DATA ANALYTICS

Semester	Subject Code	Category	Lecture Hrs		Theory Hrs		Practical		Credits
			Per week	Per Sem	Per week	Per Sem	Per week	Per Sem	
VI		Elective – IV	5	75	5	75	0	0	3

COURSE OBJECTIVE

➤ This paper provides an exposure to Big data, to learn the different ways of Data Analysis, to be familiar with data streams, to learn the mining and clustering and able to be familiar with the visualization concept.

COURSE OUTCOME

On the successful completion of the course, students will be able to

CO	СО	Knowledge	
Number	Statement	Level	
		(K1 – K4)	
CO1	Learn the concept behind Big Data and apply the	K1, K2 & K3	
	statistical analysis methods.		
CO2	Learn and Apply different Data Analysis Techniques	K1, K2 & K3	
CO3	Learn Data Streams	K1, K2	
CO4	Learn and Apply the Mining and Clustering	K1, K2 & K3	
	Techniques		
CO5	Learn and apply the different data Visualization	K2&k3	
	Concepts		

Knowledge Level – K1 – Remember, K2 – Understand, K3 – Apply, K4 – Analyze

MAPPING WITH PROGRAMME OUTCOME

cos	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6
CO1	S	S	S	M	S	S
CO2	S	S	S	M	S	M
соз	S	S	M	M	S	M
CO4	S	S	S	S	S	M
CO5	S	S	S	M	S	M

S-Strong M-Medium L-Low

SYLLABUS

UNIT I – Introduction to Big Data

14 hrs

Introduction to Big Data Platform – Challenges of conventional systems - Web data – Evolution of Analytic scalability, analytic processes and tools, Analysis VS Reporting - Modern data analytic tools, Statistical concepts: Sampling distributions, re-sampling, statistical inference, prediction error.

UNIT II - Data Analysis

16 hrs

Regression modeling, Multivariate analysis, Bayesian modeling, inference and Bayesian networks, Support vector and kernel methods, Analysis of time series: linear systems analysis, nonlinear dynamics - Rule induction - Neural networks: learning and generalization, competitive learning, principal component analysis and neural networks.

UNIT III - Mining Data Streams

14 hrs

Introduction to Streams Concepts – Stream data model and architecture - Stream Computing, Sampling data in a stream – Filtering streams – Counting distinct elements in a stream –Estimating moments – Counting oneness in a window – Decaying window – Real Time Analytics Platform(RTAP) applications.

UNIT IV - Frequent Itemsets and Clustering

16 hrs

Mining Frequent Itemsets - Market based model - Apriori Algorithm - Handling large data sets in Main memory - Limited Pass algorithm - Counting frequent Itemsets in a stream - Clustering Techniques - Hierarchical - K- Means - Clustering high dimensional data - CLIQUE and PROCLUS - Frequent pattern based clustering methods - Clustering in non-Euclidean space - Clustering for streams and Parallelism.

UNIT V - Frameworks and Visualization

15 hrs

MapReduce – Hadoop, Hive, Map R – Sharding – NoSQL Databases - S3 - Hadoop Distributed file systems – Visualizations - Visual data analysis techniques, interaction techniques; Systems and applications

Distribution of Marks: Theory: 80% and Application: 20%

TEXT BOOKS

S.No	Authors	Title	Publishers	Year of Publication
1.	Michael Berthold, David J. Hand	Intelligent Data Analysis	Springer	2007
2	Anand Rajaraman, Jeffrey David Ullman	Mining of Massive Datasets	Cambridge University Press	2012

REFERENCE BOOKS

S.N	Authors	Title	Publishers	Year of
0				Publication
1.	Bill Franks	Taming the Big Data	John Wiley	2012
		Tidal Wave: Finding	& sons	
		Opportunities in Huge		
		Data Streams with		
		advanced analytics		
2.	Glenn J. Myatt	Making Sense of Data	John Wiley	2007
			& Sons	

3.	Pete Warden	Big Data Glossary	O"Reilly	2011
4.	Jiawei Han,	Data Mining Concepts and	Elsevier	Reprinted
	Micheline	Techniques		2008
	Kamber			
5.	Viktor Mayer	Big Data: A Revolution That	John	2013
	Schonberger,	Will	Murray	
	Kenneth Cukier	Transform How We Live,	Publishers	
		Work and Think		
6	Gareth james,	An Introduction to	Springer	2013
	Daniela Witten,	Statistical Learning with		
	Trevor Hastie,	Applications in R		
	Robert Tibshirani			
7	EMC Education	Data Science and Big	EMC	2015
	Service	Data Analytics:	Education	
		Discovering,	Service -	
		Analyzing, Visualizing	Wiley	
		and Presenting Data		
8	Daniel Covington	Analytics: Data Science,	Audible	5 th Edition
		Data Analysis and		
		Predictive Analytics for		
		Business		

WEB RESOURCES

1. https://data-flair.training/blogs/big-data-tutorials-home/

TEACHING METHODOLOGY

- o Class room teaching.
- o Group discussions
- o Seminars and Smart Class room
- o Demo using systems
- o Chart/Assignment
- Simulation Model

SYLLABUS DESIGNERS

Mrs.B.ARULMOZHI, Assistant Professor and Head, Dept of Computer Science

Mrs.S.SHANTHI., Assistant Professor, Dept of Computer science