- Dr.B. Hebsibah Elsie, Assistant Professor of Bio-Chemistry
- Dr. K. Shoba, Assistant Professor of Bio-Chemistry

SKILL BASED IV BIOINFORMATICS

Sem	Sub. Code	Category	Lect	Lecture Theory		Practical		Credit	
			Hrs/ week	Hrs/ sem.	Hrs/ week	Hrs/ sem.	Hrs/ week	Hrs/ sem.	
			WCCK		WCCK		WCCK	SCIII.	_
VI	21SBC6A	Skill	2	30	2	30	-	-	2
		Based							

COURSE OBJECTIVE:

To introduce classic bioinformatics theory to students by focusing on how computer techniques can be used for the storage, analysis, prediction and simulation of biological sequences (DNA, RNA and Proteins).

COURSE OUTCOMES:

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level (K ₁ – K ₄)
CO1	To understand the fundamentals of concepts of bioinformatics	K1
CO2	Provide a clear knowledge on the sequence analysis and its software tools.	K2
CO3	Students will analyze structural functional relationship of sequence.	K4
CO4	Students will have a clear knowledge on the different level of protein structure and their prediction tools.	K4
CO5	Provide deeper insights into protein structure. prediction and homology modeling process.	K1

(*CO – course Outcomes Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze).

MAPPING WITH PROGRAMME OUTCOMES:

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	M	S	M	M	M
CO2	S	S	S	S	M	M

CO3	M	M	M	S	M	S
CO4	M	S	M	S	M	M
CO5	S	S	M	M	S	S

(S- Strong; M-Medium; L-Low)

Total Hours:30

UNIT I

Introduction to Bioinformatics

5 Hours

Introduction, definition, Aim and objectives. Branches of Bioinformatics, Scope and Research area of Bioinformatics. Sequence and Molecular file format.

UNIT II

Biological Databases

5 Hours

Introduction, Biological Databases – Sequence, Structure and Classification of Databases. National Centre for Biotechnology (NCBI) – Introduction, General tools and Databases.

UNIT III

Sequence Analysis

7 Hours

Introduction to Sequences, alignments and Dynamic Programming; Pair wise alignment (BLAST and FASTA Algorithm) and multiple sequence alignment (Clustal W algorithm), Online tools for Sequence analysis.

UNIT - IV

Similarity Search, Gene Identification and Prediction

6 Hours

Similarity Search Introduction, Working with FASTA, Working with BLAST.Basis of gene prediction, Pattern recognition, Gene prediction methods, commonly available tools.

UNIT - V

Protein Classification and Structure Visualisation

7 Hours

Overview of the Protein Structure, Protein Structure Visualization and prediction: Pymol, Rasmol, and Structure - based Protein Classification, Protein Structure databases, Protein Structure Visualization Databases and tools. Comparative modelling.

DISTRIBUTION OF MARKS: Theory - 100% and Problems – Nil

TEACHING METHODOLOGY:

- Black Board
- Power Point Presentations
- Assignments
- Models
- Demonstrations

TEXT BOOKS:

S.NO.	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1	Attwood.T.K. Parry D.J.	Introduction to Bioinformatics	A joint Publications	1999
	and Smith		1 donedions	
2.	Baldi, P. and		ress,	2001
	Brunak, S.	Learning Approach		
3	A.D.	Bioinformatics: A practical	John Wiley and	2002
	Baxevanis	guide to the analysis of genes	Sons	
	and B.F.F.	and proteins		
	Ouellette.	-		
4	Gentleman,	"Bioinformatics and	Springer	2005
	R.	Computational Biology	Science and	
		Solutions using R and	Business media	
		Bioconductor	Inc	

REFERENCE BOOKS:

S.NO.	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1	D.W.	Bioinformatics	Cold spring Press	2001
	Mount			
2	Lesk, A. K	Introduction to	University Press	2013
		Bioinformatics, 4th Edition		
3	Rastogi,	Bioinformatics Concepts,	ublishers	2009
	S.C	Skills & Applications, 2nd		
		Edition		

WEB SOURCES

- www.slideshare.net/biinoida/bioinformatics
- www.slideshare.net/PrashantTripathi59/sequence-analysis-71940516