_{i}(T) \neq 0, \forall i=1,2, \ldots k$
$\therefore \exists v_{i} \in V$ such that $v_{i} h_{i}(T) \neq 0$
Let $w_{i}=v_{i} h_{i}(T)$, then

$$
\begin{aligned}
w_{i} \mathrm{q}_{\mathrm{i}}(\mathrm{~T})^{\mathrm{l}_{\mathrm{i}}} & =\left(v_{i} h_{i}(T)\right) \mathrm{q}_{\mathrm{i}}(\mathrm{~T})^{\mathrm{l}_{\mathrm{i}}} \\
& =v_{i} p(T)
\end{aligned}
$$

$w_{i} \mathrm{q}_{\mathrm{i}}(\mathrm{T})^{\mathrm{l}_{\mathrm{i}}}=0,(\because p(T)=0)$
$\Rightarrow w_{i} \neq 0 \in V_{i}$, also $v h_{i}(T) \neq 0$ and for which $v h_{i}(T) \in V h_{i}(T)$
i.e., $v h_{i}(T) \mathrm{q}_{\mathrm{i}}(\mathrm{T})^{\mathrm{l}_{\mathrm{i}}}=v p(T)=0$

But $v h_{i}(T) \neq 0 \in V_{i}$, we have $v_{j} h_{i}(T)=0, i \neq j$.
Thus, $\mathrm{q}_{\mathrm{j}}(x)^{\mathrm{l}_{\mathrm{j}}} \mid h_{i}(x)$.

Claim 3

$$
V=V_{1} \oplus V_{2} \oplus \ldots \oplus V_{k}
$$

We know that, $h_{1}(x), h_{2}(x), \ldots h_{k}(x)$ are distinct irreducible polynomials. Therefore, they are relatively prime.

Hence, we can find a polynomial $a_{1}(x), a_{2}(x), \ldots a_{k}(x) \in F[x]$, such that

$$
\begin{aligned}
& a_{1}(x) h_{1}(x)+a_{2}(x) h_{2}(x)+\cdots+a_{k}(x) h_{k}(x)=1 \\
\Rightarrow & a_{1}(T) h_{1}(T)+a_{2}(T) h_{2}(T)+\cdots+a_{k}(T) h_{k}(T)=1
\end{aligned}
$$

Now for $v \in V$, we have

$$
\begin{aligned}
& v\left(a_{1}(T) h_{1}(T)+a_{2}(T) h_{2}(T)+\cdots+a_{k}(T) h_{k}(T)\right)=1 . v \\
& v a_{1}(T) h_{1}(T)+v a_{2}(T) h_{2}(T)+\cdots+v a_{k}(T) h_{k}(T)=v
\end{aligned}
$$

Now, each $v a_{i}(T) h_{i}(T) \in V h_{i}(T)$ and also each $v=v_{1}+v_{2}+\cdots+v_{k}$, where each $v_{i}=v a_{i}(T) h_{i}(T)$ is in $V h_{i}(T)$.

Thus, $V=V_{1}+V_{2}+\cdots+V_{k}$
Suppose that, $V_{1}+V_{2}+\cdots+V_{k}=0$ for each $V_{i} \in V$.
Now, $\left(V_{1}+V_{2}+\cdots+V_{k}\right) h_{1}(T)=0$
Let $v \in V$ then $v=v_{1}+v_{2}+\cdots+v_{k}$, then

$$
\begin{aligned}
& \left(v_{1}+v_{2}+\cdots+v_{k}\right) h_{1}(T)=0 \\
& \quad v_{1} h_{1}(T)+v_{2} h_{1}(T)+\cdots+v_{k} h_{1}(T)=0
\end{aligned}
$$

Which implies that, $v_{1} h_{1}(T)=0, \quad\left[\because v_{j} h_{i}(T)=0\right.$, for $\left.i \neq j\right]$
Also, $v_{i} q_{i}(T)^{l_{1}}=0$ and $h_{1}(x), q_{1}(x)^{l_{1}}$ are relatively prime, we get $p_{1}=0$.
By the same procedure we get, $v_{2}=0, v_{3}=0, \ldots, v_{k}=0$
Hence, $V=V_{1} \oplus V_{2} \oplus \ldots \oplus V_{k}$.

Claim 4

The minimal polynomial for T_{i} is the linear transformation induced by T on V_{i} is $q_{i}(x)^{l_{i}}$ on V_{i}.

$$
\begin{aligned}
\text { By } V_{i} q_{i}(T)^{l_{i}=}=0 \Rightarrow & q_{i}(T)^{l_{i}}=0 \\
\Rightarrow & T_{i} \text { satisfies the polynomial } q_{i}(x)^{l_{i}} \\
\Rightarrow & \text { The minimal polynomial for } T_{i} \text { must be the divisor of } q_{i}(x)^{l_{i}} \\
& \text { Of the form } q_{i}(x)^{f_{i}} \text { where } f_{i} \leq l_{i}
\end{aligned}
$$

By the Corollary 6.6.1, we get ,
The minimal polynomial of T over F is the L.C.M of $q_{1}(x)^{f_{1}}, q_{2}(x)^{f_{2}}, \ldots q_{k}(x)^{f_{k}}$.

$$
\begin{gathered}
\therefore q_{1}(x)^{l_{1}} q_{2}(x)^{l_{2}} \ldots q_{k}(x)^{l_{k}}=q_{1}(x)^{f_{1}} q_{2}(x)^{f_{2}} \ldots q_{k}(x)^{f_{k}} \\
\Rightarrow l_{1}=f_{1}, l_{2}=f_{2}, \ldots l_{k}=f_{k}
\end{gathered}
$$

Thus the minimal polynomial for T_{i} is $q_{i}(x)^{l_{i}}$.

Corollary:

If all the distinct characteristic root $\lambda_{1}, \lambda_{2}, \ldots \lambda_{k}$ of T lie in F then V can be written as $V=V_{1} \oplus V_{2} \oplus \ldots \oplus V_{k}$ where $V_{i}=\left\{v \in V / v\left(T-\lambda_{i}\right)^{l_{i}}=0\right\}$ and where T_{i} has only one characteristic root λ_{i} on V_{i}.

Proof:

By the above Theorem 6.6.1,
we have proved that for the minimal polynomial,

$$
\begin{aligned}
& p(x)=q_{1}(x)^{l_{1}}, q_{2}(x)^{l_{2}}, \ldots q_{k}(x)^{l_{k}}, V=V_{1} \oplus V_{2} \oplus \ldots \oplus V_{k} \text { where } \\
& V_{i}=\left\{x \in V / v q_{i}(T)^{l_{i}}=0\right\} .
\end{aligned}
$$

We know that, the characteristic roots of T are the roots of the minimal polynomial $p(x)$, the characteristic roots lies in F, the factorization of $p(x)$ becomes,

$$
p(x)=\left(x-\lambda_{1}\right)^{l_{1}}\left(x-\lambda_{2}\right)^{l_{2}} \ldots\left(x-\lambda_{k}\right)^{l_{k}}
$$

Where $\lambda_{1}, \lambda_{2}, \ldots \lambda_{k}$ are distinct characteristic roots of T.
\therefore The irreducible factors,

$$
\begin{aligned}
& q_{i}(x)=x-\lambda_{i} \\
& q_{i}(T)=T-\lambda_{i}
\end{aligned}
$$

$\therefore T_{i}$ has only one characteristic root λ_{i} on V_{i}.

Definition: (Jordan Form)

The matrix $\left(\begin{array}{ccccc}\lambda & 1 & 0 & \ldots & 0 \\ 0 & \lambda & \ldots & \ldots & \ldots \\ \vdots & \ldots & \ldots & \ldots & \ldots \\ \vdots & \ldots & \ldots & \ldots & 1 \\ 0 & \ldots & \ldots & \ldots & \lambda\end{array}\right)$ with $\lambda^{\prime} s$ on the diagonal, $1^{\prime} s$ on the superdiagonal and
$0^{\prime} s$ elsewhere, is a basic Jordan Block belonging to λ.

Theorem: 6.6.2

Let $T \in A_{F}(V)$ have all its distinct characteristic roots, $\lambda_{1}, \lambda_{2}, \ldots \lambda_{k}$ in F. Then a basis of V can be found in which the matrix T is of the form $\left(\begin{array}{lll}J_{1} & & \\ & J_{2} & \\ & & J_{k}\end{array}\right)$ where each $J_{i}=\left(\begin{array}{lll}B_{i 1} & & \\ & B_{i 2} \cdot & \\ & & B_{i r_{i}}\end{array}\right)$ and where $B_{i 1}, B_{i 2,}, \ldots B_{i r_{i}}$ are basic Jordan blocks belonging to λ_{i}.

Proof:

Let $T \in A_{F}(V)$ have all its distinct characteristic roots, $\lambda_{1}, \lambda_{2}, \ldots \lambda_{k}$ in F.
To prove, A basis of V can be found in which the matrix of T is of the form $\left(\begin{array}{lll}J_{1} & & \\ & J_{2} \because & \\ & & J_{k}\end{array}\right)$, where $J_{i}=\left(\begin{array}{lll}B_{i 1} & & \\ & B_{i 2} . & \\ & & B_{i r_{i}}\end{array}\right)$.

Since T has all its distinct roots in F.
By the Corollary 6.6.1, V can be written as,

$$
\begin{equation*}
V=V_{1} \oplus V_{2} \oplus \ldots \oplus V_{k}, \text { where } V_{i}=\left\{v \in V / v\left(T-\lambda_{i}\right)^{l_{i}}=0\right\} \tag{1}
\end{equation*}
$$

And T_{i} has only one characteristic root λ_{i} on V_{i}.
Again by using Lemma 6.5.1,
The matrix of $T, m(T)=\left(\begin{array}{cccc}J_{1} & 0 & \cdots & 0 \\ 0 & J_{2} & \cdots & 0 \\ \vdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & J_{k}\end{array}\right)$
We know that, $v_{i}\left(T-\lambda_{i}\right)=0, \quad(b y$ (1))
Which implies that, $T-\lambda_{i}$ is nilpotent.

By using Theorem 6.5.1,

$$
m\left(T-\lambda_{i}\right)=\left(\begin{array}{cccc}
M_{i 1} & 0 & \cdots & 0 \\
0 & M_{i 2} & \cdots & 0 \\
\vdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & M_{i r_{i}}
\end{array}\right)
$$

Now T can be written as,

$$
\begin{aligned}
T & =\lambda_{i} I+\left(T-\lambda_{i}\right) \\
\therefore m(T) & =\lambda_{i} m(I)+m\left(T-\lambda_{i}\right) \\
& =\lambda_{i}\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & 1
\end{array}\right)+\left(\begin{array}{cccc}
M_{i 1} & 0 & \cdots & 0 \\
0 & M_{i 2} & \cdots & 0 \\
\vdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & M_{i r_{i}}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\begin{array}{cccc}
\lambda_{i} & 0 & \cdots & 0 \\
0 & \lambda_{i} & \cdots & 0 \\
\vdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \lambda_{i}
\end{array}\right)+\left(\begin{array}{cccc}
M_{i 1} & 0 & \cdots & 0 \\
0 & M_{i 2} & \cdots & 0 \\
\vdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & M_{i r_{i}}
\end{array}\right) \\
& =\left(\begin{array}{ccccc}
B_{i 1} & 0 & \cdots & 0 \\
0 & B_{i 2} & \cdots & 0 \\
\vdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & b_{i r_{i}}
\end{array}\right) \\
\therefore m(T) & =\left(\begin{array}{cccc}
J_{1} & 0 & \cdots & 0 \\
0 & J_{2} & \cdots & 0 \\
\vdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & J_{k}
\end{array}\right)=\left(\begin{array}{llll}
J_{1} & & \\
& J_{2} & \\
& & J_{k}
\end{array}\right) .
\end{aligned}
$$

Canonical Forms - Rational Canonical Form - Hermitian, Unitary, Normal transformations Real Quadratic Forms.

Chapter 6: Sections6.7, 6.10 and 6.11[Omit 6.8 and 6.9]

.6.7 Canonical Forms: Rational Canonical Form

DEFINITION: (Companion Matrix)

If $f(x)=\gamma_{0}+\gamma_{1} x+\cdots+\gamma_{r-1} x^{r-1}+x^{r}$ is in $F[x]$, then the $r \times r$ matrix
$\left(\begin{array}{ccccc}0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -\gamma_{0} & -\gamma_{1} & \cdots & \cdots & -\gamma_{r-1}\end{array}\right)$ is called the companion matrix of $f(x)$. We write it as $C(f(x))$.

THEOREM 6.7.1

If $T \in A_{F}(V)$ has as minimal polynomial $p(x)=q(x)^{e}$, where $q(x)$ is a monic, irreducible polynomial in $F[x]$, then a basis of V over F can be found in which the matrix of T is of the form $\left(\begin{array}{lll}C\left(q(x)^{e_{1}}\right) & & \\ & C\left(q(x)^{e_{2}}\right) & \\ & & \ddots C\left(q(x)^{e_{r}}\right)\end{array}\right)$ where, $e_{1} \geq e_{2} \geq \cdots \geq e_{r}$.

Proof:

Since V, as a module over $F[x]$, is finitely generated and since $F[x]$ is Euclidean, we can decompose $V=V_{1} \oplus V_{2} \oplus \ldots \oplus V_{r}$, where the V_{i} are cyclic modules.

