BIOMOLECULES

Sem	Sub. Code	Category	Lecture		Theory		Practical		
			Hrs/ week	Hrs/ sem.	Hrs/ week	Hrs/ sem.	Hrs/ week	Hrs/ sem.	Credits
Ι	21CPBC1C	Core	4	60	4	60	-	-	4

COURSE OBJECTIVE:

Objectives of this course is to enable the students to learn the basic functions, structures and biological importance of biomolecules like carbohydrates, lipids, proteins and nucleic acids. It also conveys the basic fundamental aspects of transport mechanism in cells.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to-

CO Number	CO Statement	Knowledge Level (K1-K4)
CO1	Helps to understand about the carbohydrates and its types.	K2
CO2	Gives a clear understanding about the amino acids and structures of various proteins.	K3
CO3	A clear knowledge about lipids and its role.	K2
CO4	Provides an impression about structure of Nucleic acids.	K4
CO5	Gives an awareness about membrane structure and transport mechanism.	К3

(*CO – Course Outcomes

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze).

MAPPING WITH PROGRAMME OUTCOMES:

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	М	S	М	S	М
CO2	М	S	S	М	S	М
CO3	М	S	S	S	М	S
CO4	Μ	М	S	S	М	S
CO5	S	S	S	М	S	S

(S- Strong; M-Medium; L- Low)

Total hours:60

10 Hours

UNIT I

Structure and Biological importance of carbohydrates

Classification of carbohydrates – monosaccharides, disaccharides; N-linked, O-linked and GPI linked oligosaccharides, glycoproteins structure, function and recognition, poly saccharide; homo and hetero polysaccharides, Bacterial cell wall polysaccharides. Structure, location and biological role of proteoglycans (Glycosaminoglycans) and peptidoglycans.

UNIT II

Proteins and Amino acids

Classification of amino acids, classification of proteins- size, solubility and structureprimary structure, secondary structure: α - helix, β - sheets and turns, keratin: coil, collagen triple helix, Tertiary structure, Quaternary structure: structure and functions of Hb, actin, myosin, elastin. Soild-state synthesis of proteins, Protein sequencing (Sanger's method and Edman reaction)

UNIT III

Structure and Function of Lipids

Classification, structure, function of lipids. Fatty acids-saturated and unsaturated fatty acids.Lipids in cell membranes. Sterols- (Cholesterol, Bile acids and Bile Salts) structure, properties and functions. Eicosanoids – structure and biological role of prostaglandins, Leukotrienes, prostacyclins and thromboxanes. Lipoprotein classification and functions.

UNIT IV

Nucleic acids

Structure of nitrogenous bases, nucleosides & nucleotides. DNA double helix- Watson and crick model of DNA, other forms; A, B, Z DNA. Properties of DNA- physical (buoyant density, viscosity) and chemical properties (renaturation and denaturation), RNA classes- mRNA, tRNA and rRNA, hnRNA, snRNA, miRNA-structure and function. Chemical and enzymatic methods of sequential analysis. Chemical synthesis of oligonucleotides.

15 Hours

15 Hours

10 Hours

UNIT V

Membrane models and Transport system

Structure, composition and assembly of biological membranes, membranes models. Membrane assembly- importins and exportins. Transport process- Passive transport- Facilitated transport, Active transport – Na^+K^+ - ATPases like P-Type ATPase. F-Type ATPase, V- Type ATPase. Co-transporters – Uniporter, Symporter, Antiporter.Ionophores. Endocytosis and exocytosis.Docking proteins and their functions.

DISTRIBUTION OF MARKS: Theory - 100% and Problems - Nil

TEACHING METHODOLOGY:

- Black Board
- Power Point Presentations
- Assignments
- Models
- Demonstrations

TEXT BOOKS:

S.No	Author Name	Title of the Book	Publisher	Year
1.	Thomas M Devlin	Text book of	A John Wiley, Inc	1997
		Biochemistry	publication, New York,	
			4th edition	
2.	Eric E.Conn, P.K. Stumpf,	Outlines of	Wiley and sons,	2005
	G.Brueins and Ray H.Doi,	Biochemistry,	Singapore, 5th edition	
	John			
3.	Garrett & Grisham	Principles of	Saunders College	1994
		Biochemistry	publishing	
4.	U. Sathayanarayana	Biochemistry	Books and allied (P) ltd.,	2006
			India, 3rd edition	

10 Hours

REFERENCE BOOKS:

S.No	Author Name	Title of the Book	Publisher	Year
1.	LubertStryer	Biochemistry	W.H.Freeman and CoSanfrancisco, 5 th edition.	2002
2.	Donald Voet, Judith G.Voet and Charlotte W	Fundamentals of Biochemistry	Pratt,John Wiley and Sons, 3 rd edition.	2008
3.	David L. Nelson and Michael Cox.	Lehninger Principle of Biochemistry,	W.H.Freeman,4 th edition	2004
4.	Zubay G L	Biochemistry	W M C Brown publishers, 4th edition.	1988

WEB SOURCES:

- <u>http://www.biology.arizona.edu/cell_bio/cell_bio.html</u>
- <u>https://ecok.libguides.com/biology/web_sources</u>
- <u>https://www.nicholls.edu/biol-ds/biol155/Lectures/Cell%20Biology.pdf</u>
- http://www.bio-nica.info/Biblioteca/Bolsover2004CellBiology.pdf

SYLLABUS DESIGNER:

- Dr.V. Prabha, Head& Assistant Professor of Bio-Chemistry
- Dr.S. Asha, Assistant Professor of Bio-Chemistry