ENZYMOLOGY

Sem	Sub. Code	Category	Lecture Theory		Practical		Credits		
			Hrs/	Hrs/	Hrs/	Hrs/	Hrs/	Hrs/	
			week	sem.	week	sem.	week	sem.	
II	21CPBC2A	Core	3	45	3	45	-	-	3

COURSE OBJECTIVE:

- To understand the classification of enzymes and fundamentals of enzyme assay. Also, understanding of kinetics of enzyme catalyzed reactions and derivation of MichaelisMenten equation.
- To advance the knowledge on mechanism of enzyme action as well as regulation of enzyme action with relevant examples.
- To study about the techniques of immobilization and application in enzymes in food and pharmaceutical industries.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to,

CO Number	CO Statement	Knowledge Level (K1 – K4)
CO1	Course material will help in understanding of nomenclature	K1
	and classification of enzymes and also the fundamentals of	
	enzyme assay.	
CO2	Students will thoroughly understand the Kinetics of	K2
	enzyme essay and derivation of velocity equations.	
CO3	Course will advance the knowledge of students on	K2
	mechanism of enzyme action.	
CO4	Understanding of detailed mechanism in enzyme regulation	K3
	with relevant examples.	
CO5	Students will gain knowledge in various immobilization	K4
	techniques and industrial and therapeutic application of	
	enzymes	

(*CO – Course Outcomes

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze).

MAPPING WITH PROGRAMME OUTCOMES:

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	М	S	М	S	М
CO2	S	S	М	М	S	S
CO3	М	М	М	S	М	S
CO4	S	М	S	S	М	М
CO5	М	S	S	М	S	S

(S- Strong; M-Medium; L–Low)

Total Hours:45

UNIT I Enzymes

Introduction to Enzymes - Nomenclature and classification of enzymes, enzyme units, Specificity and active site, Intracellular location of Enzymes, Determination of active site, Extraction, Purification and characterization of enzymes. Zymogen activation, Antioxidant enzymes, Isoenzymes, multienzyme complex - Structure and Mechanism of action of PDH and FAS, ribozymes

UNIT II

Enzymes Kinetics and enzyme inhibition

Enzyme Kinetics - Steady state theory, MM Equation, significance of Km and Vmax, LB Plot, EadieHofstee Plot, Briggs - Hanes Plot.Factors affecting enzyme activity, kinetics of multisubstrate enzymes - Types of kinetic mechanisms for bi-substrate reactions - sequential and ping-pong. Metalloenzymes and Metal - activated Enzymes. Reversible and irreversible enzyme inhibition.

UNIT III

Mechanism of Enzyme activity and Co-enzymes

Mechanism of Enzyme Action - Acid-base catalysis, covalent catalysis, proximity, orientation effect. Strain & distortion theory. Chemical modification of active site groups. Site directed mutagenesis of enzymes. Structure and mechanism of action of chymotrypsin, lysozyme, carboxypeptidase. Vitamin and non-vitamin co-enzymes - structure and biochemical functions of NAD, FAD, TPP, PLP, Biotin and CoA.

UNIT IV

Enzyme Regulation and Cooperativity

Enzyme Regulation-General mechanisms of enzyme regulation, product inhibition. Reversible (glutamine synthase &phosphorylase) and irreversible (proteases) covalent modifications of enzymes. Mono cyclic and multicyclic cascade systems with specific examples.Feed back inhibition and feed forward stimulation. Allosteric enzymes, qualitative description of "concerted" & "sequential" models for allosteric enzymes. Half site reactivity,

10 Hours

5 Hours

10 Hours

10 Hours

Flipflop mechanism, positive and negative co-operativity with special reference to aspartate transcarbamoylase& phosphofructokinase. Regulation of enzyme activity by proteolytic cleavage.

UNIT V

Applications of enzymes

Application of enzymes in food, pharmaceutical, pulp, textile and other industries; diagnostic & therapeutic applications. Immobilized enzymes - Techniques of enzyme immobilization; applications of immobilized enzymes.Enzymes as Biosensors - Calorimetric, Amperometric, Optical and Immuno biosensors. Enzyme Engineering: Artificial enzymes. Future prospects of Enzyme engineering. Abzymes.

DISTRIBUTION OF MARKS: Theory - 100% and Problems - Nil

TEACHING METHODOLOGY:

- Black Board
- Power Point Presentations
- Assignments
- Models
- Demonstrations

TEXT BOOKS:

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1	S.M. Bhatt	Enzymes and Enzyme Technology	Chand Publishing	2004
2	T. Devasena	Enzymology	Oxford University Press	2003

10 Hours

REFERENCE BOOKS:

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1	Trevor Palmer	Enzymes	West Press Pvt. Ltd	2004
2	Dixon, E.C Webb, CJR Thorne and K.F. Tipton, Longmans	Enzymes	Academic Press	2002
3	Nicholas C.Price, Lewis Stevans.	Fundamentals of Enzymology	Oxford University Press	1998
4	Trevor Palmer	Understanding Enzymes	Ellis Horwood Limited.	1991
5	Boyer	The Enzymes	Academic Press	1982

WEB SOURCES:

- <u>http://www.biology.arizona.edu/cell_bio/cell_bio.html</u>
- <u>https://ecok.libguides.com/biology/web_sources</u>
- https://www.nicholls.edu/biol-ds/biol155/Lectures/Cell%20Biology.pdf
- http://www.bio-nica.info/Biblioteca/Bolsover2004CellBiology.pdf

SYLLABUS DESIGNER:

- Dr.V. Prabha, Head & Assistant Professor of Bio-Chemistry
- Ms.T. Nalini, Assistant Professor of Bio-Chemistry