The V_{i} are thus invariant under T.
If T_{i} is the linear transformation induced by T on V_{i}, its minimal polynomial must be a divisor of $p(x)=q(x)^{e}$ so is of the form $q(x)^{e_{i}}$ where $e_{i}<e,(i=1,2, \ldots r)$.

$$
\therefore e_{1} \geq e_{2} \geq \cdots \geq e_{r}
$$

To prove, $e_{1}=e$:
Now $q(T)^{e_{1}}$ annihilates each V_{i}.
i.e., $q(T)^{e_{1}}$ annihilates V, whence $q(T)^{e_{1}}=0, T$ satisfies this polynomial $q(x)^{e}$.

$$
\Rightarrow q(x)^{e} \mid q(x)^{e_{1}}
$$

$$
\begin{equation*}
\Rightarrow e \leq e_{1} \tag{1}
\end{equation*}
$$

We have, $e_{1} \leq e$ \qquad
From (1) and (2), we get

$$
e_{1}=e
$$

Since V_{i} is a cyclic module, there exist $q(x)^{e_{i}}$ is the minimal polynomial for T_{i} on V_{i}.

By Lemma 6.7.1,

There is a basis of v_{i} in which the matrix of T_{i} is $C\left(q(x)^{e_{i}}\right)$.

By Lemma 6.6.1,

We get the basis of V and with respect to the basis of T we have,

$$
m(T)=\left(\begin{array}{lll}
C\left(q(x)^{e_{1}}\right) & & \\
& C\left(q(x)^{e_{2}}\right) & \\
& & \ddots C\left(q(x)^{e_{r}}\right)
\end{array}\right) .
$$

THEOREM 6.7.2

Let V and W be two vector spaces over F and suppose that ψ is a vector space isomorphism of V onto W. Suppose that $S \in A_{F}(V)$ and $T \in A_{F}(W)$ are such that for any $v \in V,(v S) \psi=$ $(v \psi) T$. Then S and T have the same elementary divisors.

Proof:

Claim 1

S and T have the same minimal polynomial.
By hypothesis, for any $v \in V$,

$$
\begin{aligned}
&(v S) \psi=(v \psi) T \\
&\left(v S^{2}\right) \psi=((v S) S) \psi \\
&=((v S) \psi) T \\
&=((v \psi) T) T \\
&\left(v S^{2}\right) \psi=(v \psi) T^{2} \\
& \vdots \\
&\left(v S^{m}\right) \psi=(v \psi) T^{m}
\end{aligned}
$$

If $f(x) \in F[x]$, for any $v \in V$,

$$
(v f(s)) \psi=(v \psi) f(T)
$$

If $f(s)=0$ then $(v \psi) f(T)=0$.
Since ψ maps V onto $W, f(T)=0$.
Conversely, If $g(x) \in F[x]$, for any $v \in V$, then

$$
(v g(s)) \psi=(v \psi) g(T)
$$

If $g(T)=0$, then for any $v \in V$ we have $(v g(s)) \psi=0$.
Since ψ is an isomorphism,

$$
\begin{array}{r}
v g(s)=0 \\
g(s)=0
\end{array}
$$

Thus S and T satisfies the same set of minimal polynomial in $F[x]$.
$\therefore S$ and T have the same minimal polynomial.

Claim 2

Let $p(x)=q_{1}(x)^{e_{1}}, q_{2}(x)^{e_{2}}, \ldots q_{k}(x)^{e_{k}}$ be the minimal polynomial for both S and T.
If v is a subspace of V invariant under S, then $v \psi$ is a subspace of W invariant under T.

$$
\therefore \quad(v \psi) T=v S \psi \subset v \psi
$$

Let S_{1} be the linear transformation induced by T on $v \psi$.
Now the minimal polynomial S on V is $(x)=q_{1}(x)^{e_{1}}, q_{2}(x)^{e_{2}}, \ldots q_{k}(x)^{e_{k}}$.
As we have seen in Theorem 6.7.1 and its Corollary,
We take as the $1^{\text {st }}$ elementary divisor of S as the polynomial $q_{1}(x)^{e_{1}}$ and we can find a subspace V_{1} of V, which is invariant under S.

In terms of S :

1. $\quad V=V_{1} \oplus M$, where M is invariant under S.
2. The only elementary divisor of S_{1} the linear transformation induced on V_{1} by S is $q_{1}(x)^{e_{1}}$.
3. The other elementary divisors of S are those of linear transformation S_{2} induced by S on M.

In terms of \boldsymbol{T} :

1. $W=W_{1} \oplus N$, where $W_{1}=V_{1} \psi$ and $N=M \psi$ are invariant under T.
2. The only elementary divisor of T_{1} the linear transformation induced by T on W_{1} is $q_{1}(x)^{e_{1}}$.
3. The other elementary divisor of T are those of the linear transformation T_{2} induced by T on N.

Since $\quad N=M \psi, M$ and N are isomorphic vector spaces over F under the isomorphic ψ_{2} induced by ψ.

If $u \in M$, then $u\left(S_{2}\right) \psi_{2}=(u S) \psi=(u \psi) T=\left(u \psi_{2}\right) T_{2}$.
$\therefore S_{2}$ and T_{2} are in the same relation vis-à-vis ψ_{2} as S and T were vis-à-vis ψ.

By induction on dimension S_{2} and T_{2} have the same elementary divisors.

$$
\therefore S \text { and } T \text { have the same elementary divisors. }
$$

THEOREM: 6.7.3

The elements S and T in $A_{F}(V)$ are similar in $A_{F}(V) \quad$ if and only if they have the same elementary divisors.

Proof:

Necessary Part:

Suppose S and T have the same elementary divisors. Then there are two bases
$\left\{v_{1}, v_{2}, \ldots v_{n}\right\} \times\left\{w_{1}, w_{2}, \ldots w_{n}\right\}$ of V over F such that matrix S in $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ equals the matrix of canonical form $\left(\begin{array}{cccc}R_{11} & 0 & \cdots & 0 \\ 0 & R_{12} & \cdots & 0 \\ \vdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & R_{1 i}\end{array}\right)(\because$ By Corollary 6.7.1)

We know that, if V is a finite dimensional vector space over F, then any two bases of V have the same number of elements.

$$
R_{i}=\left(\begin{array}{ccc}
C\left(q_{i}(x)^{e_{i 1}}\right) & & \\
& C\left(q_{i}(x)^{e_{i 2}}\right) & \\
& & \ddots C\left(q_{i}(x)^{e_{i r_{i}}}\right)
\end{array}\right), \text { where each } e_{i}=e_{i 1} \geq e_{i 2} \geq \cdots e_{i r_{i}}
$$

By the result,
"Let S and T be linear transformation defined on V. If the matrix on T in of $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ is equal to the matrix of S in $\left\{w_{1}, w_{2}, \ldots w_{n}\right\}$. Then there exist a linear transformation A on V defined by $V_{i} A=w_{i}, \forall i$, such that $T=A S A^{-1}$ (or) $S=A T A^{-1}$ which gives S and T are similar".

Sufficient Part:

Suppose that, S and T are similar there exist a linear transformation A on V such that $T=$ $A S A^{-1}$ (or) $S=A T A^{-1}$.
$\therefore T$ and S are same minimal polynomial.
Without loss of generality, We may assume that the minimal polynomial of T is $q(x)^{e}$, where $q(x)$ is irreducible in $F[x]$ of degree ' d '.
" The rational canonical form" states that we can decomposed V as $V=V_{1} \oplus V_{2} \oplus \ldots \oplus V_{r}$, where V_{i} is invariant under T then the linear transformation induced by T on V_{i} as the matrix $q(x)^{e_{i}}$, where $e_{1} \geq e_{2} \geq \cdots e_{r}$.
i.e. $q(x)^{e_{1}} . q(x)^{e_{2}} \ldots q(x)^{e_{r}}$ are the elementary divisors of T \qquad (A)

If $V=V_{1} \oplus V_{2} \oplus \ldots \oplus V_{s}$, where the subspace V_{j} is invariant under S, then the linear transformation induced by S on V_{j} as the matrix $q(x)^{f_{j}}$ where $f_{1} \geq f_{2} \geq \cdots \geq f_{s}$
i.e. $q(x)^{f_{1}} q(x)^{f_{2}} \ldots q(x)^{f_{s}}$ are the elementary divisor of S \qquad
From (A) and (B), we get

$$
r=s, e_{1}=f_{1}, e_{2}=f_{2}, \ldots e_{r}=f_{s}
$$

Claim

$$
r=s, e_{1}=f_{1}, e_{2}=f_{2}, \ldots e_{r}=f_{s}
$$

Suppose that, $e_{i} \neq f_{i}$
Then there exist a first inter m, such that $e_{m} \neq f_{m}$, where

$$
e_{1}=f_{1}, e_{2}=f_{2}, \ldots e_{m-1}=f_{m-1}
$$

Suppose that $e_{m}=f_{m}$, now $q(T)^{f_{m}}$ annihilates $U_{m}, U_{m+1}, \ldots, U_{s}$.
i.e. $V_{1} q(T)^{f_{m}}=0$

Consider, $V q(T)^{f_{m}}=\left(V_{1} \oplus V_{2} \oplus \ldots \oplus V_{m-1}\right) q(T)^{f_{m}}$

$$
\begin{aligned}
& =V_{1} q(T)^{f_{m}} \oplus V_{2} q(T)^{f_{m}} \oplus \ldots \oplus V_{m-1} q(T)^{f_{m}} \\
\operatorname{dim} U q(T)^{f_{m}} & =\operatorname{dim} U_{1} q(T)^{f_{m}}+\operatorname{dim} U_{2} q(T)^{f_{m}}+\cdots+\operatorname{dim} U_{m-1} q(T)^{f_{m}}
\end{aligned}
$$

$$
\left[\because \operatorname{dim} U_{i}=d f_{i} \text { and } \operatorname{dim} q(T)^{f_{m}}=d f_{m}, \text { for } i \leq m\right]
$$

$$
\begin{equation*}
\operatorname{dim}\left(U_{i} q(T)^{f_{m}}\right)=d\left(f_{i}-f_{m}\right) \tag{1}
\end{equation*}
$$

$\operatorname{dim}\left(U q(T)^{f_{m}}\right)=d\left(f_{1}-f_{m}\right)+d\left(f_{2}-f_{m}\right)+\cdots+d\left(f_{m-1}-f_{m}\right)$
But, $\quad V q(T)^{f_{m}}>V_{1} q(T)^{f_{m}} \oplus V_{2} q(T)^{f_{m}} \oplus \ldots \oplus V_{m} q(T)^{f_{m}}$
Consider, $V q(T)^{f_{m}}=\left(V_{1} \oplus V_{2} \oplus \ldots \oplus V_{r}\right) q(T)^{f_{m}}$

$$
=V_{1} q(T)^{f_{m}} \oplus V_{2} q(T)^{f_{m}} \oplus \ldots \oplus V_{r} q(T)^{f_{m}}
$$

$$
\begin{align*}
& \operatorname{dimV} q(T)^{f_{m}}=\operatorname{dim} V_{1} q(T)^{f_{m}} \oplus \operatorname{dim}_{2} q(T)^{f_{m}} \oplus \ldots \oplus \operatorname{dim}_{r} q(T)^{f_{m}} \\
& {\left[\because \operatorname{dim} V_{i} q(T)^{f_{m}} \geq d\left(e_{i}-f_{m}\right), \text { for } i \leq m\right]} \tag{2}
\end{align*}
$$

\therefore By our choice of $e_{m}, e_{1}=f_{1}, e_{2}=f_{2}, \ldots e_{m-1}=f_{m-1}$. and $e_{m}>f_{m}$
Substituting in (1), we have

$$
\operatorname{dim}\left(V q(T)^{f_{m}}\right) \geq d\left(f_{1}-f_{m}\right)+d\left(f_{2}-f_{m}\right)+\cdots+d\left(f_{m-1 .}-f_{m}\right)
$$

This is necessary and sufficient to the equality of (1).
Which is a contradiction to our assumption.

$$
\text { Hence, } r=s, e_{i}=f_{i}, \forall i
$$

Thus T and S have same elementary divisors.

COROLLARY:6.7.3

Suppose the two matrices A and B in F_{n} are similar in K_{n} where K is an extension of F. Then A and B are already similar in F_{n}.

Proof:

Suppose that $A, B \in F_{n}$ are similar in K_{n} such that $B=C^{-1} A C$ with $C \in K_{n}$.
Consider, $K^{(n)}$ is the vector space of n-tuples over K. Since K is an extension of F.

$$
\therefore F^{(n)} \leq K^{(n)}
$$

$F^{(n)}$ is a vector space over F but not over K.
\therefore The image of $F^{(n)}$ is a subset of $K^{(n)}$.
Now, $F^{(n)} C$ is a subset of $K^{(n)}$.
Let V be the vector space $F^{(n)}$ over F and W be the vector space $F^{(n)} C$ over F.
For any $v \in V$, let $v \psi=v C$.
Now, $A \in A_{F}(V)$ and $B \in A_{F}(W)$ and for any $v \in V$,

$$
(v A) \psi=v A C=v C B=(v \psi) B,\left(\because A=C B C^{-1} \Rightarrow A C=C B\right)
$$

(whence the conditions of Theorem 6.7.3 are satisfied)
Thus A and B have the same elementary divisors.

Therefore by Theorem 6.7.3, A and B are similar in F_{n}.

