SOFTWARE ENGINEERING

Semester	Subject Code	Category	y Lecture Hrs		Theory Hrs		Practical		Credits
			Per week	Per Sem	Per week	Per Sem	Per week	Per Sem	
VI		Core Theory- 12	6	9	6	90	0	0	4

COURSE OBJECTIVES

☐ This course helps to develop the software and what are the various steps involved to develop and deploy the software under engineering concept.

COURSE OUTCOME

On the successful completion of the course, students will be able to

СО	со	Knowledge	
Number	Statement	Level (K1-	
		K4)	
CO1	Acquire strong fundamental knowledge in	K1	
	science, mathematics, fundamentals of		
	computer science, software engineering and		
	multidisciplinary engineering to begin in		
	practice as a software engineer.		
CO2	Building the analysis model and	K3 & k4	
	acquiring the modeling concepts.		
CO3	Design applicable solutions in one or more	K2,K3 &	
	application domains using software K4		
	engineering approaches that integrate		
	ethical, social, legal and economic concerns.		
CO4	Applying testing methods and acquiring the	K3 & K4	
	testing strategies		

CO5	Apply new software models, techniques and	K3 & K4
	technologies to bring out innovative and	
	novelistic solutions for the growth of the society	
	in all aspects and evolving into their continuous	
	professional development.	

Knowledge level: K1-Remember; K2 –Understand; K3-Apply; K4-Analyze.

MAPPING WITH PROGRAM OUTCOMES

cos	PO	РО	РО	РО	PO	РО
	1	2	3	4	5	6
CO1	M	S	S	S	S	S
CO2	S	S	M	M	S	S
CO3	S	S	M	M	S	S
CO4	M	S	S	S	S	S
CO5	M	S	S	M	S	S

S- Strong; M- Medium; L- Low

SYLLABUS

UNIT-I: 18 HRS

Introduction: Evolving Role of Software - Changing Nature of Software - Software Myths; A Generic View of Process: Layered Technology - Process Models: Waterfall Model - Evolutionary Process Models.

UNIT-II: 17 HRS

Requirements Engineering: Tasks – Initiating the Requirements Engineering Process – Eliciting Requirements – Building the Analysis Model – Requirements Analysis – Data Modelling Concepts.

UNIT-III: 17 HRS

Data Engineering: Design Process and Design Quality - Design Concepts

- The Design Model Creating an Architectural Design: Software Architecture - Data Design - Architectural Design - Mapping Data Flow into Software Architecture; Performing User Interface Design: Golden Rules.

UNIT-IV: 19 HRS

Testing Strategies: Strategic Approach to Software Testing- Test Strategies for Conventional and Object Oriented Software - Validation Testing - System Testing -Art of Debugging. Testing Tactics: Fundamentals

- White Box- Basis Path - Control Structure - Black Box Testing Methods

UNIT-V: 19 HRS

Project Management: Management Spectrum - People - Product - Process Project. Estimation: Project Planning Process - Resources - Software Project Estimation - Project Scheduling - Quality Concepts - Software Quality Assurance - Formal Technical Reviews.

Distribution of Marks: Theory 85% and Problems 15%

TEXT BOOKS

S. No	Authors	Title	Publishers	Year	of
				Publication	
1	RogerS Pressman	Software Enginee ri ng	A Practitioner's Approach", Sixth Edition, McGraw Hill International Edition, New York	2005	

REFERENCES

S.No	Authors	Title	Publishers	Year of Publicat ion
1	Rajib Mall	"Fundamental s of Software Engineering"	kindle	2014
2	Roger S Pressman	Software Engineerin g: practitione r's approach"	pearson	2015
3	Ian Sommerviley	Software Engineering"	pearson	2010

4	byLaPlante LaPlante Hong Zhu	"Encyclope dia Software Engineering " Of Software Design Methodology: From Principles to Architectural Styles"	pearson	2005
5	Carlo Ghezzi	Engineering, 2/E 2nd Edition"	Prentice Hall	2002
6	by Grigore Rosu and Jose Meseguer	Algebraic Methodology Software Technology"	Prentice Hall	2008
7	Du Zhang and Jeffrey J P Tsai	Machine Learning Applications In Software Engineering (Serieson Software Engineering and Knowledge Engineering)"	World scientific publishing	2005

WEB SOURCES:

- http:/fullstackengine.net/software-engineering/
 http:/freetechbooks.com/software-engineering/

TEACHING METHODOLOGY

Class room teaching
Assignments
Discussions

- ☐ Home test
- PPT Presentations

SYLLABUS DESIGNER

- 1. Mrs. G.SANGEETHA LAKSHMI , Assistant Professor and Head, Department of Computer Application
- 2. Mrs. N.AMBIGA, Assistant Professor, Department of Computer Application