BIOINSTRUMENTATION

Semester	Subject code	Category	Lecture	Theory	P	С
VI	21CBT6C	Core Theory - X	5 hrs 75 per week	5 hrs per 75 week	0	4

Course Objective:

✓ To provide fundamental theoretical knowledge to the students with an adequate number of analytical tools about bioinstruments, biomethods, its principle and operation methods.

COURSE OUTCOMES: By the end of this course, students will able to:

CO	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
		(K1-K4)
CO1.	To understand the concepts of microscopy and centrifugation	K2
CO2.	To learn, apply and analyze the samples using centrifugation Techniques.	K4
CO3.	Understand the principles and types of chromatography	K2
CO4.	To analyze and interpret the data obtained using Spectrophotometric methods and NMR	К3
CO5.	To evaluate genetic problems by various electrophoretic techniques	K1 &K3

Knowledge Level: K1- Remember, K2- Understand, K3- Apply, K4-analyze

MAPPING WITH PROGRAMME OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5
CO1	S	M	S	L	L
CO2	S	M	S	S	S
CO3	M	S	S	M	M
CO4	M	M	S	M	M
CO5	M	S	S	M	S

S-strong; M- medium; L-low

UNIT-I CENTRIFUGATION TECHNIQUES

15 Hours

Centrifugation techniques: Basic Principles, Rate of sedimentation, Types of centrifuges-Microfuges, small desk top centrifuges, High speed centrifuges, Ultracentrifuges.

Preparative centrifugation- Differential centrifugation, Density gradient centrifugation-Rate zonal Centrifugation, Isopycnic centrifugation. Applications of centrifugation techniques.

UNIT-II CHROMATOGRAPHY

15 Hours

Chromatography: Basic principle, source, detectors and applications of Paper Chromatography, Thin Layer Chromatography, Gas Chromatography, Column chromatography, Gel filtration chromatography, High-Pressure Liquid Chromatography, Ion Exchange Chromatography, Size-Exclusion Chromatography.

UNIT-III SPECTROPHOTOMETER

15 Hours

Spectral Methods of Analysis: Beer-Lambert Law, Colorimeters: UV-Visible Spectrophotometers, Single And Double Beam Instruments, Sources And Detectors, FT-IR Spectrophotometers.

UNIT IV NUCLEAR MAGNETIC RESONANCE

15 Hours

NMR: Basic Principles, NMR Spectrometer and Applications. Electron Spin Resonance Spectroscopy: Basic Principles, Instrumentation and Applications

UNIT – V ELECTROPHORETIC TECHNIQUES

15 Hours

Electrophoresis- Introduction, SDS-PAGE, Native –PAGE, pulse field gel electrophoresis, immuno-electrophoresis, isoelectric focusing, Agarose gel electrophoresis, Western Blotting, Sothern Blotting.

Distribution of Marks: Theory 80% and Problems 20%

TEACHING METHODOLOGY:

- Class room teaching
- Assignments
- Discussions
- Homework
- PPT presentations
- Seminars
- Models and charts

TEXT BOOKS:

S.NO.	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1.	Wilson.K., Walker.J. E.J., Wood.K.	Principles & techniques of practical biochemistry	Cambridge University Press	2000
2.	Veerakumari.L	Bioinstrumentation	Mjp Publishers, 1 st edition.	2011
3.	John Denis Enderle	Bioinstrumentation	Morgan & Claypool Publisher	2006
4.	Shakti Chatterjee and Aubert Miller	Biomedical instrumentation Systems	Cengage Learning	2012
5.	Jon B. Olansen and Eric Rosow	Virtual Bioinstrumentation	Pearson Education	2001

REFERENCE BOOKS:

S.NO.	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1.	John.G Webster	Bioinstrumentation	John Wiley &Sons, New York	2004
2.	Robert D. Braun	Introduction to Instrumental Analysis	McGraw Hill, Singapore	1987
3.	Veerakumari L	Bioinstrumentation	MJP Publishers	2009
4.	Shakti Chatterjee and Aubert Miller	Biomedical instrumentation systems	Cengage Learning	2012
5.	Andrew G. Webb	Principles of Biomedical Instrumentation	Cambridge University Press	2018

WEB SOURCES:

- 1. https://www.hccfl.edu/media/572066/microscopy.pdf
- 2. http://www.biologydiscussion.com/biochemistry/chromatography-techniques/top-12-types-of-chromatographic-techniques-biochemistry/12730
- 3. https://www.labcompare.com/Spectroscopy/105-Spectrophotometers/
- 4. https://www.oregonstatehospital.net/d/otherfiles/Electron%20Spin%20Resonance%20Spectroscopy.pdf
- 5. https://nptel.ac.in/courses/102103013/17
- 6. https://www.amazon.com/Principles-Biomedical-Instrumentation-Cambridge

Syllabus Designer:

• Dr.J.Ilamathi Assistant Professor