TRACE AND TRANSPOSE

TRACE:

Let F be a field and let A be a matrix in F_{n}. Then the trace of A is the sum of the elements on the main diagonal of A. We can write the trace of A as $\operatorname{tr} A$. Let $A=\left(\alpha_{i j}\right) \in F$ then $\operatorname{tr} A=$ $\sum_{i=1}^{n} \alpha_{i i}$, where $A=\left(\alpha_{i j}\right)=\left(\begin{array}{cccc}\alpha_{11} & \alpha_{12} & \cdots & \alpha_{1 n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2 n} \\ \vdots & \vdots & \vdots & \vdots \\ \alpha_{n 1} & \alpha_{n 2} & \cdots & \alpha_{n n}\end{array}\right)$.

LEMMA 6.8.1

For $A, B \in F_{n}$ and $\lambda \in F$,

1. $\operatorname{tr}(\lambda A)=\lambda \operatorname{tr} A$.
2. $\operatorname{tr}(A+B)=\operatorname{tr} A+\operatorname{tr} B$.
3. $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.

Proof:

Let $A=\left(\alpha_{i j}\right), B=\left(\beta_{i j}\right)$ then $A B=\left(\gamma_{i j}\right)$ where $\gamma_{i j}=\sum_{k=1}^{n} \alpha_{i k} \beta_{k j}$

1. To prove $\operatorname{tr}(\lambda A)=\lambda \operatorname{tr} A$

Let $A=\left(\alpha_{i j}\right)$. Then
$\operatorname{tr}(A)=\sum_{i=1}^{n} \alpha_{i i}$
$\operatorname{tr}(\lambda A)=\sum_{i=1}^{n}\left(\lambda \alpha_{i i}\right)$

$$
=\lambda \sum_{i=1}^{n}\left(\alpha_{i i}\right)
$$

$\therefore \operatorname{tr}(\lambda A)=\lambda \operatorname{tr} A$
2. To prove $\operatorname{tr}(A+B)=\operatorname{tr} A+\operatorname{tr} B$

$$
\begin{aligned}
& \text { Let } A=\left(\alpha_{i j}\right), B=\left(\beta_{i j}\right) \text {. Then } \\
& \qquad \begin{aligned}
& A+B=\left(\alpha_{i j}\right)+\left(\beta_{i j}\right) \\
& \operatorname{tr}(A+B)=\sum_{i=1}^{n}\left(\alpha_{i i}+\beta_{i i}\right) \\
&=\sum_{i=1}^{n} \alpha_{i i}+\sum_{i=1}^{n} \beta_{i i}
\end{aligned} \\
& \therefore \operatorname{tr}(A+B)=\operatorname{tr} A+\operatorname{tr} B
\end{aligned}
$$

4. To prove $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.

Let $A B=\left(\gamma_{i j}\right)$ where $\gamma_{i j}=\sum_{k=1}^{n} \alpha_{i k} \beta_{k j}$ and let $B A=\left(\mu \gamma_{i j}\right)$ where $\mu_{i j}=\sum_{k=1}^{n} \beta_{i k} \alpha_{k j}$. Thus,

$$
\operatorname{tr}(A B)=\sum_{i=1}^{n} \gamma_{i i}=\sum_{i=1}^{n}\left(\sum_{k=1}^{n} \alpha_{i k} \beta_{k i}\right)
$$

If we interchange the order of summation in this last sum, we get

$$
\begin{aligned}
\operatorname{tr}(A B) & =\sum_{k=1}^{n}\left(\sum_{i=1}^{n} \alpha_{i k} \beta_{k i}\right) \\
& =\sum_{k=1}^{n}\left(\sum_{i=1}^{n} \beta_{k i} \alpha_{i k}\right) \\
& =\sum_{k=1}^{n} \mu_{k k} \\
\therefore \operatorname{tr}(A B) & =\operatorname{tr}(B A) .
\end{aligned}
$$

COROLLARY

If A is invertible then $A C A^{-1}=\operatorname{tr} C$.

Proof:

Given A is invertible, then we have

$$
\begin{equation*}
A A^{-1}=1 \tag{1}
\end{equation*}
$$

\qquad
Consider, $B=C A^{-1}$

$$
\begin{aligned}
& A B=A C A^{-1} \\
& \operatorname{tr}(A B)=\operatorname{tr}(B A)=\operatorname{tr}\left(C A^{-1} A\right)=\operatorname{tr} C .\left(\because A A^{-1}=1\right)
\end{aligned}
$$

DEFINITION: (Trace of T)

If $T \in A(V)$ then $\operatorname{tr} T$, then the trace of T is the trace of $m_{1}(T)$ where $m_{1}(T)$ is the matrix of T in some basis of V.

$$
\text { i.e. } \operatorname{tr} T=\operatorname{tr} m_{1}(T)
$$

LEMMA : 6.8.2

If $T \in A(V)$ then $\operatorname{tr} T$ is the sum of the characteristic roots of T (using each characteristic root as often as its multiplicity).

Proof:

Assume that T is a matrix in F_{n}.
By using the result,
" If K is the splitting field for the minimum polynomial of T over F then in K_{n} ", we get
T can be brought to its Jordan form J, J is a matrix on whose diagonal appear the characteristic roots of T each root appearing as often as its multiplicity.

Thus, $\operatorname{tr} J=$ sum of the characteristic root T
J is of the form, $\quad J=A T A^{-1}$

$$
\operatorname{tr} J=\operatorname{tr}\left(A T A^{-1}\right)=\operatorname{tr} T=\text { sum of the characteristic root of } T .
$$

LEMMA: 6.8.3

If F is a field of characteristic zero and if $T \in A_{F}(V)$ is such that $\operatorname{tr}\left(T^{i}\right)=0, \forall i \geq 1$, then T is nilpotent.

Proof:

Since $T \in A_{F}(V)$ and T satisfies some minimal polynomial,

$$
\begin{aligned}
& p(x)=x^{m}+\alpha_{1} x^{m-1}+\cdots+\alpha_{m} \\
& p(T)=T^{m}+\alpha_{1} T^{m-1}+\cdots+\alpha_{m}
\end{aligned}
$$

Then, $\operatorname{tr}(p(T))=\operatorname{tr}\left(T^{m}+\alpha_{1} T^{m-1}+\cdots+\alpha_{m}\right)$

$$
\therefore \operatorname{tr} T^{m}+\alpha_{1} \operatorname{tr} T^{m-1}+\cdots+\operatorname{tr} \alpha_{m}=0
$$

Given $\operatorname{tr}\left(T^{i}\right)=0, \quad \forall i \geq 1$
Then we get, $\operatorname{tr}\left(a_{m}\right)=0$
If $\operatorname{dim}(V)=n$ then $\operatorname{tr}\left(a_{m}\right)=n \alpha_{m}$ where $n \alpha_{m}=0$. But the characteristic of F is zero.

$$
\therefore n \neq 0 \Rightarrow \alpha_{m}=0
$$

Since the constant term of the minimal polynomial $T=0$.
By a theorem,
" If V is a finite dimensional over F then $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for T is not zero"
$\therefore T$ is not invertible
i.e. T is singular.
\therefore Zero is the characteristic root of T.
Consider T as a matrix in F_{n}, also as a matrix in K_{n}, where K contains all characteristic roof T.
By a theorem,
" If $T \in A(V)$ has all its characteristic roots in F_{n} then there is a basis of V in which the matrix of T is triangular".

We can bring T to triangular form. Since zero is the characteristic root of T we can bring it of the form,
$\left(\begin{array}{cccc}0 & 0 & \cdots & 0 \\ \beta_{2} & \alpha_{2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ \beta_{n} & * & \cdots & \alpha_{n}\end{array}\right)=\left(\begin{array}{cc}0 & 0 \\ * & T_{2}\end{array}\right)$ where $T_{2}=\left(\begin{array}{cccc}\alpha_{2} & 0 & \cdots & 0 \\ * & 0 & \cdots & \alpha_{n}\end{array}\right)$
T_{2} is an $(n-1) \times(n-1)$ matrix.
Now, $\quad T^{k}=\left(\begin{array}{cc}0 & 0 \\ 0 & T_{2}{ }^{k}\end{array}\right)$
Hence $\operatorname{tr}\left(T^{k}\right)=0, \forall k \geq 1$ either induction on ' n ' or repeating the arguments on T_{2} used for T we get,
$\alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}$ are the characteristic root.

$$
\text { i.e. } \alpha_{2}=\alpha_{3}=\cdots \alpha_{n}=0
$$

Thus when T is brought to triangular form all its entries on the main diagonals are zero.
$\therefore T$ is nilpotent.

DEFINITION: (Transpose)

If $A=\left(\alpha_{i j}\right) \in F_{n}$ then the transpose of A, written as A^{\prime}, is the matrix $A^{\prime}=\left(\gamma_{i j}\right)$ where $\gamma_{i j}=\alpha_{j i}$ for each i and j.

LEMMA: 6.8.5

For all $A, B \in F_{n}$,

1. $\left(A^{\prime}\right)^{\prime}=A$
2. $(A+B)^{\prime}=A^{\prime}+B^{\prime}$
3. $(A B)^{\prime}=B^{\prime} A^{\prime}$

Proof:

(i)

$$
\begin{aligned}
& \left(A^{\prime}\right)^{\prime}=A \\
& \text { Let } A=\left(\alpha_{i j}\right) \\
& \qquad A^{\prime}=\left(\beta_{i j}\right) \text {, where } \beta_{i j}=\alpha_{j i}, \forall i, j \\
& \quad\left(A^{\prime}\right)^{\prime}=\left(\gamma_{i j}\right) \text {, where } \gamma_{i j}=\beta_{j i}, \text { which implies that } \gamma_{i j}=\beta_{j i}=\alpha_{i j}
\end{aligned}
$$

$$
\therefore\left(A^{\prime}\right)^{\prime}=\beta_{j i}=\alpha_{i j}=A
$$

(ii) $(A+B)^{\prime}=A^{\prime}+B^{\prime}$

Let $A=\left(\alpha_{i j}\right)$

$$
\begin{aligned}
& A^{\prime}=\left(a_{i j}\right) \text { where }\left(a_{i j}\right)=\alpha_{j i}, \forall i, j \\
& B=\left(\beta_{i j}\right) \\
& B^{\prime}=\left(b_{i j}\right) \text { where }\left(b_{i j}\right)=\beta_{j i}, \forall i, j \\
& A+B=\left(\gamma_{i j}\right) \text { where } \gamma_{i j}=\alpha_{i j}+\beta_{i j}, \forall i, j \\
& \begin{array}{r}
(A+B)^{\prime}=\delta_{i j} \Rightarrow \delta_{i j}+\gamma_{i j}=\alpha_{j i}+\beta_{j i}=\left(a_{i j}\right)+\left(b_{i j}\right) \in A^{\prime}+B^{\prime} \\
\therefore(A+B)^{\prime}=A^{\prime}+B^{\prime}
\end{array}
\end{aligned}
$$

(iii) $(A B)^{\prime}=B^{\prime} A^{\prime}$

Let $A=\left(a_{i j}\right), A^{\prime}=\left(\alpha_{i j}\right)$ where $\left(\alpha_{i j}\right)=a_{j i}$
Let $B=\left(b_{i j}\right), B^{\prime}=\left(\beta_{i j}\right)$ where $\beta_{i j}=\left(b_{j i}\right)$
Let $A B=\left(C_{i j}\right)$, where $\left(C_{i j}\right)=\sum_{k=1}^{n} a_{i k} b_{k j}$
$(A B)^{\prime}=\left(d_{i j}\right) \quad$ where $\left(d_{i j}\right)=\left(C_{j i}\right)$
$B^{\prime} A^{\prime}=\lambda_{j i}$ where $\lambda_{j i}=\sum_{k=1}^{n} \beta_{i k} \alpha_{k j}$
Consider for every i, j,

$$
\begin{aligned}
& \lambda_{j i}=\sum_{k=1}^{n} \beta_{i k} \alpha_{k j} \\
& \qquad \begin{array}{l}
\lambda_{j i}=\sum_{k=1}^{n} b_{k i} a_{j k} \\
\quad=\sum_{k=1}^{n} a_{j k} b_{k i}=C_{j i}=\left(d_{i j}\right)=(A B)^{\prime} \\
\quad \therefore(A B)^{\prime}=B^{\prime} A^{\prime}
\end{array}
\end{aligned}
$$

Definition:

Symmetric matrix:
If $A \in F_{n}$ be a square matrix is said to be symmetric if $A^{\prime}=A$.
Eg:

$$
A=\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right] \quad A^{\prime}=\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right]
$$

Skew symmetric matrix:
If $A \in F_{n}$ be a skew square matrix is said to be skew symmetric if $A^{\prime}=-A$.

Eg: $\left[\begin{array}{cc}0 & -a \\ a & 0\end{array}\right]$
Note 1:
In a skew symmetric matrix the leading diagonal elements are zero.
Note 2:
If A is square matrix $A+A^{\prime}$ is symmetric and $A-A^{\prime}$ is skew symmetric $A A^{\prime}$ and $A^{\prime} A$ are symmetric.

Adjoint on F_{n} :
A mapping $*: F_{n} \rightarrow F_{n}$ is called adjoint on F_{n} if (i) $\left(A^{*}\right)^{*}=A$
(ii) $(A+B)^{*}=A^{*}+B^{*}$
(iii) $(A B)^{*}=B^{*} A^{*} \forall A, B \in F_{n}$

Hermitian adjoint on F_{n} :
Let consider the field of complex number for every matrix $A=\left(\alpha_{i j}\right)$ and let $A^{*}=\gamma_{i j}$
where $\gamma_{i j}=\bar{\alpha}_{j i}$ in this case the $*$ is called the Hermitian adjoint on F_{n}.
Hermitian matrix:
Let f be a field of complex number and $*$ be a Hermitian adjoint every square matrix is called hermitian if $A^{*}=A$.

