ANALYTICAL TECHNIQUES II

Sem	Subject Code	Category	Lecture		Theory		Practical		Credit
			Hrs/ week	Hrs/ sem.	Hrs/ week	Hrs/ sem.	Hrs/ week	Hrs/ sem.	
IV	21CBC4A	Core	4	60	4	60	-	-	4

COURSE OBJECTIVE:

- To enable the students to determine the concentration of a chemical compound or chemical element.
- To facilitate the students towards understanding the qualitative and quantitative analysis of different molecules of biochemical reactions.
- To enable the students towards to gain the knowledge about age of fossils and Nuclear medicine.

COURSE OUTCOMES:

On the successful completion of the course, students will be able to -

CO Number	CO Statement	Knowledge Level (K1 – K4)
CO1	Understand the basic principle and methods of Electrophoresis.	K 1
CO2	Obtain the knowledge about separation and analysis of macromolecules based on their size and charge.	K2
CO3	Understand the basic principles of spectroscopy and interaction of electromagnetic radiation with chemical substances.	K2
CO4	Describe the basic principle of Spectroflourimetry and flame photometry and its application in vitamin and metal assay.	К3
CO5	Obtain the clear knowledge about the Radio Isotopes, its measurement and its applications.	K4

(*CO – Course OutcomesKnowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze).

MAPPING WITH PROGRAMME OUTCOMES:

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M	S	S	M	S	S
CO2	S	M	M	S	S	M
CO3	S	S	M	S	M	S
CO4	M	M	S	S	M	S
CO5	S	S	S	M	S	S

(S- Strong; M-Medium; L-Low)

Total Hours: 60

UNIT I

Electrophoresis – I 10 Hours

General principle, Migration of ions in electric field, Factors affecting electrophoretic mobility. Types of Electrophoresis- Moving Boundary and Zone Electrophoresis. Paper electrophoresis, and its applications. Gel electrophoresis - Types of gels, Solubilizers, Procedure, Column & slab gels - Detection, Recovery, Estimation of macromolecules and its applications.

UNIT II

Electrophoresis – II 10 Hours

Disc-Gel electrophoresis, SDS-PAGE and its applications. Isoelectric focussing, Principle, Establishing pH gradients, Stabilization against convection, Procedures & applications. Principle and applications of Immunoelectrophoresis.

UNIT III

Elecromagnetic Radiation

10 Hours

Basic principles of electromagnetic radiation. Wavelength, Wavenumber and frequency. Absorption and Emission spectra. Beer and Lambert's law of light absorption and its transmittance. Colorimetry - Instrumentation and applications.UV- Visible spectrophotometry principle, instrumentation and applications on enzyme assay (LDH, CPK).

UNIT IV

Spectroflourimetry and Flame Photometric Technique

15 Hours

Principle, instrumentation and applications of spectroflourimetry in vitamin assays (riboflavin and thiamine). Principle, instrumentation and applications of Flame photometry in trace elements (Na+, K+) analysis. Atomic absorption Spectrophotometry and its applications.

UNIT V

Radio Isotope Techniques

15 Hours

Atomic structure, radiation, radioactive decay, half life, units of radioactivity. Detection and measurement of radioactivity – method based on ionization (GM counter), method based on excitation (Scintillation counter). Applications of radioisotopes. Biological hazards of radiation and safety measures in handling radio isotopes.

DISTRIBUTION OF MARKS: Theory - 100% and Problems – Nil

TEACHING METHODOLOGY:

- Black Board
- Power Point Presentations
- Assignments
- Models
- Demonstrations

TEXT BOOKS:

				YEAR
S.NO.	AUTHORS	TITLE	PUBLISHERS	OF
				PUBLICATION
1	AvinashUpadhyay	Biophysical Chemistry,	Himalaya	4 th Edition (2007)
		principles and	Publishing House.	
		Techniques.		
2	Dr.P.Asokan	Analytical	Chinna publications	1 st edition (2001)
		Biochemistry		

REFERENCE BOOKS:

S.NO	AUTHOR	AUTHOR TITLE		YEAR OF PUBLICATION
1	K.Wilson and	Practical Biochemistry	Cambridge	5 th edition(2000)
	I.Walker		University press	
2	David Freifelder.	Physical Biochemistry	Science Books	2 nd edition (1982)
			International	

3	Galen Wood,	Instrumental Methods of	Mcgraw Hill	5 th edition (1985)
	Ewing	Chemical Analysis	college	
4	Robert D. Braun	Introduction to	Pharma Med	2 nd edition (2012)
		Instrumental analysis	Press/BSP books	
5	R.Boyer	Modern experimental	Addison Weslery	3 rd edition (2000)
		biochemistry	Longman	
			Publishers	
6	D.J. Homie and	Analytical Biochemistry	Longman group	1 st edition (2003)
	H.Peck			
7	David W. Ball	The Basics of	SPIE Press	2001
		Spectroscopy		
8	Faure G	Isotopes Principles And Applications	John Wiley	3 rd edition 2012

WEB SOURCES:

- https://en.wikipedia.org/wiki/Electrophoresis
- www.biologydiscussion.com/biochemistry/electrochemical-techniques/top-10-types-of-electrophoretic-techniques-used-in-biochemistry/12669
- www.slideshare.net/NarenYadav2/spectroscopy-principle-procedure-application
- https://web.nmsu.edu/~esevosti/report.htm
- www.slideshare.net/abhigiri02/radioisotope-technique-and-methods

SYLLABUS DESIGNER:

- Dr.V. Prabha, Head & Assistant Professor of Bio-Chemistry.
- Mrs. G. Nithya, Assistant Professor of Bio-Chemistry