DIGITAL LOGIC AND PROGRAMMING IN C

Semest er	Subject Code	Categor y	Lecture Hrs Theory Hrs		Practical		Credit s		
			Per wee k	Per Sem	Per week	Per Sem	Per week	Per Sem	
I		CORE PAPER - 1	7	105	7	105	0	0	4

COURSE OBJECTIVE

> This paper develops the basics concept used in design and analysis of digital systems and to develop the programming skills using C Language.

COURSE OUTCOME

On the successful completion of the course, students will be able to

СО	CO Statement	Knowledge Level
Number		(K1-K4)
CO1	Learn the basic concepts of digital logic Circuits and	K1
	Boolean Algebra Concept.	
CO2	Understand about Combinational and sequential	K2
	circuits.	
CO3	Learn the fundamental concept of C Programming	K1
	language.	
CO4	To implement Array, Functions and structures	K2
CO5	To create files & pointers and apply its operations in	К3
	program.	

Knowledge Level – K1-Remember, K2- Understand, K3-Apply, K4-Analyze

MAPPING WITH PROGRAMME OUTCOME

cos	PO1	PO2	PO3	PO4	PO5	P06
CO1	S	S	M	S	S	M
CO2	S	S	S	M	M	S
CO3	S	S	M	S	M	M

CO4	S	S	S	M	S	S
CO5	S	S	M	S	M	S

S-Strong M-Medium L-Low

SYLLABUS

UNIT I: NUMBER SYSTEMS AND BOOLEAN ALGEBRA NUMBER SYSTEMS: 23 Hrs

Decimal - Binary - Octal - Hexadecimal - Number Base Conversions - Complements - 1's Complement - 2's complement - 9's Complement - 10's Complements - binary Codes - BCD - Excess-3 - Gray code.

BOOLEAN ALGEBRA: Definition of Boolean algebra – Theorems of Boolean algebra - Boolean Functions – Digital Logic gates and Truth Table.

SIMPLIFICATION OF BOOLEAN FUNCTIONS: The Map Method – Two Variable Map - Three Variable Map - Four Variable Map - Don't Care Conditions – Product of Sums Simplification.

UNIT-II: COMBINATIONAL AND SEQUENTIAL CIRCUITS COMBINATIONAL LOGIC: 19hrs

Adders - Sub tractors - multiplexers - de-multiplexers - encoders - decoders.

SEQUENTIAL LOGIC: Flip flops: Basic Flip flop - Clocked RS Flip flop - D Flip flop - JK Flip flop - T Flip flop - Triggering of Flip Flops: Master Slave.

REGISTERS AND COUNTERS: Registers - 4 bit Register - Ripple Counter.

UNIT -III: C BASICS AND CONTROL CONSTRUCTS

21 Hrs

C fundamentals- Keywords - Variables - Data types - Operators- Constants- Expression - Library Functions- Decision making branching and looping - continue - break

UNIT IV: ARRAYS, FUNCTIONS AND STRUCTURES

21 Hrs

Arrays-Multi dimensional arrays- String- User defined functions- Call by Value and reference-Recursion- Storage classes- Structures and Union

UNIT - V: POINTERS AND FILES

21 Hrs

Pointers- Pointer operations and Arithmetic- File management in C: File opening and closing- I/O operations on files - Error handling during I/O operations - Random access to

files - Command line arguments

Distribution of Marks: Theory :70% and Problems:30%

TEXT BOOKS

S.No	Authors	Title	Publishers	Year of Publication
1.	Morris Mono M.	"Digital Logic	PHI Latest	2007
		and Computer	Pub. Ed.	
		Design		
2	Balaguruswamay.E	Programming	TMH	2012
		in ANSI C		

REFERENCE BOOKS

S.No	Authors		Title		Publishers	Year Publication	of
1.	Albert Paul	Malvino,			TMH	1996.	
	Donald P Leach		principles	and			
			applications	}			

WEB RESOURCES

- 1. https://www.electronics-tutorials.ws/logic/logic_1.html
- 2. https://www.programiz.com/c-programming/
- 3. https://www.geeksforgeeks.org/c-language-set-1-introduction/

TEACHING METHODOLOGY

- o Class room teaching
- o Group discussions
- o Seminars
- o Chart/Assignment
- o Simulation Model
- Smart Class room

SYLLABUS DESIGNERS

- 1. Mrs.B.ARULMOZHI, HOD, Dept of Computer Applications
- 2. Mrs.R.SHOBANA, Assistant Professor, Dept of Computer Applications
- 3. Ms. A. SIVASANKARI, HOD, Dept of Computer Science