Eg:

$$
\left[\begin{array}{ccc}
1 & -1+2 i & 3+4 i \\
-1-2 i & -2 & 3 \\
3-4 i & 3 & -2
\end{array}\right]
$$

Remark:

1. If $A \neq 0 \in F_{n}$ then $\operatorname{tr}\left(A A^{*}\right)>0$
2. Let $A_{1}, A_{2}, \ldots A_{n} \in F_{n}$ if $A_{1} A_{1}{ }^{*}+A_{2} A_{2}{ }^{*}+\cdots+A_{k} A_{k}{ }^{*}=0$ then $A_{1}=A_{2}=\cdots=A_{k}=0$
3. If λ is a scalar matrix then $\lambda^{*}=\bar{\lambda}$

Result :

The characteristic root of a Hermitian matrix are all real .
Proof :
Given that $A \in F_{n}$ be a hermitian matrix
To prove that the characteristic roots of A is real.
We shall prove this by the method of contradiction
Assume that the roots of A is a complex number ie) $\alpha+i \beta$ where α, β are real, by using the definition of characteristic roots $A-(\alpha+i \beta)$ is singular.

$$
\begin{aligned}
& \Rightarrow[A-(\alpha+i \beta)][A-(\alpha-i \beta)] \text { is singular } \\
& \Rightarrow(A-(\alpha+i \beta)][A-(\alpha-i \beta)] \text { is not invertible } \\
& \Rightarrow[(A-\alpha)+i \beta][(A-\alpha)-i \beta] \text { is not invertible } \\
& \Rightarrow(A-\alpha)^{2}-(i \beta)^{2} \text { is not invertible } \\
& \Rightarrow(A-\alpha)^{2}+\beta^{2} \text { is not invertible }
\end{aligned}
$$

By using the theorem,
If v is finite dimension vector space over F and if $A \in F_{n}$ is not invertible then there exist a matrix $B \neq 0$ such that $A B=B A=0$ there exist a matrix $C \neq 0$ such that
$C\left[(A-\alpha)^{2}+\beta^{2}\right]=0$
Multiply C^{*} on R.H.S of both sides
$C\left[(A-\alpha)^{2}+\beta^{2}\right] C^{*}=0$
$C(A-\alpha)(A-\alpha) C^{*}+C \beta \beta C^{*}=0 \rightarrow(1)$
Takes $D=C(A-\alpha)$

$$
E=C \beta
$$

$$
\begin{array}{rlrl}
D^{*} & =(A-\alpha)^{*} C^{*} & E^{*} & =(C \beta)^{*} \\
=\left(A^{*}-\alpha^{*}\right) C^{*} & & =\beta^{*} C^{*} \\
& =(A-\alpha) C^{*} & & =\beta C^{*}
\end{array}
$$

Since A is hermitian $\Rightarrow A^{*}=A$ and α, β are real $\Rightarrow \alpha^{*}=\alpha, \beta^{*}=\beta$
From (1) $\Rightarrow D D^{*}+E E^{*}=0$

$$
\Rightarrow D=E=0[\text { since by remark } 2]
$$

In particular $E=0$

$$
\begin{aligned}
& \beta C=0 \\
& \beta=0 \quad[\text { since } C \neq 0]
\end{aligned}
$$

Which contradicts our assumption is wrong
The characteristic roots of hermitian matrix A is real.
Result:
For $A \in F_{n}$. The real characteristic roots are $A A^{*}$ are non negative.
Proof:
Given that $A \in F_{n}$
$A^{*}=A$
$\left(A A^{*}\right)^{*}=\left(A^{*}\right)^{*} A^{*}$

$$
=A A^{*}
$$

$\therefore A A^{*}$ is hermitian
To prove the real characteristic roots of $A A^{*}$ is positive
We shall prove this by the method of contradiction
Let α be the characteristic roots of $A A^{*}$ which is negative
ie) $\alpha=-\beta^{2}$ where β is real by using the definition of a characteristic root

$$
\begin{aligned}
& A A^{*}-\left(-\beta^{2}\right) \text { is singular } \\
& A A^{*}+\beta^{2} \text { is singular }
\end{aligned}
$$

By the theorem there exist $C \neq 0$ such that $C\left(A A^{*}+\beta^{2}\right)=0$
Multiply C^{*} in R.H.S on both sides $C\left(A A^{*}+\beta^{2}\right) C^{*}=0$

$$
C A A^{*} C^{*}+C \beta \beta C^{*}=0
$$

Take $D=C A$

$$
E=C \beta
$$

$$
D^{*}=(C A)^{*} \quad E^{*}=(C \beta)^{*}
$$

$$
=A^{*} C^{*} \quad=\beta^{*} C^{*}
$$

(1) $\Rightarrow D D^{*}+E E^{*}=0($ since by remark 2$)$
$\Rightarrow D=E=0$
In particular $E=0$

$$
\begin{aligned}
& \Rightarrow C \beta=0 \\
& \Rightarrow \beta=0(\text { since } C \neq 0)
\end{aligned}
$$

Which contradicts our assumption that α is negative
So our assumption is wrong
\therefore The real characteristic roots of $A A^{*}$ are non - negative.

Definition:

Hermitian Unitary and Normal Transformation:
In this section F we denote the field of complex number.
Fact 1:
A polynomial with coefficient which are complex number has all its roots in complex field.

Fact 2:

The only irreducible non constant polynomial over the field of real number are either of degree 1 or of degree 2 .

Lemma 6.10.1:
If $T \epsilon A(V)$ is such that the inner product $(v T, v)=0 \forall v \in V$ then $T=0$ (Here V is an inner product space over the complex field)

Proof:
Gn $T \epsilon A(V)$ such that inner product $(v T, v)=0 \forall v \in V \rightarrow$ (1)
Here v is the inner product space over the complex field.

$$
\begin{aligned}
& u, w \in v \\
& u+w \in v \quad u+w=v \text { sub in equation } \\
& u+w \in v
\end{aligned}
$$

$$
\begin{aligned}
(1) \Rightarrow & ((u+w) T,(u+w))=0 \\
& ((u T+w T),(u+w))=0 \\
& (u T, u)+(u T, w)+(w T, u)+(w T, w)=0 \text { by equation } 1 \\
& (u T, w)+(w T, u)=0 \rightarrow 2
\end{aligned}
$$

Take $w=i w$

$$
\left.\begin{array}{c}
(u T, i w)+(i w T, u)=0 \\
\Rightarrow i(u T . w)+i(w T, u)=0 \\
-i(u T, w)+i(w t, u)=0 \\
\div \text { by } i,-(u T, w)+(w T, u)=0 \rightarrow 3 \\
3+3
\end{array}\right)
$$

Take $u=w T$

$$
\begin{aligned}
& \Rightarrow(w T, w T)=0 \\
& \Rightarrow w T=0 \\
& \Rightarrow T=0(\because w \neq 0)
\end{aligned}
$$

Note:
If v is inner product space over the real field .This lemma is false.
Let $v=\{(\alpha, \beta) / \alpha, \beta$ are real $\}$
Let $T:(\alpha, \beta) \rightarrow(-\beta, \alpha)$
Let $v \in V \Rightarrow v=(\alpha, \beta)[\because(v T, v)]=0$

$$
\begin{aligned}
& {[(\alpha, \beta) T,(\alpha, \beta)]=0} \\
& ((-\beta, \alpha),(\alpha, \beta))=0 \\
& -\beta \alpha+\alpha \beta=0
\end{aligned}
$$

$$
\Rightarrow(v T, v)=0 \quad \forall v \in V \text { and } T \neq 0(\because T:(\alpha, \beta) \rightarrow(-\beta, \alpha))
$$

Hence if v is the inner product space over the real field then lame is not proved.
Definition:
Unitary Linear Transformation:
The linear transformation $T \in A(V)$ is said to be unitary

$$
(u T, v T)=(u, v), \forall u \cdot v \in V
$$

Problem:

1. If A and B are similar iff $\operatorname{tr}(A)=\operatorname{tr}(B)$

Proof
Necessary part:
Given that A and B are similar
To prove $\operatorname{tr}(A)=\operatorname{tr}(B)$

$$
\begin{aligned}
& A=C B C^{-1} \\
& \begin{aligned}
\operatorname{tr}(A) & =\operatorname{tr}\left(C B C^{-1}\right) \\
& =\operatorname{tr}(B)
\end{aligned}
\end{aligned}
$$

Sufficient part:
To prove A and B are similar
Given that $\operatorname{tr}(A)=\operatorname{tr}(B)$

$$
\begin{aligned}
& \operatorname{tr}\left(A C C^{-1}\right)=\operatorname{tr}(B) \\
& \operatorname{tr}(B)=\operatorname{tr}\left(C A C^{-1}\right) \\
\Rightarrow & B=C A C^{-1} \\
\Rightarrow & A \text { and } B \text { are similar }
\end{aligned}
$$

2. $S=\left\{A \in F_{n} / A^{*}=A\right\}$ and $K=\left\{A \epsilon F_{n} / A^{*}=-A\right\}$ prove i) If $A, B \epsilon S$ then $A B+B A \epsilon S$
ii) If $A, B \epsilon K$ then $(A B-B A) \epsilon K$ iii) If $A \epsilon S, B \epsilon K$ then $(A B-B A) \epsilon S$ and $(A B+B A) \epsilon S$ proof:
i) To prove $(A B+B A) \epsilon S$
ie) To prove $(A B+B A)^{*}=(A B+B A)$

$$
\begin{array}{r}
A \epsilon S \Rightarrow A^{*}=A \\
B \epsilon S \Rightarrow B^{*}=B
\end{array}
$$

Now consider $(A B+B A)^{*}=(A B)^{*}+(B A)^{*}$

$$
\begin{aligned}
& =B^{*} A^{*}+A^{*} B^{*} \\
& =B A+A B(\because \text { by equ } 1) \\
& =A B+B A \\
& \Rightarrow(A B+B A) \epsilon S
\end{aligned}
$$

ii) To prove $(A B-B A) \epsilon K$
ie) To prove $(A B-B A)^{*}=-(A B-B A)$

$$
\begin{aligned}
& A \epsilon K \Rightarrow A^{*}=-A \\
& B \epsilon K \Rightarrow B^{*}=-B
\end{aligned}
$$

Now consider $(A B-B A)^{*}=-(A B)^{*}-(B A)^{*}$

$$
\begin{aligned}
& =B^{*} A^{*}-A^{*} B^{*} \\
& =(-B)(-A)-(-A)(-B)(\because \text { by equ } 2) \\
& =B A-A B \\
& =-(A B-B A)
\end{aligned}
$$

$$
\Rightarrow A B-B A \in K
$$

iii) $A \epsilon S, B \epsilon K$ then $A B-B A \epsilon S$ and $A B+B A \epsilon K$

$$
\left.\begin{array}{l}
A \in S \Rightarrow A^{*}=A \\
B \in K \Rightarrow B^{*}=-B
\end{array}\right\} \rightarrow(3
$$

To prove $(A B-B A) \epsilon S$
ie) To prove $(A B-B A)^{*}=-(A B-B A)$
Consider $(A B-B A)^{*}=-(A B)^{*}-(B A)^{*}$

$$
\begin{aligned}
& =B^{*} A^{*}-A^{*} B^{*} \\
& =(-B) A-A(-B) \\
& =B A+A B \\
& =(A B-B A)
\end{aligned}
$$

$$
\Rightarrow A B-B A \in S
$$

To prove $(A B=B A) \epsilon K$
ie) To prove $(A B+B A)^{*}=-(A B+B A)$
Consider $(A B+B A)^{*}=(A B)^{*}+(B A)^{*}$

$$
\begin{aligned}
& =B^{*} A^{*}+A^{*} B^{*} \\
& =(-B) A+A(-B) \\
& =-B A-A B
\end{aligned}
$$

$$
(A B+B A)^{*}=-(A B+B A)
$$

$$
\Rightarrow(A B+B A) \epsilon K
$$

Lemma 6.10.2:
If the inner product $(v T, v T)=(v, v) \forall v \in V$ then T is unitary \rightarrow
Proof:
ie)To prove $(u T, v T)=(u, v) \forall u, v \in V$
Let $u, v \in V$

$$
\begin{aligned}
& \Rightarrow u+v \in V \\
& \Rightarrow u+v=v
\end{aligned}
$$

Sub $u+v=v$ in equation 1

$$
\begin{aligned}
& 1 . \Rightarrow((u+v) T,(u+v) T)=((u+v),(u+v)) \\
& \Rightarrow((u T+v T),(u T+v T))=((u+v),(u+v)) \\
& (u T, u T)+(u T, v T)+(v T, u T)+(v T, v T)=(u, u)+(u, v)+(v, u)+(v, v) \\
& \Rightarrow(u T, v T)+(v T, u T)=(u, v)+(v, u) \rightarrow
\end{aligned}
$$

Take $v=i v$

$$
\begin{aligned}
(2) & (u T, i v T)+(i v T, u T)=(u, i v)+(i v, u) \\
& -i(u T, v T)+i(v T, u T)=i(u, v)+i(v, u) \\
\div & b y i \\
- & (u T, v T)+(v T, u T)=-(u, v)+(v, u) \rightarrow 3
\end{aligned}
$$

Adding equation 2 and 3 we get

$$
\begin{aligned}
& 2(u T, v T)=2(u, v) \\
& \Rightarrow(u T, v T)=(u, v) \forall u, v \in V \quad \Rightarrow T \text { is unitary }
\end{aligned}
$$

Theorem 6.10.1:
The Linear Transformation T on V is unitary iff it takes an orthonormal basis of V into an Orthonormal basis of V.

