OPERATING SYSTEM

Semester	Subject Code	Category	Lecture Hrs		Theory Hrs		Practical		Credits
			Per week	Per Sem	Per week	Per Sem	Per week	Per Sem	
	21CCS5C								
V		Elective -I	5	75	5	75	0	0	3

COURSE OBJECTIVES

Students will demonstrate a knowledge of process control, threads, concurrency, memory management scheduling, I/O and files, distributed systems, security, networking. Student teams will implement a significant portion of an operating system.

COURSE OUTCOMES

On successful completion of the course, students will be able

CO Number	CO Statement	Knowledge Level (K1-K4)
CO1	Analyze the structure of OS and basic architectural components involved in OS design	K1
CO2	Understand the Mutual exclusion, Deadlock detection and agreement protocols of Distributed operating system	K2
CO3	Describe about Memory allocation in distributed OS.	K4
CO4	Implementing Swapping and Virtual Memory management.	К3
CO5	Interpret the mechanisms adopted for file sharing in distributed Applications	K4

Knowledge Level – K1-Remember, K2- Understand, K3-Apply, K4-Analyze

MAP	MAPPING WITH PROGRAMME OUTCOME						
COS	PO1	P3O2	PO3	PO4	PO5	PO6	
CO1	М	L	М	L	S	М	
CO2	М	М	М	М	L	М	
CO3	S	М	S	М	S	L	
CO4	М	S	L	М	L	М	
CO5	М	S	S 40	М	L	М	

S-strong M-Medium L-Low

40

UNIT – I OPERATING SYSTEM BASICS

Basic Concepts of Operating System - Services of Operating System-Classification of Operating System- Architecture and Design of an Operating System-Process Management -Introduction to Process-Process State -PCB - Process Scheduling - Inter process Communication.

UNIT – II OPERATING SYSTEM SCHEDULING 16 Hours

CPU Scheduling: Introduction - Types of CPU Scheduler - Scheduling Criteria -Scheduling Algorithms - FCFS Scheduling - SJF Scheduling;-Priority Scheduling -Round-Robin Scheduling- Multilevel Queue Scheduling - Deadlock - Basic Concept of Deadlock- Deadlock Prevention - Deadlock Avoidance- Deadlock - Detection and Recovery.

UNIT- III MEMORY MANAGEMENT

Memory Management - Basic Concept of Memory - Address Binding; Logical and Physical Address Space- Memory Partitioning - Memory Allocation - Protection-Fragmentation and Compaction.

UNIT – IV SWAPPING

Swapping- Using Bitmaps - Using Linked Lists- Paging-Mapping of Pages to Frames - Hierarchical Page Tables- Segmentation - Virtual Memory - Basic Concept of Virtual Memory- Demand Paging - Transaction Look aside Buffer (TLB) - Inverted Page Table- Page Replacement Algorithms.4

UNIT -V FILE MANAGEMENT

File Management - Basic Concept of File-Directory Structure-File Protection-Allocation Methods

- Various Disk Scheduling algorithms.

Self Study: Unix Operating System

Distribution of Marks: Theory 75% and Applications 25%

TEXT BOOKS

S.	Authors	Title		Publishers	Year of
No					publication
1	Abraham	Operating	System	Addison Wesley Publishing Co	2014
	Silberschatz Peter	Concepts		Sixth Edition	
	B. Galvin, G.				
	Gagne				

41

14 Hours

14 Hours

15 Hours

16 Hours

REFERENCE BOOKS

S. No	Authors	Title	Publishers	Year of publication
1	W. Stallings	Operating systems - Internals and Design Principles	PEARSON 6th Edition	2013
2	Charles Patrick Crowley	Operating Systems: A Design-Oriented Approach	PEARSON 4th Edition	2013
3	Andrea C. Arpaci- Dusseau, Remzi H. Arpaci-Dusseau	Operating Systems: Three Easy Pieces	Arpaci-Dusseau Publishers	2015
4	Andrew Tanenbaum	Modern Operating Systems	Prentice Hall	2014
5	Naresh Chauhan	Principles of Operating Systems	Oxford Higher Education	2014
6	D.M. Dhamdhere	Operating systems - A Concept-based Approach	PEARSON 8th Edition	2013
7	Avi Silberschatz, Greg Gagne, and Peter Baer Galvin	Operating System Concepts Essentials	O'Reily Media 2 Edition	2010
8	Albert S. Woodhull, Andrew S. Tanenbaum	Operating Systems: Design and Implementation	Prentice hall	2018

WEB RESOURCES

- □ <u>https://www.tutorialspoint.com/operating_system/index.htm</u>
- □ <u>https://www.javatpoint.com/os-tutorial</u>

TEACHING METHODOLOGY

- \Box Class room teaching.
- □ Group discussions
- \Box Seminars
- \Box Demo using systems
- □ Chart/Assignment
- □ Simulation Model
- □ Smart Class room

SYLLABUS DESIGNER

- Mrs.G.SANGEETHA LAKSHMI, Assistant Professor & HOD, Dept of Computer Science & Applications
- Mrs.R NANDHINI, Assistant Prof, Dept of Computer Science & Applications