PAPER-I: STRUCTURE AND BONDING OF INORGANIC COMPOUNDS

Semester	Subject	Category		Instruction Hours				Credits	
	Code		Le	Lecture Theory Practical					
			Per	Per	Per	Per	Per	Per	
			Week	Semester	Week	Semester	Week	Semester	
Ι	21CPCH1A	Core	4	60	4	60	0	0	4

COURSE OBJECTIVES

- To provide knowledge of basic and advanced concepts in bonding and enable the students to identify the structure and bonding of simple molecules.
- To provide an understanding of the various types of solid state packing, types of chemical forces, structure of inorganic chain cluster compounds and the bonding in boron compounds.

COURSE OUTCOMES

> On the successful completion of course, students will be able to

CO Number	CO statement	Knowledge level
C01	Gain the knowledge on hybridization, structure and	K2 & K3
	bonding in inorganic molecules	
CO2	Gain the knowledge on structure and packing in solids	K2 & K3
CO3	Acquire knowledge about the crystal lattices and the diffraction methods	К3
CO4	Have a better understanding of boron compounds and clusters.	K2 & K4
CO5	Notify different types of inorganic chains and cluster compounds	K3 & K4

*CO-Course Outcomes

Knowledge level K1-Remember; K2-Understand; K3-Apply; K4-Analyze

MAPPING WITH PROGRAM OUTCOMES:

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	М	М	S	М	S	М
CO2	М	S	М	S	М	М
CO3	М	М	S	S	М	М
CO4	М	М	S	S	М	S
CO5	М	М	М	М	S	S

UNIT I: CHEMICAL BONDING

V.B. approach to bonding-Hitler-London, Pauling and Slater refinements, Concept of hybridization and structure of molecules, VSEPR theory shapes of molecules. M.O. approach to covalent bonding – symmetry and overlap of atomic orbitals – symmetry of molecular orbitals – sigma and pi bonding – energy levels in homo and heteronuclear diatomic systems – bond length, bond order and bond energy, Application to small molecules such as BeCl₂, BCl₃ and CCl₄, SF₄, etc, ionic character in a covalent bond - The concept of multicentre bonding. Pseudo halogens: Structure and bonding in ClF₃, BrF₃, BrF₅, IF₅ and IF₇. Oxides and oxyacids of halogens, Bonding in Noble gas compounds – XeCl₂, XeF₄, XeOF₄ and XeF₆.

UNIT II: CHEMISTRY OF SOLID STATE I: STRUCTURE 12 hours

Weak Chemical forces: van der Waals forces, Hydrogen bonding – Close packing of atoms and ions HCP and BCC types of packing voids – radius ratio – derivation – its influence on structures – Lattice energy – Born – Lande equation – Kapustinski equation – Madelung constant.

Representative structures of AB and AB₂ types of compounds – rock salt, cesium chloride, wurtzite, zinc blende, rutile, fluorite, antifluorite, cadmium iodide and nickel arsenide – Structure of graphite and diamond – Spinels – normal and inverse types and perovskite structures.

UNIT III: CHEMISTRY OF SOLID STATE II: DIFFRACTION METHODS 12 hours

Band theory of solids – non – stoichiometry- point defects – linear defects – effects due to dislocations-electrical properties of solids – conductor, insulator, semiconductor – intrinsic – impurity semiconductors – optical properties – lasers and phosphors – elementary study of liquid crystals.

Difference between point group and space group – screw axis – glide plane – symmetry elements – relationship between molecular symmetry and crystallographic symmetry – The Concept of reciprocal lattice – X– ray diffraction by single crystal – rotating crystal – powder diffraction. Neutron diffraction: Elementary treatment – comparison with X-ray diffraction – Electron diffraction –Basic principle – Crystal Growth methods: From melt and solution (Hydrothermal, Gel methods).

2

12 hours

UNIT IV: BORON COMPOUNDS AND CLUSTERS

Chemistry of boron – Preparation, properties and structure of boranes, higher boranes - types of boranes closo, nido, arachno. (B_2H_6 , B_4H_{10} , B_5H_{11} , B_6H_{10} , $B_{10}H_{14}$) linear and cyclic borazines ($B_3N_3H_6$), boron nitrides (BN)x and borates ions — STYX numbers, Wade's rules .

Carboranes ($C_2B_9H_{11}^{2-}$), Metallocarboranes ($1,2-C_2B_{10}H_{12}$) – preparation, properties and Structure – a general study. Metal clusters: Chemistry of low molecularity metal clusters only – Structure of Re₂Cl₈; multiple metal – metal bonds.

UNIT V: INORGANIC CHAIN AND CLUSTER COMPOUNDS 12 hours

Types of inorganic polymers – comparison with organic polymers – silanes, higher silanes (Si_2H_6, Si_4H_{10}) – multiple bonded systems – silicon carbides, siloxanes. P–N compounds, cyclophosphazenes and cyclophosphazenes – S–N compounds – S₄N₄, S₄N₄H₄ and (SN)_x.

Isopoly acids – polyvanadates, polymolybdates, polytungstates – heteropolyacids and their salts – structure of silicates - applications of Paulings rule of electrovalence - isomorphous replacements in silicates – ortho, meta and pyrosilicates – one dimensional, two dimensional and three dimensional silicates – silazenes - preparation, properties and structure.

Distribution of Marks: Theory-80% and Problems-20%

S.No	Authors	Title	Publishers	Year of publication
1.	J.E. Huheey	Inorganic Chemistry – Principles, Structure and Reactivity	Harper Collins, New York, IV Edition	1993
2.	D. E. Douglas, D.H. McDaniel and J. J. Alexander	Concepts and Models in Inorganic Chemistry	3 rd Ed	1994
3.	M. C. Day, J. Selbin	Theoretical Inorganic Chemistry	2 nd Ed, East West Press	1985
4.	L. Pauling	The Nature of the Chemical Bond	3 rd Ed., Cornell University Press	1960
5.	F.A. Cotton and G. Wilkinson	Advanced Inorganic Chemistry – A Comprehensive Text	John Wiley and Sons, V Edition	1988

TEXT BOOKS

12 hours

6.	D.F. Shriver,	Inorganic Chemistry	3 rd Ed	1999
	P.W. Atkins			
7.	A.G. Sharpe	Inorganic Chemistry	Pearson	2008
			Education	
8.	N. H. Ray	Inorganic Polymers	Academic Press	1978
9.	A. R. West	Basic Solid State	John Wiley	1991
		Chemistry		
10.	E. L. Mutteri	Polyhedral Boranes	Academic Press,	1975
			NY	

REFERENCE BOOKS

S.No	Authors	Title	Publishers	Year of publication
1.	S.F.A. Kettle	Coordination Chemistry	EIBS	1973
2.	K. Burger	Coordination Chemistry	Burter Worthy	1973
3.	K.F. Purcell and J.C. Kotz	Inorganic Chemistry	WB Saunders Co., USA	1977

TEACHING METHODOLOGY:

- PowerPoint presentation
- Models
- Group discussion
- Seminar and Assignments
- Animated videos
- Board and chalk

SYLLABUS DESIGNERS:

- 1. Dr. T. Gomathi, Assistant Professor, Department of Chemistry
- 2. Mrs. J. Saranya, Assistant Professor, Department of Chemistry
- 3. Dr. D. Shakila, Assistant Professor, Department of Chemistry