Proof:
Necessary part:
Suppose $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ be an Orthonormal basis of v then inner product
$\left(v_{i}, v_{j}\right)=0$ for $(i \neq j)$
$\left(v_{i}, v_{i}\right)=1$ for $(i=j) \rightarrow(1$
We have to prove if T is unitary then $\left\{v_{1} T, v_{2} T, \ldots v_{n} T\right\}$ is also an Orthonormal basis of v Consider $\left(v_{i} T, v_{j} T\right)=\left(v_{i}, v_{j}\right) \quad[\because T$ is unitary $]$

$$
=0 \quad[\because \text { by equation } 1]
$$

$$
\therefore\left(v_{i} T, v_{j} T\right)=0 \forall i \neq j
$$

Consider $\left(v_{i} T, v_{i} T\right)=\left(v_{i}, v_{i}\right) \quad[\because t$ is unitary $]$

$$
=1 \quad[\text { by equation } 1]
$$

$\therefore\left\{v_{1} T, v_{2} T, \ldots v_{n} T\right\}$ is an Orthonormal basis of v.
Sufficient part:

If $T \epsilon A(V)$ such that both $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ and $\left\{v_{1} T, v_{2} T, \ldots v_{n} T\right\}$ are Orthonormal basis of v then prove T is unitary

$$
\left.\begin{array}{c}
\left(v_{i}, v_{j}\right)=0 \text { for }(i \neq j) \\
\left(v_{i}, v_{i}\right)=1
\end{array}\right\} \rightarrow
$$

Similarly $\left(v_{i} T, v_{j} T\right)=0, \forall i \neq j$

$$
\left(v_{i} T, v_{i} T\right)=1 \quad \rightarrow \quad(2)
$$

Let $u, w \in v \Rightarrow u=\sum_{i=1}^{n} \alpha_{i} v_{i}$ and $w=\sum_{i=1}^{n} \beta_{i} v_{i}$
Consider $(u, w)=\left(\sum_{i=1}^{n} \alpha_{i} v_{i}, \sum_{i=1}^{n} \beta_{i} v_{i}\right)$

$$
\begin{aligned}
(u, w) & =\left(\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}, \beta_{1} v_{1}+\cdots+\beta_{n} v_{n}\right) \\
& =\alpha_{1} \bar{\beta}_{1}\left(v_{1}, v_{1}\right)+\alpha_{2} \bar{\beta}_{2}\left(v_{2}, v_{2}\right)+\cdots+\alpha_{n} \bar{\beta}_{\mathrm{n}}\left(v_{n}, v_{n}\right)
\end{aligned}
$$

Here $\left(v_{i}, v_{j}\right)=0$

$$
=\alpha_{1} \bar{\beta}_{1}+\alpha_{2} \bar{\beta}_{2}+\ldots+\alpha_{n} \bar{\beta}_{\mathrm{n}}
$$

Similarly $u T=\sum_{i=1}^{n} \alpha_{i} v_{i} T$ and $w T=\sum_{i=1}^{n} \beta_{i} v_{i} T$
Consider $(u T, w T)=\left(\sum_{i=1}^{n} \alpha_{i} v_{i} T, \sum_{i=1}^{n} \beta_{i} v_{i} T\right)$

$$
\begin{aligned}
& (u T, w T)=\left(\alpha_{1} v_{1} T+\cdots+\alpha_{n} v_{n} T, \beta_{1} v_{1} T+\cdots+\beta_{n} v_{n} T\right) \\
& \quad=\alpha_{1} \bar{\beta}_{1}\left(v_{1} T, v_{1} T\right)+\alpha_{2} \bar{\beta}_{2}\left(v_{2} T, v_{2} T\right)+\cdots+\alpha_{n} \bar{\beta}_{\mathrm{n}}\left(v_{n} T, v_{n} T\right)
\end{aligned}
$$

Here $\left(v_{i} T, v_{j} T\right)=0$

$$
=\alpha_{1} \bar{\beta}_{1}+\alpha_{2} \bar{\beta}_{2}+\ldots+\alpha_{n} \bar{\beta}_{\mathrm{n}}
$$

$$
(u T, w T)=\sum_{i=1}^{n} \alpha_{i} \bar{\beta}_{\mathrm{i}}
$$

$(u T, w T)=(u, w), u, w \epsilon V$
T is unitary.
Lemma 6.10.3:
If $T \epsilon A(V)$ then given any $v \epsilon V$ there exist an unique element $w \epsilon \mathcal{v}$ depending on v and T.Such that $(u T, v)=(u, w) \forall u \in V$

Proof:
Given that $T \epsilon A(V)$
To prove for any $v \in V$ there exist an unique element $w \in V$ depending on v and T
Such that $(u T, v)=(u, w) \forall u \in v$
Let $\left\{u_{1} u_{2}, \ldots u_{n}\right\}$ be the orthonormal basis of V

$$
\begin{aligned}
\therefore\left(u_{i}, u_{j}\right) & =0 \\
& \left(u_{i}, u_{i}\right)=1
\end{aligned}
$$

Define $w=\sum_{i=1}^{n} \overline{\left(u_{i} T, v\right)} u_{i}$
Then $\left(u_{i} w\right)=\left(u_{i}, \sum_{i=1}^{n} \overline{\left(u_{i} T, v\right)} u_{i}\right.$

$$
\begin{aligned}
\left(u_{i} w\right) & =\left(u_{i}, \overline{\left(u_{1} T, v\right)} u_{1}+\overline{\left(u_{2} T, v\right)} u_{2}+\cdots+\overline{\left(u_{n} T, v\right)} u_{n}\right) \\
& =\left(u_{i}, \overline{\left(u_{1} T, v\right)} u_{1}\right)+\left(u_{i}, \overline{\left(u_{2} T, v\right)} u_{2}\right)+\cdots+\left(u_{i}, \overline{\left(u_{n} T, v\right)} u_{n}\right) \\
& =\left(u_{1} T, v\right)\left(u_{i}, u_{1}\right)+\cdots+\left(u_{n} T, v\right)\left(u_{i}, u_{n}\right) \\
& =\left(u_{1} T, v\right)(0)+\cdots+\left(u_{n} T, v\right)(0) \\
\left(u_{i} w\right) & =\left(u_{i} T, v\right)
\end{aligned}
$$

To prove w is unique:
Ie) To prove $w_{1}=w_{2}$
Suppose that $(u T, v)=\left(u, w_{1}\right)$

$$
\begin{aligned}
& (u T, v)=\left(u, w_{2}\right) \\
\Rightarrow & \left(u, w_{1}\right)=\left(u, w_{2}\right) \\
\Rightarrow & \left(u, w_{1}\right)-\left(u, w_{2}\right)=0 \\
\Rightarrow & \left(u, w_{1}-w_{2}\right)=0
\end{aligned}
$$

Then take $u=w_{1}-w_{2}$

$$
\Rightarrow\left(w_{1}-w_{2}, w_{1}-w_{2}\right)=0
$$

$$
\begin{aligned}
& \Rightarrow w_{1}-w_{2}=0 \\
& \Rightarrow w_{1}=w_{2}
\end{aligned}
$$

Definition:
Hermitian adjoint of T :
If $T \epsilon A(V)$ then hermitian adjoint of T is denoted by T^{*} and is defined by

$$
(u T, v)=\left(u, v T^{*}\right) \forall u, v \in V .
$$

Lemma 6.10.4:
If $T \epsilon A(V)$ then $T^{*} \epsilon A(V)$
i) $\left(T^{*}\right)^{*}=T$
ii) $(S+T)^{*}=S^{*}+T^{*}$
iii) $(\lambda S)^{*}=\bar{\lambda} S^{*}$
iv) $(S T)^{*}=T^{*} S^{*} \forall S, T \in A(v)$ and $\alpha \in F$
proof:
Given that $T \epsilon A(V)$ ie) T is linear transformation belongs to $A(v)$

$$
\begin{gathered}
\therefore(v+w) T=v T+w T \\
(\lambda v) T=\lambda(v T)
\end{gathered}
$$

To prove $T^{*} \epsilon A(V)$
Ie) $(v+w) T^{*}=v T^{*}+w T^{*}$
$(\lambda v) T^{*}=\lambda\left(v T^{*}\right)$
Let $u, v, w \in V$
Consider $\left(u(v+w) T^{*}\right)=(u T, v+w)$

$$
\begin{aligned}
= & (u T, v)+(u T, w) \\
& =\left(u, v T^{*}+w T^{*}\right) \\
\Rightarrow(u+w) T^{*} & =v T^{*}+w T^{*}
\end{aligned}
$$

Consider $\left(u(\lambda v) T^{*}\right)=(u T, \lambda v)$

$$
\begin{aligned}
= & \bar{\lambda}(u T, v) \\
& =\left(u, \lambda v T^{*}\right) \\
\Rightarrow(\lambda v) T^{*}= & \lambda\left(v T^{*}\right)
\end{aligned}
$$

i) To prove $\left(T^{*}\right)^{*}=T$

Consider $\left(u, v\left(T^{*}\right)^{*}\right)=\left(u T^{*}, v\right)$

$$
\begin{aligned}
& =\left(\overline{\left.v, u T^{*}\right)}\right. \\
& =(u, v T)
\end{aligned}
$$

$$
\left(T^{*}\right)^{*}=T
$$

ii) To prove $(S+T)^{*}=S^{*}+T^{*}$

Consider $\left(u, v(S+T)^{*}\right)=(u(S+T), v)$

$$
\begin{aligned}
& =(u S+u T, v) \\
& =\left(u, v S^{*}+v T^{*}\right)
\end{aligned}
$$

$$
(S+T)^{*}=S^{*}+T^{*}
$$

iii) To prove $(\lambda S)^{*}=\bar{\lambda} S^{*}$

Consider $\left(u, v(\lambda S)^{*}\right)=(u(\lambda S), v)$

$$
\begin{aligned}
& =\lambda(u S+v) \\
& =\left(u, v\left(\bar{\lambda} S^{*}\right)\right) \\
(\lambda S)^{*} & =\bar{\lambda} S^{*}
\end{aligned}
$$

iv) To prove $(S T)^{*}=T^{*} S^{*}$

Consider $\left(u, v(S T)^{*}\right)=(u(S T), v)$

$$
\begin{aligned}
& =((u S) T, v) \\
& =\left(u S, v T^{*}\right) \\
& =\left(u, v T^{*} S^{*}\right) \\
& =v T^{*} S^{*}
\end{aligned}
$$

$$
(S T)^{*}=T^{*} S^{*}
$$

Lemma 6.10.5:
If $T \epsilon A(V)$ is unitary iff $T T^{*}=1$
Proof:
Necessary part:
Given that is unitary

$$
\therefore(u T, v T)=(u, v) \forall u, v \in V
$$

To prove $T T^{*}=1$
$\operatorname{Consider}\left(u, v\left(T T^{*}\right)\right)=(u T, v T)$

$$
\begin{aligned}
& \quad=(u, v) \\
& \Rightarrow v T T^{*}=v \\
& T T^{*}=1
\end{aligned}
$$

Sufficient part:

Given that $T T^{*}=1$
To prove that T is unitary
Ie) To prove $(u T, v T)=(u, v)$
Consider $(u, v)=\left(u, v T T^{*}\right)$

$$
=(u T, v T)
$$

T is unitary.
Note:
A unitary transformation is non singular and its inverse is just a hermitian adjoint also $T T^{*}=$ $1 \Rightarrow T^{*} T=1$

Theorem 6.10.2:
If $\left\{v_{1} v_{2} \ldots v_{n}\right\}$ is an Orthonormal basis of v and if $m(T) \epsilon A(V)$ in this basis is $\left(\alpha_{i j}\right)$ then matrix T^{*} in this basis is $\beta_{i j}$ where $\beta_{i j}=\overline{\alpha_{j i}}$

Proof:
Given $\left\{v_{1} v_{2} \ldots v_{n}\right\}$ is an orthonormal basis of v and matrix $m(T) \epsilon A(V)$ and $\left(\alpha_{i j}\right)=$ matrix of $(T) \epsilon A(V)$ in this basis,

