PAPER-V: ORGANIC REACTION MECHANISMS AND REARRANGEMENTS

Semester	Subject	Category	Instruction Hours				Credits		
	Code		Lecture		Theory		Practical		
			Per	Per	Per	Per	Per	Per	
			Week	Semester	Week	Semester	Week	Semester	
II	21CPCH2B	Core	3	45	3	45	0	0	3

COURSE OBJECTIVES:

- Understanding addition, elimination, rearrangement and naming reactions along with their mechanism and synthetic utility.
- ❖ Understanding various types of oxidation and reduction reactions along with their mechanism and synthetic utility.

COURSE OUTCOMES:

➤ On the successful completion of course, students will be able to

CO Number	CO statement	Knowledge
		level
CO1	Get a clear picture about the addition reactions happening	K2 & K3
	through nucleophilic, electrophilic groups and to learn about	
	the addition reactions between double bonded carbon	
	compounds	
CO2	Gain knowledge on the nucleophilic and electrophilic	K2 & K3
	additions to carbonyl compounds and naming reactions	
CO3	Obtain an outline about elimination reactions and the rules	K3
	used to study elimination reactions with some specific	
	examples	
CO4	Acquire knowledge about the reagents which causes various	K2 & K3
	rearrangement reactions	
CO5	Learn about the basic mechanism of oxidation in various	K2 & K4
	organic compounds such as alcohols, aldehydes, ketones,	
	olefins etc and two types of reduction reactions like	
	complete reduction and selective reduction using different	
	reducing agents	

^{*} CO-Course Outcomes

Knowledge level K1-Remember; K2-Understand; K3-Apply; K4-Analyze

MAPPING WITH PROGRAM OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M	M	M	M	S	S
CO2	M	M	S	S	S	M
CO3	M	M	M	M	S	M
CO4	M	S	S	S	S	M
CO5	M	S	S	S	M	S

UNIT-I: ADDITION TO CARBON-CARBON DOUBLE BOND

9 hours

Electrophilic addition to carbon – carbon double and triple bonds – Nucleophilic addition to carbon–carbon multiple bonds – Generation and addition of carbenes-mechanism of Michael addition and Robinson annulation.

Hydroxylation of olefinic double bonds (OsO₄, KMnO₄); Woodward and Prevost oxidation – Epoxidation using peracids including Sharpless epoxidation – Ozonolysis. Homogenous, heterogeneous and Transfer hydrogenation – Hydroboration – Hydration of carbon-carbon double and triple bonds.

UNIT-II: ADDITION TO CARBON-OXYGEN DOUBLE BOND

9 hours

Nucleophilic addition to -C=O bond - A study of mechanism of Mannich, benzoin, Darzen's glycidic ester, Stobbe and Knovenagel condensation reactions - Wittig, Wittig-Horner olefination reactions; Sulfur and Sulfonium ylides and their reactions - Julia olefination.

UNIT-III: ELIMINATION

9 hours

Elimination reactions: E1, E2, E1cb and Ei-elimination – Conformation of mechanism; solvent, substrate, leaving group effects – Typical elimination reactions – dehydration, dehydrohalogenation and dehalogenation – Saytzeff's and Hoffmann elimination; Stereochemistry of E2 eliminations – Elimination in cyclohexane ring system; Mechanism of pyrolytic eliminations – Examples: Chugaev reactions and Cope elimination – Hoffmann degradation and pyrolysis of esters.

UNIT-IV: MOLECULAR REARRANGMENTS AND REACTIONS 9 hours

A study of mechanism of the following rearrangements: Beckmann, Curtius, Hofmann, Schmidt, Lossen, Pinacol, Wagner – Meerwin, Demjanov, Dienone – Phenol, Favorski, Benzidine, Claisen, Cope, Sommlet – Hauser, Pummerer, Baeyer – Villiger, Wolff, Stevens and Von – Richter rearrangements.

A study of the following name reactions: Dieckmann cyclization, Hofmann – Loffler Freytag reaction, Mitsunobu reaction, Shapiro reaction.

UNIT-V: OXIDATION AND REDUCTION REACTIONS

9 hours

Oxidation of methylene to carbonyl, oxidation of aryl methenes – allylic oxidation of olefins – Oxidation with Cr (including PCC, PDC, Jones) and Mn (including MnO₂ and BaMnO₄) reagents; Oxidation with LTA, DDQ, Hg(OAc)₂ and SeO₂; Oxidation using DMSO either with DCC or Ac₂O or Oxaloyl chloride; Oxidation using IBX and Dess-Martin Periodinane (DMP) reagent.

Clemmenson and Wolf-Kishner reduction – Huang Millon modification – Birch reduction and MPV reduction. Reduction with sodium borohydride, lithium aluminium hydride, tritertiarybutoxyaluminium hydride, sodium Cyanoborohydride, Zn(BH₄)₂, DIBAL-H, Red-Al, Et₃SiH and Bu₃SnH. Selectrides – Selectivity in reduction 4-t-butylcyclohexanone using selected hydride reductions.

Distribution of hours: Theory-90%; Problems-10%

TEXT BOOKS

S.No	Authors	Title	Publishers	Year of publication
1	Jerry March	Advanced Organic Chemistry	John Wiley & Sons, 5 th Ed	2001
2	F. Carey and R. J. Sundberg	Advanced Organic Chemistry-Part A and B	Springer Science 5 th Ed	2007
3	M. B. Smith and Jerry March	Advanced Organic Chemistry	John Wiley & Sons, 5 th Ed	2001
4	J. Clayden, N. Greeves and S. Warren	Organic Chemistry,	Oxford University Press, 2 nd Ed	2012.
5	M. B. Smith	Organic Synthesis,	Academic Press 3 rd Ed	2011
6	R. O. C. Norman and J. M. Coxon,	Principles of Organic Synthesis	Chapman & Hall, 3 rd Ed	1993
7	Stuart Warren	Organic Synthesis	Disconnection Approach, Wiley India (P) Ltd	2007

8	V.K.Ahluwalia	Oxidation in Organic Synthesis	CRC Press, 1 st Ed	2012
9	V.K.Ahluwalia	,Reduction in Organic Synthesis	CRC Press, 1st Ed	2012

TEACHING METHODOLOGY:

- PowerPoint presentation
- Models
- Group discussion
- Seminar and Assignments
- Animated videos
- Board and chalk

SYLLABUS DESIGNERS:

- 1. Dr. T. Gomathi, Assistant Professor, Department of Chemistry
- 2. Mrs. J. Saranya, Assistant Professor, Department of Chemistry
- 3. Dr. D. Shakila, Assistant Professor, Department of Chemistry