BIOTECHNOLOGY

Se	Sem	Subject Code	Category	Lecture		Theory		Practical		Credit
				Hrs/ week	Hrs/ sem.	Hrs/ week	Hrs/ sem.	Hrs/ week	Hrs/ sem.	
	VI	21CBC6C	Core	4	60	4	60	-	-	4

COURSE OBJECTIVES

- The content of the syllabus provides an understanding of how biochemical processes find application and improves our life.
- The course introduces the basic biotechnology concept and its application such as plant tissue culture, transgenic technology in plants, genetic engineering tools, and the products developed by biotechnologists found useful in research, industry and clinic.

COURSE OUTCOMES

After the completion of this course, the student will be able to

CO Number	CO Statement	Knowledge Level (K1-K4)
C01	Students will understand the methods forproduction of enzymes using recombinant DNA technology and their application in industrial systems.	K3
CO2	Describes the steps involved in plant tissue culture and its applications. It design and deliver the useful production of transgenic plants to the society.	K4
CO3	Understand the role of vectors, plasmids in gene technology.	K2
CO4	Students will acquire basic knowledge of recombinant DNA technology, engineering of DNA molecules using restriction and modification enzymes. Creation of genomic and cDNA libraries and their applications.	K2
CO5	Application of recombinant technology in the production of Biopharmaceutical processes and bio-products.	К3

(*CO-Course Outcomes

Knowledge Level: K1-Remember; K2-Understand; K3-Apply; K4-Analyze). **MAPPING WITH PROGRAMME OUTCOMES:**

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	L	S	S	L	L	S
CO2	L	S	S	L	L	S
CO3	L	М	L	Μ	L	L
CO4	S	М	S	L	L	S
CO5	L	S	S	М	L	S

(S- Strong; M-Medium; L-Low)

Total Hours:60

UNIT - I

Scope and applications of Biotechnology

Biotechnology: Definition and scope, types and branches of biotechnology. Enzyme biotechnology – enzyme production from microbes and its application. Enzyme immobilization - definition, methods involved in immobilization of enzyme, industrial and medical applications of immobilized enzymes.

UNIT – II Plant biotechnology

Plant tissue culture – concept, methods involved in plant tissue culture and its applications. Genetic engineering of plants for pest resistance, herbicide tolerance, stress tolerance and delayed fruit ripening.

UNIT – III

Cloning vectors and techniques

Cloning vectors: Plasmids – definition, classification of plasmids isolation and characteristics of plasmids, cosmids, bacteriophages, PBR 322, plant vectors- Ti plasmid.PCR-principle, types, applications and RT- PCR.

UNIT – IV Recombinant DNA technology

Recombinant DNA technology-Basic techniques-cutting and joining of DNA molecules – DNA ligases and its uses, Restriction endonucleases-types, target sites, nomenclature and classification, Reverse transcriptase, DNA polymerase, Taq polymerases - uses and application. Definition of gene structure.Cloning techniques- genomic library and cDNA.

UNIT – V Genetic engineering

Production of medically important biomolecules – Insulin, Growth hormone, interferons, Cytokines.Monoclonal antibodies, mycelium cell fusion, selection of hybrids, hybridomas, protoplast fusion and HAT-medium, screening assays, purification and application of monoclonal antibodies.

15 Hours

10 Hours

15 Hours

10 Hours

10 Hours

DISTRIBUTION OF MARKS: Theory – 100% and Problems - Nil

TEACHING METHODOLOGY

- The students will be given home assignments
- Classical black board teaching, power point presentation.
- Learning through discussion and encouraging peer learning and vertical learning.

TEXT BOOKS

S.NO	AUTHOR NAME	TITLE OF THE BOOK	PUBLISHER	YEAR
1.	Sathyanarayana	Biotechnology	Books and allied publishers, 3 rd edition	2006
2.	RC Dubey	Textbook of Biotechnology	S.Chand& Co	2009

REFERENCE BOOKS

S.NO	AUTHOR NAME	TITLE OF	PUBLISHER	YEAR
		THE BOOK		
1.	Brown TA	" Gene cloning:	Nelson Thornes, 3 rd	1995
		An	edition	
		introduction"		
2.	William. J. Thieman,	Introduction to	Pearson Publication,2 nd	2013
	Michael A. Pallidino	biotechnology	edition	
3.	SS Purohit	Biotechnology	Agrobios	2007
		fundamentals	Publications,4 th dition	
		and		
		Applications		
4.	SB Primose& R Twyman	Principles of	Blackwell	2006
		gene	publishing,7 th edition	
		manipulation		
		and genomics		
5.	PK Gupta	Biotechnology	Rastogi Publication,2 nd	2006
		and genomics	reprint	
6.	T.Strachan and A.P.Read	Human	BIOS Scientific	2003
		Molecular	Publications,2 nd Edition	
		Genetics		

WEB SOURCES:

- www.easybiologyclass.com/enzyme-cell-immobilization-techniques/
- www.slideshare.net/TapeshwarYadav1/recombinant-dna-technology-49722102

SYLLABUS DESIGNER:

- Dr.S. Asha, Assistant professor in Biochemistry.
- Mrs.G. Nithya, Assistant professor in Biochemistry