To prove $\beta_{i j}=$ matrixof $T^{*} \epsilon A(v)$ in this basis where $\beta_{i j}=\overline{\alpha_{j i}}$
Define $v_{i} T=\sum_{j=1}^{n} \alpha_{i j} v_{j}$

$$
\begin{aligned}
& v_{i} T^{*}=\sum_{j=1}^{n} \beta_{i j} v_{j}, v_{j} \\
&\left(v_{i} T^{*}, v_{j}\right)=\left(\sum_{j=1}^{n} \beta_{i j} v_{j}, v_{j}\right) \\
&=\left(\beta_{i 1} v_{1}+\beta_{i 2} v_{2}+\cdots+\beta_{i j} v_{j}+\cdots+\beta_{i n} v_{n}, v_{j}\right) \\
&=\left(\beta_{i 1} v_{1}, v_{j}+\beta_{i 2} v_{2}, v_{j}+\cdots+\beta_{i j} v_{j}, v_{j}+\cdots+\beta_{i n} v_{n}, v_{j}\right) \\
&=\beta_{i 1}\left(v_{1}, v_{j}\right)+\beta_{i 2}\left(v_{2}, v_{j}\right)+\cdots+\beta_{i j}\left(v_{j}, v_{j}\right)+\cdots+\beta_{\text {in }}\left(v_{n}, v_{j}\right) \\
&=\beta_{i 1}(0)+\beta_{i 2}(0)+\cdots+\beta_{i j}(1)+\cdots+\beta_{i n}(0)
\end{aligned}
$$

$$
\left(v_{i} T^{*}, v_{j}\right)=\beta_{i j}
$$

$$
\beta_{i j}=\left(v_{i} T^{*}, v_{j}\right)
$$

$$
=\left(v_{i}, v_{j} T\right)=\left(v_{i},\left(\sum_{i=1}^{n} \alpha_{j i}, v_{i}\right)\right.
$$

$$
=\left(v_{i}, \alpha_{j 1} v_{1}\right)+\left(v_{i}, \alpha_{j 2} v_{2}\right)+\cdots+\left(v_{i}, \alpha_{j i} v_{i}\right)+\cdots+\left(v_{i}, \alpha_{j n} v_{n}\right)
$$

$$
=\overline{\alpha_{j 1}}\left(v_{i}, v_{1}\right)+\overline{\alpha_{j 2}}\left(v_{i}, v_{2}\right)+\cdots+\overline{\alpha_{j i}}\left(v_{i}, v_{i}\right)+\cdots+\overline{\alpha_{j n}}\left(v_{i}, v_{n}\right)
$$

$$
=\overline{\alpha_{j 1}}(0)+\overline{\alpha_{j 2}}(0)+\cdots+\overline{\alpha_{j i}}(1)+\cdots+\overline{\alpha_{j n}}(0)
$$

$$
\Rightarrow \beta_{i j}=\overline{\alpha_{j 1}}
$$

Definition:
Hermitian transformation:
$T \epsilon A(V)$ is called hermitian transformation or self adjoint if $T^{*}=T$
Skew hermitian transformation:

$$
T \epsilon A(V) \text { is called Skew hermitian transformation if } T^{*}=-T
$$

Result:
If $S \in A(v)$

$$
S=\frac{S+S^{*}}{2}+i\left(\frac{S-S^{*}}{2 i}\right)
$$

Where $\frac{S+S^{*}}{2}$ and $\left(\frac{S-S^{*}}{2 i}\right)$ are Hermitian ie) $S=A+i B$ where A and B are Hermitian.
Theorem 6.10.3:
All the characteristic roots of hermitian transformation are real.
Proof:
Let $T \epsilon A(V)$ be the hermitian transformation
Let λ be the characteristic roots of T there exist $a v \neq 0$ such that $v T=\lambda v \rightarrow \bigcap$
Consider $\lambda(v . v)=(\lambda v, v)$

$$
\begin{aligned}
&=(v T, v) \\
&=\left(v, v T^{*}\right) \\
&=(v, v T) \\
&=\bar{\lambda}(v, v) \\
& \Rightarrow \lambda(v, v)-\bar{\lambda}(v, v)=0 \\
& \lambda-\bar{\lambda}=0 \\
& \lambda=\bar{\lambda}
\end{aligned}
$$

Hence λ is real.
Lemma 6.10.6:
If $S \epsilon A(V)$ and if $v S S^{*}=0$ then $v S=0$
Consider $\left(v S S^{*}, v\right)=(0, v)=0$

$$
\left(v S S^{*}, v\right)=0
$$

$$
\begin{aligned}
& (v S, v S)=0 \\
& v S=0
\end{aligned}
$$

Definition:
Normal linear transformation:
$T \epsilon A(V)$ is said to be a normal if $T T^{*}=T^{*} T$
Lemma 6.10.7:
If N is normal linear transformation and if $v N=0, v \in V$

$$
v N^{*}=0
$$

Proof:
Given that $v N=0$ for $v \in V$
To prove $v N^{*}=0$
Consider $\left(v N^{*}, v N^{*}\right)=\left(v N^{*} N, v\right)$

$$
\begin{aligned}
& =\left(v N N^{*}, v\right) \\
& =\left(0 . N^{*}, v\right) \\
& =(0, v)
\end{aligned}
$$

$$
\left(v N^{*}, v N^{*}\right)=0
$$

$$
v N^{*}=0
$$

Corollary 1 :
If λ is the characteristic roots of the normal transformation N and if $v N=\lambda v$
then $v N^{*}=\bar{\lambda} v$
Proof:
Given that λ is the characteristic roots of the normal transformation N and $v N=\lambda v \rightarrow(1$
Then To prove $v N^{*}=\bar{\lambda} v \mathrm{~N}$ is normal $\Rightarrow N N^{*}=N^{*} N$
Consider $(N-\lambda)(N-\lambda)^{*}=(N-\lambda)\left(N^{*}-\bar{\lambda}\right)$

$$
\begin{aligned}
&=N N^{*}-N \bar{\lambda}-\lambda N^{*}+\lambda \bar{\lambda} \\
&=N^{*}(N-\lambda)-\bar{\lambda}(N-\lambda) \\
&(N-\lambda)(N-\lambda)^{*}=(N-\lambda)\left(N^{*}-\bar{\lambda}\right) \\
& \Rightarrow(N-\lambda) \text { is normal }
\end{aligned}
$$

Consider $v(N-\lambda)=v N-v \lambda$

$$
=v \lambda-v \lambda
$$

$$
v(N-\lambda)=0
$$

By the lemma "If N is normal and if $v N=0$ then $v N^{*}=0$

$$
\begin{aligned}
\because & (N-\lambda) \text { is normal } \\
& \Rightarrow v(N-\lambda)=0 \\
& \Rightarrow v(N-\lambda)^{*} \\
& \Rightarrow v N^{*}=v \bar{\lambda} \\
& \therefore v N^{*}=\bar{\lambda} v
\end{aligned}
$$

Corollary 2:
If T is unitary and λ is the characteristic roots of T then $|\lambda|=1$
To prove:
Given that T is unitary and λ is the characteristic root of T
To prove $|\lambda|=1$
$\therefore T$ is unitary

$$
\begin{aligned}
& \Rightarrow T T^{*}=T^{*} T=1 \\
& \Rightarrow T \text { is normal }
\end{aligned}
$$

$\because \lambda$ is the characteristic root of T
There exist $v \neq 0$ such that $v T=\lambda u$
By the corollary $v T^{*}=\bar{\lambda} v$

Consider $v=v .1$

$$
\begin{aligned}
&=v T T^{*} \\
&=\lambda v T^{*} \\
& 1=\lambda \bar{\lambda} \\
& 1=|\lambda|
\end{aligned}
$$

Corollary:
If T is hermitian and $v T^{k}=0, k \geq 1$ then $v T=0$
Proof:
Given that T is hermitian and $v T^{k}=0, k \geq 1$

$$
\Rightarrow T=T^{*}
$$

To prove $v T=0$
We show that if $v T^{2^{m}}=0$ then $v T=0$ for if $S=T^{2^{m-1}}$

$$
\begin{aligned}
& S^{*}=\left(T^{2^{m-1}}\right)^{*} \\
& =T^{2^{m-1}} \\
& \begin{aligned}
S^{*} & =S \\
S S^{*} & =\left(T^{2^{m-1}}\right)\left(T^{2^{m-1}}\right) \\
& =T^{\left(2^{m-1}+2^{m-1}\right)} \\
& =T^{2.2^{m-1}} \\
& =T^{2^{m-1+1}} \\
& =T^{2^{m}}
\end{aligned}
\end{aligned}
$$

Continuing down in this way we obtain $v T=0$ if $v T^{k}=0$ then $v T^{2 m}=0$ for $2 \mathrm{~m}>k$ Hence $v T=0$.

Lemma 6.10.8: If N is Normal and if $\mathrm{vN}^{\mathrm{k}}=0$ then $\mathrm{vN}=0$.
Proof:
Let $S=N^{*}$, To prove that S is Hermitian.
Consider, $\mathrm{S}^{\mathrm{k}}=\left(\mathrm{NN}^{*}\right)^{\mathrm{k}}$

$$
=(\mathrm{N})^{\mathrm{k}}\left(\mathrm{~N}^{*}\right)^{\mathrm{k}}
$$

$$
\mathrm{v} \mathrm{~S}^{\mathrm{k}}=\mathrm{v}(\mathrm{~N})^{\mathrm{k}}\left(\mathrm{~N}^{*}\right)^{\mathrm{k}}
$$

$=0 .\left(\mathrm{N}^{*}\right)^{\mathrm{k}}$
$v S^{k}=0$

By the Corollary to Lemma 6.10.6, If T is Hermitian and $\mathrm{v} \mathrm{T}^{\mathrm{k}}=0$ then $\mathrm{vT}=0$

$$
\begin{aligned}
\mathrm{vS}^{\mathrm{k}}=0 & \text { which Implies } \mathrm{vS}=0 \\
& \text { implies } \mathrm{v}\left(\mathrm{NN}^{*}\right)=0 \\
& \text { implies } \mathrm{v}\left(\mathrm{NN}^{*}\right)=0
\end{aligned}
$$

By the Lemma, "If $\mathrm{s} \in \mathrm{A}(\mathrm{v})$ and if $\mathrm{vSS}^{*}=0$ then $\mathrm{vS}=0$ ".
Implies vN=0.

Corollary:

If N is Normal and if for $\lambda \in F, v(N-\lambda)^{k}=0$ then $v N=\lambda v$.
Proof:

Given that N is Normal $===>\mathrm{NN}^{*}=\mathrm{N}^{*} \mathrm{~N}$

To prove that $(\mathrm{N}-\lambda)$ is normal.
That is To prove that $(\mathrm{N}-\lambda)(\mathrm{N}-\lambda)^{*}=(\mathrm{N}-\lambda)^{*}(\mathrm{~N}-\lambda)$
Consider $(\mathrm{N}-\lambda)(\mathrm{N}-\lambda)^{*}=(\mathrm{N}-\lambda)\left(\mathrm{N}^{*}-\bar{\lambda}\right)$

$$
\begin{aligned}
& =N^{*} N-N \bar{\lambda}-\lambda N^{*}+\lambda \bar{\lambda} \\
& =N^{*} N-\lambda N^{*}-N \bar{\lambda}+\lambda \bar{\lambda} \\
= & N^{*}(N-\lambda)-\bar{\lambda}(N-\lambda) \\
= & \left(N^{*}-\bar{\lambda}\right)(N-\lambda) \\
= & (N-\lambda)^{*}(N-\lambda)
\end{aligned}
$$

Which implies ($\mathrm{N}-\lambda$) is Normal.
By the above Lemma, $\mathrm{v}(\mathrm{N}-\lambda)^{\mathrm{k}}=0$

$$
\begin{aligned}
& ===>v(N-\lambda)=0 \\
& ===>v N-v \lambda=0 \\
& ===>v N-=v \lambda \\
& ==\Rightarrow \mathrm{vN}-=\lambda \mathrm{v}
\end{aligned}
$$

Lemma :6.10.9

Let N be a Normal transformation and suppose that λ and μ are 2 distinct characteristic roots of N. If v and w are in V and are such that $v N=\lambda v, w N=\mu w$ then $(\mathrm{v}, \mathrm{w})=0$.

Proof:

Given that N is Normal and λ and μ are 2 distinct characteristic roots of N and $\mathrm{vN}=\lambda \mathrm{v}$, $w N=\mu w$.

To prove that $(\mathrm{v}, \mathrm{w})=0$.

Consider vN $=\lambda v$
$(\mathrm{vN}, \mathrm{w})=(\lambda \mathrm{v}, \mathrm{w})$
$=\lambda(\mathrm{v}, \mathrm{w})$

Consider wN= $\mu \mathrm{w}$.

In the Corollary, "If λ is a characteristic root of the normal transformation N and if $v N=\lambda v$ then $v N^{*}=\bar{\lambda} v^{\prime}$.

We get, $\mathrm{wN}^{*}=\mathrm{w}$

$$
\begin{aligned}
& \left(\mathrm{v}, \mathrm{w} \mathrm{~N}^{*}\right)=(\mathrm{v}, \mathrm{r} \mathrm{w}) \\
& =\mu(\mathrm{v}, \mathrm{w})
\end{aligned}
$$

$(\mathrm{vN}, \mathrm{w})=\mu(\mathrm{v}, \mathrm{w})$

From (1) \& (2) ===>

$$
\begin{aligned}
& \lambda(\mathrm{v}, \mathrm{w})=\mu(\mathrm{v}, \mathrm{w}) \\
& \lambda(\mathrm{v}, \mathrm{w})-\mu(\mathrm{v}, \mathrm{w})=0 \\
& (\lambda-\mu)(\mathrm{v}, \mathrm{w})=0 \\
& ===>(\mathrm{v}, \mathrm{w})=0 .
\end{aligned}
$$

Theorem : 6.10.4

If N is a Normal linear transformation on v , then there exists an orthonormal basis consisting of Characteristic vectors of N , in which the matrix of N is diagonal. Equivalently, if N is a normal matrix there exists an unitary matrix U such that $\mathrm{UNU}^{-1}\left(=\mathrm{UNU}^{*}\right)$ is diagonal.

Proof:

Prove the corollary If N is Normal and if for $\lambda \in F, v(N-\lambda)^{k}=0$ then $v N=\lambda v$

Let N be Normal. Let $\lambda_{1}, \lambda_{2}, \ldots \lambda_{k}$ be the distinct characteristic roots of N .

