INTERMEDIARY METABOLISM

Sem	Sub. Code	Category	Lecture		Theory		Practical		
			Hrs/ week	Hrs/sem.	Hrs/week	Hrs/ sem.	Hrs/ week	Hrs/ sem.	Credits
II	21CPBC2B	Core	3	45	3	45	-	-	3

COURSE OJECTIVE

To reflect the latest advances in Biochemistry those are important to medicine on the structural basis of main Biomolecule including the regulation and control of biological mechanism

COURSE OUTCOMES :

On the successful completion of the course, the students will be able to,

CO Number	CO Statement	Knowledge Level (K1 – K4)
C01	Understand the basics of electron transport chain, and component of oxidative phosphorylation	K1
CO2	To study the metabolism and regulation of Carbohydrates in mammals.	K2
CO3	This describes the Biosynthesis and regulation of protein and aminoacid metabolism	К2
CO4	This chapter deals with lipid metabolism and to determine the effect of dietary fat intake. Metabolism of ketone bodies and its regulations	К3
CO5	To learn the synthesis and regulation of Nucleic acids	K4

(*CO – Course Outcomes

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze).

MAPPING WITH PROGRAMME OUTCOMES:

COS	PO1	PO2	PO3	PO5	PO6
CO1	S	М	S	М	М
CO2	S	М	S	S	S
CO3	М	S	М	S	М
CO4	S	S	М	М	S
CO5	М	S	М	S	М

(S- Strong; M-Medium; L- Low)

UNIT I

Electron Transport and Oxidative Phosphorylation

High-energy phosphates- components of Electron Transport chain and the sequence of electron transport (Respiratory chain), Mechanism of ATP synthesis, oxidative phosphorylation – Chemiosmotic theory, uncoupling of oxidative phosphorylation. Mitochondrial transport system and Types of shuttle systems.

UNIT II

Metabolism of carbohydrates and Regulation

Introduction to metabolism of cells - Glycogenesis, Glycogenolysis, Glycolysis, and its energetics, amphibolic nature of TCA cycle and its regulation, Gluconeogenesis and their regulation. HMP Shunt, Cori cycle and Glyoxylate cycle. Metabolism of glycoproteins. Metabolism of fructose, galactose and its regulation

UNIT III

Metabolism of Proteins

Biosynthesis of non– essential amino acids, Degradation of amino acids-oxidative and non– oxidative deamination, transamination and decarboxylation, reactions of urea cycle and its significance. Catabolism of amino acids- ketogenic and glucogenic amino acid such as methionine, phenylalanine and tyrosine. Conversion of amino acids to special products (melanin, sereotin, dopamine).

UNIT IV

Lipid Metabolism

 α , β , and ω oxidation of fatty acids and its regulation, Biosynthesis of saturated and unsaturated fatty acids. Lipoproteins and their metabolism.Biosynthesis of lecithins, cephalins, sphingomyelin, ceramides, cerebrosides, gangliosides; metabolism of ketone bodies, cholesterol biosynthesis and regulation.Degradation of cholesterol.

10 Hours

10 Hours

5 Hours

10 Hours

UNIT V

Nucleic Acid Metabolism

Synthesis of purines and pyrimidines. De novo and salvage pathways, Biosynthesis of deoxyribonucleotides& inhibitors of nucleotide metabolism.Regulation of nucleotide biosynthesis.Degradation of purine and pyrimidines.

DISTRIBUTION OF MARKS: Theory - 100% and Problems - Nil

TEACHING METHODOLOGY:

- Black Board
- Power Point Presentations
- Assignments
- Models
- Demonstrations

Text Books:

S.NO	AUTHOR	TITLE	PUBLISHER	YEAR OF PUBLICATION
1	Murray, et al	Harper's Biochemistry	McGraw Hill	26 th edition (2003)

REFERENCE BOOKS:

		TITLE	DUDI ICHED	YEAR OF	
S.NO	AUTHOR		PUBLISHER	PUBLICATION	
1	Campbell and Farrell	Biochemistry	Brooks/ Cole Pub Co	4 th edition. 2005	
2	Davidson and Sittman	Biochemistry	Lippincott. Williams	4 th edition (1999)	
		NMS	and Willkins		

3	Donald Voet, J.G Voet	Biochemistry	John Wiley & sons	2 nd edition (1995)
	and John Wiley		Canada, Ltd	
4	Kuchel and Ralston	Biochemistry	Schaum's outlines	2^{nd} edition (1998)
			McGraw Hill	
5	Nelson Cox	Lehninger's	McMillan Worth.	26 th edition
		principles of		(2003)
		Biochemistry		
6	Stryer	Biochemistry	W.H.Freeman	6 th edition (2006)

WEB SOURCES:

- <u>http://www.biology.arizona.edu/cell_bio/cell_bio.html</u>
- https://ecok.libguides.com/biology/web_sources
- <u>https://www.nicholls.edu/biol-ds/biol155/Lectures/Cell%20Biology.pdf</u>
- http://www.bio-nica.info/Biblioteca/Bolsover2004CellBiology.pdf

SYLLABUS DESIGNER:

- Dr.B. Hebsibah Elsie, Assistant Professor of Bio-Chemistry
- Ms.T. Nalini, Assistant Professor of Bio-Chemistry