ENZYMES AND ENZYME TECHNIQUES

Sem	Sub. Code	Category	Lec	Lecture The		eory Practical		Credit	
			Hrs/ week	Hrs/ sem.	Hrs/ week	Hrs/ sem.	Hrs/ week	Hrs/ sem.	
V	21CBC5A	Core	5	75	5	75	-	-	5

COURSE OBJECTIVE:

To understand the classification of enzymes and Isolation and purification of enzymes. Also, understanding of kinetics of enzyme catalyzed reactions and inhibition of enzyme activity.

- To advance the knowledge on mechanism of enzyme action as well as regulation of enzyme action with relevant examples.
- To study about the techniques of immobilization and application of enzymes in food and pharmaceutical industries.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to,

CO Number	CO Statement	$Knowledge\\ Level\\ (K_1-K_4)$
CO1	Course material will help in understanding of nomenclature and classification of enzymes, and also about the isolation and purification of enzymes.	K1
CO2	Students will thoroughly understand the Kinetics of enzyme catalyzed reaction and various types of enzyme inhibition.	K2
CO3	Course will advance the knowledge of students on mechanism of action of various enzymes and structure and function of various coenzymes.	K2
CO4	Understanding of enzyme regulation with relevant examples.	К3
CO5	Students will gain knowledge in various immobilization techniques and industrial and therapeutic application of enzymes	K4

(*CO – Course OutcomesKnowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze).

MAPPING WITH PROGRAMME OUTCOMES:

cos	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	M	S	M	S	M
CO2	S	S	M	M	S	S
CO3	M	M	M	S	M	S
CO4	S	M	S	S	M	M
CO5	M	S	S	M	S	S

(S- Strong; M-Medium; L – Low)

UNIT I

Enzymes 15 Hours

Introduction to Enzymes - Nomenclature and classification of enzymes, enzyme units, Enzyme Specificity and active site, Intracellular localization of Enzymes, Isolation and Purification of enzymes. Theories of enzyme action. Antioxidant enzymes, Isoenzymes, Multienzyme complex, ribozymes and abzymes.

UNIT II

Enzymes Kinetics and enzyme inhibition

15 Hours

Enzyme Kinetics - MM Equation, significance of Km and Vmax. Modification of Mm equation - LB Plot, EadieHofstee Plot, Briggs - Hanes Plot. Factors affecting enzyme activity, Metalloenzymes and Metal - activated Enzymes. Enzyme Inhibition - Reversible and irreversible enzyme inhibition.

UNIT III

Mechanism of Enzyme activity and Co-enzymes

15 Hours

Mechanism of Enzyme Action – Acid-base catalysis, covalent catalysis. Structure and mechanism of action of chymotrypsin and lysozyme. Vitamin and non-vitamin co-enzymes – structure and biochemical functions of NAD, FAD, TPP, PLP, Biotin and CoA.

UNIT IV

Enzyme Regulation and Cooperativity

15 Hours

Enzyme Regulation—General mechanisms of enzyme regulation, product inhibition. Reversible and irreversible covalent modifications of enzymes. Feedback inhibition and feed forward stimulation. Allosteric enzymes, qualitative description of "concerted" & "sequential" models for allosteric enzymes. Half site reactivity, Flipflop mechanism, positive and negative cooperativity. Regulation of enzyme activity by proteolytic cleavage.

UNIT V

Applications of enzymes

15 Hours

Application of enzymes in food, pharmaceutical, pulp, textile and other industries; diagnostic & therapeutic applications. Immobilized enzymes - Techniques of enzyme immobilization; application of immobilized enzymes. Enzymes as Biosensors - Calorimetric, Amperometric, Optical and Immuno biosensors. Enzyme Engineering: Artificial enzymes. Future prospects of Enzyme engineering.

DISTRIBUTION OF MARKS: Theory - 100% and Problems – Nil

TEACHING METHODOLOGY:

- Black Board
- Power Point Presentations
- Assignments
- Models
- Demonstrations

TEXT BOOKS:

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1	S.M. Bhatt	Enzymes and Enzyme Technology	Chand Publishing	2004
2	T. Devasena	Enzymology	Oxford University Press	2003

REFERENCE BOOKS:

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1	Trevor Palmer	Enzymes	West Press Pvt. Ltd	2004
2	Dixon , E.C Webb, CJR Thorne and K.F. Tipton, Longmans	Enzymes	Academic Press	2002
3	Nicholas C.Price, Lewis Stevans.	Fundamentals of Enzymology	Oxford University Press	1998

4	Trevor Palmer	Understanding Enzymes	Ellis Horwood Limited.	1991
5	Boyer	The Enzymes	Academic Press	1982

WEB SOURCES:

- www.biology.arizona.edu/cell_bio/cell_bio.html
- https://ecok.libguides.com/biology/web_sources
- www.nicholls.edu/biol-ds/biol155/Lectures/Cell%20Biology.pdf
- www.bio-nica.info/Biblioteca/Bolsover2004CellBiology.pdf

SYLLABUS DESIGNER:

- Dr.V. Prabha, Head & Assistant Professor of Bio-Chemistry
- Ms.T. Nalini, Assistant Professor of Bio-Chemistry