By the corollary, "If all the distinct characteristic roots $\lambda_{1}, \lambda_{2}, \ldots \lambda_{k}$ of T lying F then V can be written as $\mathrm{V}=\mathrm{V}_{1} \oplus \mathrm{~V}_{2} \oplus \ldots . . \oplus \mathrm{V}_{\mathrm{k}}$ where $\mathrm{v}_{\mathrm{i}}=\left\{\mathrm{v} \in \mathrm{V} / \mathrm{v}\left(\mathrm{T}-\lambda_{i}\right)^{l_{i}}=0\right\}$ and where T_{i} has only one Characteristics roots λ_{i} on v_{i}.

We can decompose $\mathrm{V}=\mathrm{V}_{1} \oplus \mathrm{~V}_{2} \oplus \ldots . . \oplus \mathrm{V}_{\mathrm{k}}$ where every $\mathrm{v}_{\mathrm{i}} \in \mathrm{V}_{\mathrm{i}}$ is annihilated by $\left(\mathrm{N}-\lambda_{i}\right)^{n_{i}}$.

By the above corollary, v_{i} consists only of characteristic vectors of N belonging to λ_{i}.
The inner product of V induces an inner product on v_{i}. By the theorem, let v be a finite dimensional inner product space then v has an orthonormal set as a basis. V_{i} has an orthonormal basis related to this inner product. By the lemma, elements lying in distinct v_{i} are orthogonal.

Thus putting together the orthonormal basis are v_{i} 's provides as with an orthonormal basis of v . This basis consists of characteristic vectors of N . Thus in this basis the matrix of n is diagonal.

Corollary: 1

If T is an unitary transformation then there is an orthonormal basis in which the matrix of t is diagonal equivalently if T is a unitary matrix then there is a unitary matrix U such that U^{-1} ($=$ UTU *) is diagonal.

Corollary: 2

If T is a Hermitian linear transformation then there is an orthonormal basis in which the matrix of t is diagonal equivalently if T is a Hermitian matrix then there is a unitary matrix U such that UTU^{-1} (= UTU^{*}) is diagonal.

Lemma 6.10.10

The Normal transformation N is
(i) Hermitian<===> its characteristics roots are real
(ii) Unitary <===> its characteristics roots are all of absolute value 1 .

Proof:

Given that N is Hermitian and N is Normal.
(i) $===>\mathrm{N}$ has only real characteristic roots. Hence if N is Hermitian then its characteristics roots are real.

If N is normal and has only real characteristics roots. To p.t N is Hermitian.

Consider for sum unitary matrix $\mathrm{U}, \mathrm{D}=\mathrm{UNU}^{-1}\left(=\mathrm{UNU}^{*}\right)$ where D is a diagonal matrix with real entries on the diagonal.

$$
===>\mathrm{D}^{*}=\mathrm{D}
$$

Consider D ${ }^{*}=\left(\mathrm{UNU}^{*}\right)^{*}$

$$
=\left(U^{*}\right)^{*} N^{*} U^{*}
$$

$$
\mathrm{D}^{*}=\mathrm{U} \mathrm{~N}^{*} \mathrm{U}^{*}
$$

$$
\mathrm{D}^{*}=\mathrm{D}===>\mathrm{UN}^{*} \mathrm{U}^{*}=\mathrm{UN} \mathrm{U}
$$

$$
===>N^{*}=\mathrm{N}
$$

$===>\mathrm{N}$ is Hermitian.
(ii) Proof:
G.T N is unitary and N is normal. Let λ be the characteristics roots of N . by the corollary, " If T is unitary and if λ is a characteristics roots of T ".

Then $|\lambda|=1$, we have the characteristics roots of N are all of absolute value 1 . Given that N is Normal and its characteristics roots are all of absolute value 1.
(ie)., $\lambda \bar{\lambda}=1$ where λ is a characteristic roots of N .

Converse:

To Prove N is unitary.

By the Defn of characteristic roots, $\mathrm{vN}=\lambda \mathrm{v}----(1)$ with $\mathrm{v} \neq 0$ in V .
By the corollary, if λ is a characteristic root of the Normal transformation N and $v N=\lambda v$ then $v N^{*}=\bar{\lambda} v$.

We get, $\quad v N^{*}=\bar{\lambda} v$

$$
\lambda\left(\mathrm{vN}^{*}\right)=\lambda(\bar{\lambda} \mathrm{v})
$$

$$
\begin{aligned}
& \lambda \mathrm{vN}^{*}=\lambda \bar{\lambda} \mathrm{v} \\
& \mathrm{vNN}^{*}=1 . \mathrm{v} \\
& \mathrm{vNN}^{*}=\mathrm{v} .1 \\
& ===\mathrm{NN}^{*}=1
\end{aligned}
$$

$===>\mathrm{N}$ is unitary.
Note $: \operatorname{tr}\left(\mathrm{AA}^{*}\right)=0<===>\mathrm{A}=0$

Lemma: 6.10.11

If N is Normal and $\mathrm{AN}=\mathrm{NA}$, then $\mathrm{A}^{\mathrm{N}}=\mathrm{N}^{*} \mathrm{~A}$.

Proof:

Given that N is Normal and $\mathrm{AN}=\mathrm{NA}$

To P.T, $\mathrm{A} \mathrm{N}^{*}=\mathrm{N}^{*} \mathrm{~A}$. (ie)., $\mathrm{X}=\mathrm{A}^{\mathrm{N}}{ }^{*}=\mathrm{N}^{*} \mathrm{~A}=0$.
(ie)., to prove $\operatorname{tr}\left(\mathrm{XX}^{*}\right)=0$
Consider, $\mathrm{XX}^{*}=\left(\mathrm{A} \mathrm{N}^{*}-\mathrm{N}^{*} \mathrm{~A}\right)\left(\mathrm{A} \mathrm{N}^{*}-\mathrm{N}^{*} \mathrm{~A}\right)^{*}$
$=\left(A N^{*}-N^{*} A\right)\left[\left(N^{*}\right)^{*} A^{*}-A^{*}\left(N^{*}\right)^{*}\right]$
$=\left(\mathrm{A} \mathrm{N}^{*}-\mathrm{N}^{*} \mathrm{~A}\right)\left(\mathrm{NA}^{*}-\mathrm{A}^{*} \mathrm{~N}\right)$
$=\left(A N^{*}-N^{*} A\right) N A^{*}-\left(A N^{*}-N^{*} A\right) A^{*} N$
$=N\left[\left(A N^{*}-N^{*} A\right) A^{*}\right]-\left[\left(A N^{*}-N^{*} A\right) A^{*}\right] N$
$=$ NB-BN=0 $\quad[$ since $A N=N A===>A N-N A=0]$.
$\left(\mathrm{XX}^{*}\right)=0$
$\operatorname{tr}\left(\mathrm{XX}^{*}\right)=\operatorname{tr}(0)=0$

By the above Note, $\mathrm{X}=0$
(ie)., $\left(\mathrm{A} \mathrm{N}^{*}-\mathrm{N}^{*} \mathrm{~A}\right)=0$
$==\Rightarrow \mathrm{A} \mathrm{N}^{*}=\mathrm{N}^{*} \mathrm{~A}$.

Definition :

T Positive (OR) Positive Definite (OR) Non-Negative

If the Hermitian Linear transformation $\mathrm{T} \geq 0$ and in addition (vT, v) >0 for $\mathrm{v} \neq 0$ then T is called T Positive (OR) Positive Definite.

Lemma : 6.10.12

The Hermitian Linear transformation T is Non-Negative (Positive) <===> All of its characteristics roots are Non-Negative (Positive).

Proof:

Given that T is Non-Negative (ie)., $\mathrm{T} \geq 0$.

Let λ be a characteristics root of T and $\mathrm{vT}=\lambda \mathrm{v}$ for some $\mathrm{v} \neq 0$

Consider vT $=\lambda \mathrm{v}$
$==>(\mathrm{vT}, \mathrm{v})=(\lambda \mathrm{v}, \mathrm{v})$
$0 \leq(\mathrm{vT}, \mathrm{v})=\lambda(\mathrm{v}, \mathrm{v})$
$==>0 \leq \lambda(\mathrm{v}, \mathrm{v})$
$==>\lambda(\mathrm{v}, \mathrm{v}) \geq 0$
$==>\lambda \geq 0$
===> All of its characteristics roots are Non-Negative (Positive).

Converse Part :

Given that T is Hermitian with non-negative characteristics roots.

To P.T T ≥ 0.

Let $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ be an orthonormal basis consisting of characteristics vectors of T .
Let $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ be the non-negative characteristics roots of T under the basis $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$.
$===>\mathrm{v}_{\mathrm{i}} \mathrm{T}=\lambda_{\mathrm{i}} \mathrm{v}_{\mathrm{i}} \quad----(1)$ where $\lambda_{\mathrm{i}} \geq 0$
Define $\mathrm{v}=\sum_{i=1}^{n} \alpha_{i} \mathrm{v}_{\mathrm{i}}, \mathrm{v} \in \mathrm{V}$
$\mathrm{vT}=\sum_{i=1}^{n} \alpha_{i} \mathrm{v}_{\mathrm{i}} \mathrm{T}$

$$
=\sum_{i=1}^{n} \alpha_{i} \lambda_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}(\text { by (1)) }
$$

$\mathrm{vT}=\sum_{i=1}^{n} \alpha_{i} \lambda_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}$
$(\mathrm{vT}, \mathrm{v})=\left(\sum_{i=1}^{n} \alpha_{i} \lambda_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}, \sum_{i=1}^{n} \alpha_{i} \mathrm{v}_{\mathrm{i}}\right)$

$$
\begin{aligned}
& =\left(\lambda_{1} \alpha_{1} v_{1}+\ldots .+\lambda_{n} \alpha_{n} v_{n}, \alpha_{1} v_{1}+\ldots .+\alpha_{n} v_{n}\right) \\
& =\left(\lambda_{1} \alpha_{1} v_{1}, \alpha_{1} v_{1}\right)+\ldots . .+\left(\lambda_{n} \alpha_{n} v_{n}, \alpha_{n} v_{n}\right) \\
= & \lambda_{1} \alpha_{1}\left(v_{1}, \alpha_{1} v_{1}\right)+\ldots .+\lambda_{n} \alpha_{n}\left(v_{n}, \alpha_{n} v_{n}\right) \\
= & \lambda_{1} \alpha_{1} \overline{\alpha_{1}}\left(v_{1}, v_{1}\right)+\ldots .+\lambda_{n} \alpha_{n} \overline{\alpha_{n}}\left(v_{n}, v_{n}\right) \\
= & \lambda_{1} \alpha_{1} \overline{\alpha_{1}}(1)+\ldots .+\lambda_{n} \alpha_{n} \overline{\alpha_{n}}(1) \quad\left(\text { since }\left(v_{i}, v_{i}\right)=1,\left(v_{i}, v_{j}\right)=0\right)
\end{aligned}
$$

$\operatorname{Here}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)=0$, we are not having the terms $\lambda_{1} \alpha_{1} \overline{\alpha_{1}}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right), \ldots \ldots$.
$(\mathrm{vT}, \mathrm{v})=\sum_{i=1}^{n} \alpha_{i} \lambda_{\mathrm{i}} \overline{\alpha_{i}}$
$(\mathrm{vT}, \mathrm{v}) \geq 0$
Since by the lemma, " if $T \in A(V)$ is such that $(v T, v)=0$ for all $v \in V$ then $T=0$ ".

We have $\mathrm{T} \geq 0$.

Lemma 6.10.13

$\mathrm{T} \geq 0<===>\mathrm{T}=\mathrm{AA}^{*}$ for some A.

Proof :

(i) Consider $\mathrm{T}=\mathrm{AA}^{*}$

To P.t $\mathrm{T} \geq 0$ (ie)., $\mathrm{AA}^{*} \geq 0$
Consider, $\left(\mathrm{v} \mathrm{AA}^{*}, \mathrm{v}\right)=\left(\mathrm{vA}, \mathrm{v}\left(\mathrm{A}^{*}\right)^{*}\right.$

$$
=(\mathrm{vA}, \mathrm{vA})
$$

$\geq 0 \quad$ (by the defn of Inner Product)
$\left(v_{A A}{ }^{*}, \mathrm{v}\right) \geq 0$
$===>\mathrm{AA}^{*} \geq 0 \quad$ (by the defn of T Positive)
$==>\mathrm{T} \geq 0$
(ii) $\quad \mathrm{T} \geq 0 \quad$ To P.t $\mathrm{T}=\mathrm{AA}^{*}$

Consider the Unitary matrix U such that $\mathrm{UTU}^{*}=\left(\begin{array}{c}\sqrt{\left(\lambda_{1}\right)} \\ \ldots \\ \sqrt{\left(\lambda_{n}\right)}\end{array}\right)$ where each λ_{i} is the characteristic root of T.
since $\mathrm{T} \geq 0===$ each $\lambda_{i} \geq 0$
Let $S=\left(\begin{array}{c}\sqrt{\left(\lambda_{1}\right)} \\ \ldots \\ \sqrt{\left(\lambda_{n}\right)}\end{array}\right)$ since each $\lambda_{i} \geq 0$ which implies $\sqrt{\lambda_{i}} \geq 0$
$===>S$ is Hermitian
(ie)., $S=S^{*}$.
To Prove that USU* is Hermitian.
Consider (USU*) ${ }^{*}=\left(U^{*}\right)^{*} S^{*} U^{*}$

$$
\begin{aligned}
& =\mathrm{US}^{*} \mathrm{U}^{*} \\
& =\mathrm{US} \mathrm{U}^{*}
\end{aligned}
$$

$$
\begin{equation*}
===>\left(\mathrm{USU}^{*}\right)^{*}=\mathrm{US} \mathrm{U}^{*} \tag{1}
\end{equation*}
$$

US U^{*} is Hermitian.

