BIOPHYSICSAND BIOSTATISTICS

Semester	Subject code	Category	Lecture		Theory		P	С
V	21CBT5C	Core theory -VII	5hrs per week	75	5 hrs per week	75	0	4

COURSE OBJECTIVE: To develop an understanding of the biophysics, analytical instrumentation and biostatistics to interpret the results with statistical analysis

COURSE OUTCOMES: Upon successful completion of the course, students will able to

CO	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL (K1-
		K 4)
CO1	To remember and understand the essential level or the principle of thermodynamic and also the structure of biomolecules	K1 & K2
CO2	Understand the various instrument usage in the field of biotechnology	K2
CO3	Compare the different types of spectroscopy for various purpose	К3
CO4	Measure the data obtained through various experiment	K1
CO5	Understand the various types of statistical analysis based on the sample obtained	K2

Knowledge Level: K1- Remember, K2- Understand, K3- Apply, K4-analyze

MAPPING WITH PROGRAMME OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	S	S	M	S	S
CO2	S	S	S	M	M	M
CO3	M	S	S	S	M	M
CO4	S	S	M	S	S	S
CO5	M	M	S	M	S	S

S-Strong, M-Medium, L-Low

UNIT -I

PHYSICO-CEMICAL FOUNDATION

15 Hours

Physicochemical properties of water, Acids- base theory, mole concept, molarity, normality, molality, concept of pH, measurement of pH, Henderson –Hasselbach equation, buffers, titration curve, pK values.

UNIT-II

PHYSICAL FOUNDATIONS

15 Hours

Thermodynamics: Introduction, Fundamental thermodynamic relation, Isothermal process, Isobaric Process Laws of thermodynamics: (zeroth law. First, second and third law). Understanding structures of Nucleic acids and proteins (primary, secondary, tertiary and quaternary structures)

UNIT-III

MICROSCOPY 15 Hours

Microscope: Introduction, Principle and application of Microscopes, Types of Microscopes: Phase contrast Microscope-Principle, Procedure and applications. Fluorescence Microscope-Principle, Procedure and applications. Electron microscope- Principle, Procedure and applications, Types of Electron Microscopes (Scanning Electron Microscope & Transmission Electron Microscope).

UNIT IV

BIO-STATISTICAL METHODS

15 Hours

Bio-statistical methods-Introduction of Biostatics. Methods of data collection (primary data collection and secondary data collection), Frequency distribution curve, Diagrammatic and graphical representation of data.

Measures of central tendency (Arithmetic mean, median and mode), measures of dispersion (Standard deviation and variance).

UNIT V

TESTING OF SAMPLES

15 Hours

Testing of samples: Introduction, Hypothesis testing (null and alternate), student's t-test, Z- test, Chi-square test: significance in small and large populations. Problems on Probability, conditional probability, Theoretical distributions (Binomial, Poisson, Normal). Protein expression 3D structure prediction (homology modelling).

Distribution of Marks: Theory 80% and Problems 20%

TEACHING METHODOLOGY:

- Class room teaching
- Assignments
- Discussions
- Homework

- PPT presentations
- Seminars
- Models and charts

TEXT BOOKS:

S.no.	Authors	Title	Publishers	Year of publication
1.	Jain JL, Jain N,	Fundamentals of	S Chand Group,	2004
	Jain S	Biochemistry(7 th ed)	New Delhi, India.	
2.	Gupta SC,	Fundamentals of	S Chand and Sons,	2003
	KapoorVK	Applied Statistics	New Delhi, India.	
3.	Rodney Cotterill	Biophysics: An	Wiley	2014
		introduction		
4.	James F.Zolman	Biostatistics:	Oxford University	1993
		Experimental design	Press	
		and statistical inference		
5.	Pattabhi V and	Biophysics	Springer Science &	2002
	Gautham		Business Media	

REFERENCE BOOKS:

S.no.	Authors	Title	Publishers	Year of
				publication
1.	Kothari CR	Research Methodology-	New Age	2004
		Methods and Techniques	International	
			Publishers, New	
			Delhi, India.	
2.	William	Biophysics: Searching of	Princeton	2012
	Bialek	principles	University Press	
3	Anders Kallen	Understanding	John Wiley	2011
		Biostatistics	&Sons	
4	Rodney	Biophysics an	John Wiley	2003
	Cotterill	introduction	&Sons	
5	Walter T.	Topics in Biostatistics	Springer Science and	2007
	Ambrosius		Business Media	

WEB SOURCES:

- 1. https://www.easybiologyclass.com/biostatistics-introduction-significance-applications-and-limitations-of-statistics
- 2. https://books.google.co.in/books/about/Topics_in_Biostatistics.html
- 3. https://books.google.com/books/about/Biostatistics.html?id=VDR7s05uFaQC
- 4. https://edurev.in/studytube/Thapar-University-PBT201-Biophysics
- 5. https://sites.google.com/site/prakashprabhubiophysics/biostatistics

Syllabus Designer:

• Dr. Amrita Anantharaman Assistant Professor