ECOLOGY AND ENVIRONMENTAL BIOTECHNOLOGY

Semester	Subject Code	Category	Lecture		Theory		P	С
IV	21CPBT4A	Core - X	5 hrs per week	75	5 hrs per week	75	0	5

COURSE OBJECTIVE: In this course, students will

• Understand the concepts of ecosystems and their functions, fundamentals of population ecology and community ecology, types of biodiversity and ecological succession, environmental issues and methods to treat the different types of wastes.

COURSE OUTCOMES: Up on successful completion of course, students will be able to

CO NUMBER	CO STATEMENT	KNOWLEDGE LEVEL (K1-K6)
CO1.	Describe ecosystems, types and their function	K2
CO2.	Illustrate population growth curves and intra and inter specific interactions in a community	K3
CO3.	Categorize different types of biodiversity and ecological succession	K4
CO4.	Explain current environmental problems	K5
CO5.	Summarize the methods involved in treatment of various wastes	K6

Knowledge level: K1- Remember; K2- Understand; K3- Apply; K4- analyze; K5-Synthesize; K6-Evaluate

Mapping with Programme Outcomes

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	S	M	M	M	M
CO2	S	M	M	M	M	M
CO3	M	M	S	S	M	M
CO4	M	S	M	M	S	M
CO5	M	M	M	M	M	S

S-strong; M- medium; L-low

UNIT I: ECOSYSTEMS AND THEIR FUNCTIONS

15 Hours

Ecosystem components- biotic and abiotic, habitat, niche- width, overlap, fundamental niche, realized niche, partitioning, character displacement, Ecosystem types, ecosystem functions-productivity- primary, secondary, net community, energy flow, nutrient cycling-decomposition, food chains, food web.

UNIT II: POPULATION ECOLOGY AND COMMUNITY ECOLOGY 15 Hours

Population density, characteristics of population, population growth curves-survivorship curves, population regulation, life history strategies (r and K selection), Concept of metapopulation-demes and dispersal, interdemic extinctions, age structured populations, Species Interactions, competition- interspecific competition, intraspecific competition.

UNIT III: BIODIVERSITY AND ECOLOGICAL SUCCESSION 15 Hours

Levels of Biodiversity, genetic, species, ecosystem, uses of biodiversity, threats to biodiversity, extinction of species, IUCN red list, Conservation of biodiversity, hotspots, project Tiger, Biosphere reserves, biogeographical classification of India.

UNIT IV: ENVIRONMENTAL ISSUES

15 Hours

Ozone depletion, greenhouse effect, water, air, noise, nuclear, marine and soil pollution, bioindicators of pollution, Plankton community as indicators of water pollution; use of diversity index in evaluation of water quality, Determination of microbiological quality of recreational and potable waters, indicator organisms, coliforms and E.coli.

UNIT V: WASTE TREATMENT

15 Hours

Wastes types, hazardous wastes, solid wastes, solid waste management, composting, vermicomposting, sewage waste water treatment, waste water treatment in different industries, Bioremediation- insitu, exsitu, phytoremediation of metals, Biodegradation of hydrocarbons, xenobiotics, GEMs used in biodegradation

Distribution of Marks: Theory 80% and Problems 20%

TEACHING METHODOLOGY

- Class room teaching
- Assignments
- Discussions
- Home work
- PPT presentations
- Seminars
- Models/Charts

TEXT BOOKS:

S.NO.	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1.	Eugene P. Odum and Gray W. Barett	Fundamentals of Ecology	Cengage Learning	2004

2.	Thomas M Smith,	Elements of	Pearson	2015
	Robert Leo Smith	Ecology		
3.	W.P Cunninghum	Environmental	McGraw Hill	1999
	and BW Saigo	Science		
4.	Hans-	Environmental	Winter-VCH	2005
	JoachinJordening and	Biotechnology,		
	Josef Winter	Concepts and		
		Applications		

REFERENCE BOOKS:

S.NO.	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1.	Wiliam D Bowman,	Ecology	Oxford	2017
	Sally D Hacker, Michael		University press	
	L Cain			
2.	P.NicholasCheremisinoff	Biotechnology	Prentice Hall Of	2001
		for	India	
		Wastewater		
		Treatment		
3	P.K. Mohapatra	Text book of	I.K.	2010
		environmental	International	
		biotechnology	Pvt. Ltd.	
4	Alan Scragg	Environmental	Longman	1999
		biotechnology		
5	Daniel A. Vallero	Environmental	Academic Press	2010
		Biotechnology		

WEB SOURCES

- 1. https://www.shomusbiology.com/ecology-and-env-biology.html
- 2. https://www.khanacademy.org/science/biology/ecology/population-growth-and-regulation/a/exponential-logistic-growth
- 3. https://www.khanacademy.org/science/biology/ecology/population-ecology/a/life-tables-survivorship-age-sex-structure
- 4. https://www.researchgate.net/publication/26789987_Biodegradation_of_arom atic_compoundsCurrent status_and__for_biomolecular_approaches.
- 5. https://books.google.com/books/about/Environmental_Biotechnology.html

Syllabus Designer:

Dr.D.Charumathi
Assistant Professor