Consider $\left(\mathrm{U}^{*} \mathrm{SU}\right)^{2}=\left(\mathrm{U}^{*} \mathrm{SU}\right)\left(\mathrm{U}^{*} \mathrm{SU}\right)$

$$
\begin{aligned}
& =\left(\mathrm{U}^{*} \mathrm{SU} \mathrm{U}^{*} \mathrm{SU}\right) \\
& =\left(\mathrm{U}^{*} \mathrm{~S} .1 . \mathrm{SU}\right) \\
& =\left(\mathrm{U}^{*} \mathrm{~S}^{2} \mathrm{U}\right) \\
& =\mathrm{U}^{*}\left(\begin{array}{c}
\sqrt{\left(\lambda_{1}\right)} \\
\ldots \\
\sqrt{\left(\lambda_{n}\right)}
\end{array}\right)^{2} \mathrm{U} \\
& =\mathrm{U}^{*}\left(\begin{array}{c}
\sqrt{\left(\lambda_{1}\right)} \\
\ldots \\
\sqrt{\left(\lambda_{n}\right)}
\end{array}\right) \mathrm{U} \\
= & \mathrm{U}^{*}\left(\mathrm{UT} \mathrm{U} \mathrm{U}^{*}\right) \mathrm{U} \\
& =\mathrm{U}^{*} \mathrm{UT} \mathrm{U} \mathrm{U}^{*} \mathrm{U} \\
\left(\mathrm{U}^{*} \mathrm{SU}\right)^{2}= & 1 . \mathrm{T} .1=\mathrm{T}-\ldots---(2)
\end{aligned}
$$

Take $\mathrm{A}=\left(\mathrm{U}^{*} \mathrm{SU}\right)$

$$
===>A^{*}=\left(U^{*} S U\right)^{*}
$$

$$
\mathrm{A}^{*}=\left(\mathrm{U}^{*} \mathrm{SU}\right) \quad \mathrm{By}(1)
$$

$$
(2)===>\mathrm{T}=\left(\mathrm{U}^{*} \mathrm{SU}\right)^{2}=\left(\mathrm{U}^{*} \mathrm{SU}\right) \quad\left(\mathrm{U}^{*} \mathrm{SU}\right)
$$

$$
\mathrm{T}=\mathrm{AA}^{*} \text { for some } \mathrm{A} .
$$

6.11 Real Quadratic forms

Definition :Quadratic form associated with A.

Let V be a Real Inner Product space and suppose that a is a (real) symmetric linear transformation on V . The real valued function $\mathrm{Q}(\mathrm{v})$ defined on V by $\mathrm{Q}(\mathrm{v})=(\mathrm{vA}, \mathrm{v})$ is called the quadratic form associated with A .

Definition :Congruent Matrices

Two real symmetric matrices of A and B are congruent matrices if there is a nonsingular real matrix T such that $\mathrm{B}=\mathrm{TAT}^{-1}$.

Lemma 6.11.1

Congruence is an equivalence relation.

Proof:

Let us denote A is congruent to B has $\mathrm{A} \cong \mathrm{B}$
(i) Reflexive:

To p.t $\mathrm{A} \cong \mathrm{A}$
$\mathrm{A}=\mathrm{IAI}^{-1}$ where I is an identity matrix. $===>\mathrm{A} \cong \mathrm{A}$.
(ii) Symmetric:

Consider A§ B To P.t B $\cong \mathrm{A}$
$\mathrm{A} \cong \mathrm{B}===>\mathrm{B}=\mathrm{TAT}^{-1}$ (where T is non-singular)
$\mathrm{T}^{-1} \mathrm{~B}=\mathrm{T}^{-1} \mathrm{TA} \mathrm{T}^{-1}$
$=\mathrm{IA} \mathrm{T}^{-1}$
$\mathrm{T}^{-1} \mathrm{BT}=\mathrm{A} \mathrm{T}^{-1} \mathrm{~T}$
$\mathrm{T}^{-1} \mathrm{BT}=\mathrm{AI}$
$\mathrm{T}^{-1} \mathrm{BT}=\mathrm{A}$
$\mathrm{T}^{-1} \mathrm{~B}\left(\mathrm{~T}^{-1}\right)=\mathrm{A}$

Let $\left(\mathrm{T}^{-1}\right)=\mathrm{S}===>\mathrm{SBS}^{-1}=\mathrm{A}$ where S is non-singular.
$===>\mathrm{B} \cong \mathrm{A}$.
(iii) Transitive:

Let $A \cong B \& B \cong C$. To p.t $A \cong C$.

$$
\begin{aligned}
& \mathrm{A} \cong \mathrm{~B}===\mathrm{B}=\mathrm{TAT}^{-1} \\
& \begin{aligned}
& \mathrm{B} \cong \mathrm{C}===>\mathrm{C}=\mathrm{SBS}^{-1} \text { where } \mathrm{S} \& \mathrm{~T} \text { are non-singular. } \\
& \begin{aligned}
\mathrm{C} & =\mathrm{SBS}^{-1}
\end{aligned}=\mathrm{S}\left(\mathrm{TAT}^{-1}\right) \mathrm{S}^{-1} \\
&=(\mathrm{ST}) \mathrm{A}\left(\mathrm{~T}^{-1} \mathrm{~S}^{-1}\right) \\
&=(\mathrm{ST}) \mathrm{A}(\mathrm{ST})^{-1}=\mathrm{RAR}^{-1}
\end{aligned} \\
& \begin{aligned}
\mathrm{C} & =\mathrm{RAR}^{-1}
\end{aligned} \\
& ==\mathrm{C} \cong \mathrm{C} \cong
\end{aligned}
$$

Hence congruence is an equivalence relation.

Definition :Signature of A

If A is a real symmetric matrix congruent to $\left(\begin{array}{lll}I_{r} & & \\ & -I_{s} & \\ & & 0_{t}\end{array}\right)$ then r-s is called the
signature of A . The signature of a quadratic form is defined to be the signature of the associated symmetric matrix.

Result (1):

Let A be a symmetric matrix and let us consider associated quadratic form
$Q(v)=(v A, v)$. If T is non-singular and real given $v \in F^{(n)}, v=w T$ for some $w \in F^{(n)}$. Hence $(\mathrm{vA}, \mathrm{v})=(\mathrm{wTA}, \mathrm{wT})$.

Thus A and ATA ${ }^{-1}$ effectively define the same quadratic form.

Result (2):

Given a real orthogonal matrix , we can fixed an orthogonal matrix T such that TQT${ }^{1}=\mathrm{TQT}^{\prime}$.

Theorem 6.11.1 (Sylvester's Law)

Given be the real symmetric matrix A there is an invertible matrix T such that
$\mathrm{TAT}^{-1}=\left(\begin{array}{ccc}I_{r} & & \\ & -I_{s} & \\ & & 0_{t}\end{array}\right)$ where I_{r} and I_{s} are respectively rxr and s x s unit matrices and 0_{t} is the tx t zero matrix. The integer $\mathrm{r}+\mathrm{s}$ which is be rank of A and $\mathrm{r}-\mathrm{s}$ which is the signature of A ,characterize the congruence class of A. (ie)., two real symmetric matrices are congruent iff they have the same rank and signature.

Proof:

A isreal symmetric matrix , its characteristic roots are real. Let $\lambda_{1}, \lambda_{2}, \ldots \lambda_{r}$ be its characteristic roots.Let $-\lambda_{r+1},-\lambda_{r+2}, \ldots,-\lambda_{r+s}$ be its negative characteristic roots .

We can find a real orthogonal matrix C , such that
$\mathrm{CAC}^{-1}=\mathrm{CAC}^{\prime}=\left(\begin{array}{llllllll}\lambda_{1} & & & & & & & \\ & \ddots & & & & & & \\ & & \lambda_{r} & & & & & \\ & & & -\lambda_{r+1} & & & & \\ & & & & \ddots & & & \\ & & & & & -\lambda_{r+s} & & \\ & & & & & & \ddots & \\ & & & & & & & 0_{t}\end{array}\right)$

Where $\mathrm{t}=\mathrm{n}-\mathrm{r}$ s. (here $\mathrm{n}=\mathrm{r}+\mathrm{s}+\mathrm{t}$). Let T be the real diagonal matrix
$\mathrm{D}=\left(\begin{array}{ccccccc}\frac{1}{\sqrt{\lambda_{1}}} & & & & & \\ & \ddots & & & & & \\ & & \frac{1}{\sqrt{\lambda_{r}}} & & & & \\ & & & \frac{1}{\sqrt{\lambda_{r+1}}} & & & \\ & & & & \ddots & & \\ & & & & & \frac{1}{\sqrt{\lambda_{r+s}}} & \\ & & & & & & I_{t}\end{array}\right)$ then the simple computation that
$\mathrm{DCAC}^{\prime} \mathrm{D}^{\prime}=(\mathrm{DC}) \mathrm{A}\left(\mathrm{C}^{\prime} \mathrm{D}^{\prime}\right)=\left(\begin{array}{lll}I_{r} & & \\ & -I_{s} & \\ & & 0_{t}\end{array}\right)$. Thus there is a matrix of the required form in
the congruence class of A . Now, to show that this is the only matrix in the congruence class of this form (or) equivalently that $\mathrm{L}=\left(\begin{array}{lll}I_{r} & & \\ & -I_{s} & \\ & & 0_{t}\end{array}\right)$ and $\mathrm{M}=\left(\begin{array}{lll}I_{r}{ }^{\prime} & & \\ & -I_{s}{ }^{\prime} & \\ & & 0_{t}{ }^{\prime}\end{array}\right)$ are congruent only if $r=r^{\prime}, s^{\prime}=s^{\prime}$ and $t=t^{\prime}$.

To p.t $r=r^{\prime}, s^{\prime}=s^{\prime}$ and $t=t^{\prime}$.
Suppose that $\mathrm{M}=$ TLT' where T is invertible (by lemma $\mathrm{L} \cong \mathrm{M}$)
If v is a finite dimensional vector space over F and if $S \in A(V)$ and $T \in A(V)$ is regular then $r(S)$ $=r\left(\mathrm{TST}^{-1}\right)$.
$\mathrm{M}=\mathrm{TLT}^{-1}===>\mathrm{r}(\mathrm{M})=\mathrm{r}\left(\mathrm{TLT}^{-1}\right)=\mathrm{r}(\mathrm{L})$

$$
\mathrm{n}-\mathrm{t}^{\prime}=\mathrm{n}-\mathrm{t}===>\mathrm{t}^{\prime}=\mathrm{t} .
$$

To prove $r=r^{\prime}$ and $s=s^{\prime}$
Suppose $\mathrm{r}<\mathrm{r}^{\prime}, \mathrm{n}=\mathrm{r}+\mathrm{s}+\mathrm{t}=\mathrm{r}^{\prime}+\mathrm{s}^{\prime}+\mathrm{t}^{\prime}$
$===>\mathrm{s}-\mathrm{s}^{\prime}=\mathrm{r}-\mathrm{r}===>\mathrm{s}>\mathrm{s}^{\prime}$

Let U be the subspace of $F^{(n)}$ for all vectors having the first r and the last t coordinates 0 . Therefore U is s-dimensional. For $u \neq 0 \in U,(u L, u)<0$. Let W be the subspace of
$F^{(n)}$ for which $r^{\prime}+1, \ldots, r^{\prime}+s$ are zero.Since T is invertible and W is ($n-s^{\prime}$)dimensional. WT is ($n-s^{\prime}$) dimensional. For $w \in W,(w M, w) \geq 0$. Hence $(w T L, w T) \geq 0$ for all elements.

Now $\operatorname{dim}(W T)+\operatorname{dim} U=n-\mathrm{s}^{\prime}+\mathrm{r}=\mathrm{n}+\mathrm{s}-\mathrm{s}^{\prime}>\mathrm{n}$. by the corollary to lemma 4.2.6, $W T \cap U \neq 0$. This however is nonsense. For if $x \neq 0 \in W T \cap U,(x L, x)<0$ while on the other hand, being in WT, $(x L, x) \geq 0$. Thus $r=r^{\prime}$ and $s=s^{\prime}$.

The rank $\mathrm{r}+\mathrm{s}$, and signature $\mathrm{r}-\mathrm{s}$, determine r, s and $\mathrm{t}=(\mathrm{n}-\mathrm{r}-\mathrm{s})$, hence they determine the congruence class.

Distribution of Marks: Theory 100\%

Text Books:

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1.	I.N.Herstein	Topics in Algebra	Wesley Wiley Eastern Limited, New Delhi	1975, II Edition

Reference Books:

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION

1	M.Artin	Algebra	Prentice Hall of India	1991
2	P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul	Basic Abstract Algebra	Cambridge University Press	1997
3	Rudin, W I.S. Luther and I.B.S.Passi	. Algebra, Vol. I- Groups and Vol.II Rings	Narosa Publishing House,New Delhi	1999.

Web Sources:

1. abstact.ups.edu>aata-20160809.
2. mathforum.org $>\ldots>$ Algebra
