	Subject Category		Lecture		Theory		Practical		Credits
Semester	code		Total	Hrs/	Total	Hrs/	Total	Hrs/	
			hrs	week	hrs	week	hrs	week	
	21CPMB2D	Elective-	75	5	75	5	0	0	3
II		II							

BIOLOGICAL TECHNIQUES

COURSE OBJECTIVES

To enable the students to understand the basic biological techniques.

COURSE OUTCOMES

On the successful completion of the course, students will be able to understand the basic principles and applications of the techniques used in the laboratory and the analytical techniques in the field of microbiology.

		Knowledge
CO Number	CO Number	
	CO Statement	K1 – K4)
CO1	To identify the basics of analytical techniques	К2
CO2	To understand the principle and analysis of different components of various mixtures by chromatographic technique	K2
CO3	To compute how the molecules are separated by charging (positive and negative electrode)	K2
CO4	To experiment the sedimentation of particles depends upon the density of both sample and solution and its application	K1
CO5	To execute the extensive use of radio isotopes in diagnosis and therapy of living matter	К3

Mapping with Programme Outcomes:

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	М	М	S	S	S	S
CO2	S	М	М	S	S	М
CO3	S	S	М	S	S	S
CO4	М	М	М	S	S	S
CO5	S	М	S	S	S	S

S- Strong; M- Medium; L- Low

UNIT-I: Basics of analytical techniques

Normality, molarity, molality, dissolution. pH, buffer - composition of buffer, buffer preparation- Tris -HCl, phosphate buffer.

UNIT-II: Chromatographic Techniques

Principles & Applications of Chromatographic Techniques: Adsorption - Ion exchange and gel permeation - Affinity chromotography for separation of compounds including GC and HPLC.

UNIT-III: Electrophoresis and detection techniques

Electrophoresis Techniques - Agarose gel electrophoresis, SDS- PAGE, Iso electric focusing. Flow cytometry, FISH, GISH. Microarray and biosensors.

UNIT-IV: Centrifugation and Spectroscopy

Centrifugation - Principles, various types including centrifugation. Types of centrifuge, types of rotors. Applications of centrifuge. Spectroscopy - Definition, Principle (Beer -Lambert law)and methods- UV-Visible, Atomic Absorption Spectroscopy, Atomic Emission Spectroscopy, NMR, Fluorimetry, FT-IR.

UNIT-V: Radioisotope techniques

Principles of radioactivity. Detection and measurement of different types of radioisotopes normally used in biology, incorporation of radioisotopes in biological tissues and cells, molecular imaging of radioactive material. Hazards of radioisotopes, Safety guidelines.

Title

Biomedical

Instrumentation,

Bioinstrumentation

Analytical Biochemistry

TEXT BOOKS:

1.

2. 3.

S.No	Authors	Title	Publishers	Year Of
				Publication
1.	Chatwal, G. R	Instrumental Methods of	Himalaya	2003
	and S. K.	Chemical Analysis	Publishing House,	
	Anand	_	Mumbai	

S.No Authors

John G. Webster

Arumugam.

Asokan, P

15 Hours

15 Hours

Year Of Publication

2002.

2004

2001

Publishers

University of Wisconsin,

John Wiley & Sons, Inc.

Agencies

Publications,

Anuratha

Publishers

Chinnaa India.

12 Hours

15 Hours

15 Hours

2.	Mandeep Singh	Introduction to	Paperback	2014
		Biomedical	publishers, India	
		Instrumentation		
3.	Wilson, K. and	Principles and Techniques	Cambridge	2010
	J. Walker	of Biochemistry and	University Press,	
		Molecular Biology	UK	

TEACHING METHODOLOGY:

- Lectures
- Power point presentation
- Charts
- Models
- Group discussion
- Group assignments
- Seminars

SYLLABUS DESIGNER:

- Ms. R.Sangeetha Assistant Professor
- Dr. A.Vidhya HOD & Assistant Professor