CORE – IX

ADVANCES IN BIOTECHNOLOGY

Semester	Subject	Categor	Lecture		Theory		Practical		Cred
	code	y	Tota 1 hrs	Hrs/	Tota 1 hrs	Hrs	Tota 1 hrs	Hrs/	it
				k		wee		k	
						k			
III		Core	60	4	60	4	0	0	4

COURSE OBJECTIVES

To enable the students to understand the Advances in Biotechnology.

COURSE OUTCOMES

On the successful completion of the course, students will be able to develop sound knowledge and potential skills in the various advancements of Biotechnology.

СО	CO Statement	Knowledge Level
Number		(K1-K4)
CO1	To understand the advanced concepts in plant Biotechnology	К2
CO2	To analyze the various gene transfer methodologies adapted in animal biotechnology and in the production of Transgenic animals.	K4
CO3	To apply the knowledge of Genetic Engineering in the field of medical biotechnology	К3
CO4	To remember the various bioremediation	K1 & K3

	strategies, environmental problems and to				
	apply				
	bioremedia				
CO5	To under	stand the	К3		
	applications of Nanobiotechnology				

MAPPING WITH PROGRAMME OUTCOMES:

cos	PO1	PO2	PO3	PO4	PO5	P06
CO1	M	M	M	S	S	S
CO2	M	M	M	S	S	S
CO3	S	S	S	S	S	S
CO4	S	S	S	S	S	S
CO5	S	S	S	S	S	S

S- Strong; M- Medium; L- Low

Unit-I: Plant Biotechnology

12 hrs

Plant Genetic Engineering: Direct and Indirect transformation techniques-Transgenic plants - Genetically modified (GM) plants (Bt cotton, Bt Brinjal), Herbicide and insect resistance, Golden Rice, Plant Molecular Farming - Edible vaccines, Plantibodies - Avicidin, CaroRX, Antisense RNA Technology and its role in Plant Improvement - Flavr savr Tomato.

Unit-II: Animal Biotechnology

12 hrs

Gene transfer technology in animals: Viral and non-viral methods- Retroviral, Microinjection, Embryonic stem cells methods. Production of transgenic animals and molecular farming – sheep - wool production, Goats, Fishes, Poultry. Cryopreservation Technique.

Unit-III: Medical Biotechnology

12

hrs

Gene therapy – Approaches for gene therapy – *Ex-vivo* – vectors – Human Artificial Chromosome and Bone marrow cells – Therapy for ADA. *In vivo* – viral and nonviral systems. Gene therapy for Cancer & AIDS. DNA in disease diagnosis – Infectious diseases – Tuberculosis, AIDS, Genetic disorders – Alzheimer's disease, Cystic Fibrosis.

Unit-IV: Environmental Biotechnology

12

hrs

Bioremediation and its types – *In situ & Ex situ*, Xenobiotic compounds, Reactions in Bioremediation – Aerobic – Anaerobic – Sequential; Bioremediation of hydrocarbons, Genetic Engineering for Bioremediation – superbug; Bioaugemntation, biosurfactants, MEOR, Global Environmental Problems – Global warming – Acid Rain.

Unit-V: Nanobiotechnology

12

hrs

Nanobiotechnology – Introduction, History and Recent developments, Sources of Nanoparticles - Plants and Microbes. Materials Characterization by X-ray diffraction, Fourier transform Infrared spectroscopy (FTIR) – Ultraviolet and visible spectroscopy (UV Vis), SEM & TEM. Microbial Nanoparticles and its applications in Solar energy conversion and catalysis, biosensors - Nanomedicine - Nanotoxicology challenges.

DISTRIBUTION OF MARKS: Theory - 100% and Problems – Nil

TEACHING METHODOLOGY:

- Lectures
- **❖** Power point presentation

- * Charts
- ❖ Models
- **❖** Group discussion
- **❖** Group assignments
- Seminars

TEXT BOOKS:

S1 No:	Book Name	Author	Publisher	Year of Publicatio
				n
01	Biotechnology	U Satyanaranyana	Books & Allied (P) Ltd	2017
02	Text book of Microbiology	D.R.Arora,	CBS Publishers & Distributors	2003
04	Microbiology	Pelczar, Michael J, Chan, E C S	Mc Graw-Hill	1999

REFERENCE BOOKS:

S1	Book Name	Author	Publisher	Year of
No				Publicati
				on
01	Molecular	Bernad R. Glick	A.S.M. Press	1998
	Biotechnology,	and Jack J.	Washington D.C	
	Principles and	Pasternak		
	application of			
	Recombinants			
02	Recombinant DNA	James D.	Scientific American	2001
	Technology	Watson . Michael	Books	
		Gilman, Jan		
		Witkowski, Mark		
		Iolles		
03	Nanotechnology: An	Thomas	Atlantic publishers	2012
	Introduction to	Varghese, K.M.	and Distributors	
	Synthesis, Properties	<u>Balakrishna</u>		
	and Applications of			
	Nanomaterials 1st			
	Edition,			

04	Practical Applications	Henry R.J	Chapman	Hall	1997
	of plant molecular		Landon		
	Biology				

WEB SOURCES:

www.freebookcentre.net

https://nptel.ac.in

https://www.aboutbioscience.org

https://gurukpo.com

https://biotechnologyall4u.weebly.com

SYLLABUS DESIGNER:

- 1. Dr.J.Hemapriya, Assistant Professor
- 2. Dr. A.Vidhya HOD & Assistant Professor