OPERATING SYSTEM

Semester	Subject Code	Category	Lecture Theory Hrs Hrs		Practical		Credits		
			Per week	Per Sem	Per week	Per Sem	Per week	Per Sem	
V		Core Theory -9	6	90	6	90	0	0	4

COURSE OBJECTIVES

Students will demonstrate a knowledge of process control, threads, concurrency, memory management scheduling, I/O and files, distributed systems, security, networking. Student teams will implement a significant portion of an operating system.

COURSE OUTCOMES

On successful completion of the course, students will be able to

CO	CO CO Statement		
Number		Level (K1- K4)	
CO1	Analyze the structure of OS and basic architectural components involved in OS design	K1	
CO2	Understand the Mutual exclusion, Deadlock detection and agreement protocols of Distributed operating system	K2	
CO3	Describe about Memory allocation in distributed OS.	K4	
CO4	Implementing Swapping and Virtual Memory management.	К3	
CO5	Interpret the mechanisms adopted for file sharing in distributed Applications	K4	

Knowledge Level – K1-Remember, K2- Understand, K3-Apply, K4-Analyze

MAPPING WITH PROGRAMME OUTCOME

cos	PO1	PO2	PO3	PO4	PO5	P06
CO1	M	L	M	L	S	M
CO2	M	M	M	M	L	M

CO3	S	M	S	M	S	L
CO4	M	S	L	M	L	M
CO5	M	S	S	M	L	M

S-strong M-Medium L-Low

SYLLABUS

UNIT - I OPERATING SYSTEM BASICS

18 Hrs

Basic Concepts of Operating System - Services of Operating System- Classification of Operating System- Architecture and Design of an Operating System-Process Management - Introduction to Process-Process State -PCB - Process Scheduling - Interprocess Communication.

UNIT -II OPERATING SYSTEM SCHEDULING

19 HRS

CPU Scheduling: Introdution - Types of CPU Scheduler - Scheduling Criteria

Scheduling Algorithms - FCFS Scheduling - SJF Scheduling;
 Priority Scheduling - Round-Robin Scheduling- Multilevel Queue
 Scheduling - Deadlock - Basic Concept of Deadlock- Deadlock
 Prevention - Deadlock Avoidance- Deadlock - Detection and
 Recovery.

UNIT- III MEMORY MANAGEMENT

17 HRS

Memory Management - Basic Concept of Memory - Address Binding; Logical and Physical Address Space- Memory Partitioning - Memory Allocation- Protection-Fragmentation and Compaction.

UNIT - IV SWAPPING

18 HRS

Swapping-Using Bitmaps - Using Linked Lists- Paging-Mapping of Pages to Frames - Hierarchical Page Tables- Segmentation - Virtual Memory - Basic Concept of Virtual Memory- Demand Paging - Transaction Look aside Buffer (TLB) - Inverted Page Table- Page Replacement Algorithms.

UNIT -V FILE MANAGEMENT

18 HRS

File Management - Basic Concept of File-Directory Structure-File Protection- Allocation Methods - Various Disk Scheduling

algorithms.

Self Study: Unix Operating System

Distribution of Marks: Theory 80% and Applications 20% $\,$

TEXT BOOKS

S. No	Authors	Title	Publishers	Year of publication
1	Abraham Silberschatz Peter B.Galvin,G. Gagne	Operating System Concepts	Addison Wesley Publishing Co Sixth Edition	2003

REFERENCE BOOKS

S. No	Authors	Titl e	Publishers	Year of publicati on
1	W. Stallings	Operating systems - Internals and Design Principles	PEARSON 6th Edition	2003
2	Willam-Stallings	Operating System	PEARSON 4th Edition	2003
3	Abraham Silberschatz	Operating System Concepts	Wiley Publishers	2015
4	Andrew Tanenbaum	Modern Operating Systems	Prentice Hall	2014

5		Principles of Operating Systems	Oxford Higher Education	2014
6		Operating systems - Internals and Design Principles	PEARSON 8th Edition	2014
	Avi Silberschatz, Greg Gagne, and Peter Baer Galvin	Concepts	O'Reily Media 2 Edition	2010
_		Modern Operating Systems	Pearson Education	2015

WEB SOURCES

- https://www.tutorialspoint.com/operating_system/index.htm
- https://www.javatpoint.com/os-tutorial

TEACHING METHODOLOGY

- o Class room teaching.
- o Group discussions
- Seminars
- o Demo using systems
- o Chart/Assignment
- o Simulation Model
- o Smart Class room

SYLLABUS DESIGNER

- 1. Mrs. G.Sangeetha Lakshmi, Assistant Professor and Head, Dept of Computer Applications.
- 2. Mrs. B.Arulmozhi , Assistant Professor and Head, Department of Computer Science
- 3. Dr. R.Hamsaveni, Assistant Professor, Department of Computer Science