Semester	Subject	Category		Instruction Hours C					
	Code		Lecture		Theory		Practical		
			Per	Per	Per	Per	Per	Per	
			Week	Semester	Week	Semester	Week	Semester	
IV	21CPCH 4Bb	Elective	3	45	3	45	0	0	3

PAPERIV: ELECTIVE PAPER- C: NANOSCIENCE AND TECHNOLOGY

COURSE OBJECTIVES:

- ◆ To understand preparation, characterization and synthesis of nanomaterials.
- ◆ To understand about the importance and applications of nanotechnology in various fields.

COURSE OUTCOMES:

> On the successful completion of course, students will be able to

CO Number	CO statement	Knowledge level
CO1	Learn about the synthesis and chemical process of nanoscience	K2 & K3
CO2	Apply principles and characterization of nanoscience by XRD, SEM, EDAX, TEM,	K3 & K4
CO3	Analyse the various application of nanotechnology in remediation of pollution	K3 & K4
CO4	Get knowledge about the tissue engineering and degradation of cell culture	K2 & K3
CO5	Gain clear knowledge about drug delivery and gene delivery systems	K2 & K3

* CO – Course Outcomes

Knowledge level K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

MAPPING WITH PROGRAM OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	М	S	М	М	S
CO2	М	S	М	S	S	М
CO3	S	М	М	М	S	S
CO4	М	S	М	S	М	М
CO5	М	S	М	S	М	S

UNIT-I: Synthesis of Nanomaterials Chemical Processes

Chemical precipitation and co-precipitation, polyol – borohydride reduction methods – Sol-Gel synthesis; Microemulsions synthesis – Hydrothermal – Solvothermal synthesis methods – Microwave assisted synthesis – Sonochemical assisted synthesis – Core-Shell nanostructure – Organic – Inorganic hybrid nanocomposites – Quantum dot (QDs) synthesis.

UNIT – II: Nanostructured Materials Characterization Techniques 9 hours

X-ray diffraction (XRD) – SEM – EDAX – TEM – Elemental mapping – FTIR – UV-Visible spectrophotometer – Laser Raman Spectroscopy – Nanomechanical – Characterization using Nanoindentation – Differential Scanning Calorimeter (DSC) – Differential Thermal Analyzer (DTA) – Thermo gravimetric Analysis (TGA) – TEM – X-ray Photoelectron Spectroscopy (XPS) – Electrochemical Characterisation measurements.

UNIT – III: Nanotechnology - Environmental and Health Effects 9 hours

Environmental pollutants in air, water, soil, hazardous and toxic wastes – application of nanotechnology in remediation of pollution – The challenge to occupational health and hygiene – toxicity of nanoparticles – effects of inhaled nanosized particles – skin exposure to nanoparticles – impact of CNTs on respiratory systems – hazards and risks of exposure to nanoparticles – monitoring nanoparticles in workplace and sensors.

UNIT – IV: Tissue Engineering

9 hours

Introduction – Stem cells – Morphogenesis – Generation of tissue in the embryo – Tissue homeostasis – Cellular signaling – Extracellular matrix as a biologic scaffold for tissue engineering – Natural polymers in tissue engineering applications – Degradable polymers for tissue engineering – Degradation of bioceramics – Cell source – Cell culture: harvest – selection, expansion and differentiation – Cell nutrition – Cryobiology.

UNIT – V: Drug Delivery Systems and Fundamentals of Drug Nanoparticles 9 hours

Production – Size – Surface area – Suspension and Settling, Magnetic and Optical Properties, Biological Transport – Manufacturing of Nanoparticles: Ball-Milling – High-Pressure Homogenization – Spray-Drying Production in Nonaqueous Liquids – Hot-Melted Matrices – Pelletisation Techniques – Direct Compress – Delivery of Nanoparticles – Brain Delivery – Ocular Drug Delivery – Gene Delivery Systems – Carriers in Cancer Therapy – Cardiovascular System – Vascular Delivery to the Lungs – Targeting Lymphatics.

Distribution of hours: Theory – 100%

TEXT BOOKS

S. No	Authors	Title	Publishers	Year of Publication
1.	Sanjay Mathur and Mrityunjay Singh	Nanostructured Materials and Nanotechnology– II, Eds.	Willey	2008
2.	Carl C. Koch	Nanostructured Materials	Noyes Publications, New York	2002
3.	G. A. Nazri and G. Pistoia	Science and Technology	Kulwer Acdemic Publishers, Dordrecht, Netherlands	2004
4.	P. Brown and K. Stevens	NanofibersandNanotechnologyinTextiles	Woodhead publication London	2006
5.	J. Altmann, Routledge	Military Nanotechnology: Potential Applications and Preventive Arms Control	Taylor and Francis Group	2006
6.	Jennifer Kuzma and Peter VerHage	Nanotechnology in Agriculture and Food Production	Woodrow Wilson International Center	2006
7.	D. Shi, B. Aktas, L. Pust, F. Mikailov	Nanostructured Magnetic Materials and their Applications, Ed.	Springer	2002

REFERENCE BOOKS

S. No	Authors	Title		Publishers	Year of Publication
1.	К.	An Introduction	to	Prentice Hall	2009
	K. Chattopadhyay	Nanoscience a Nanotechnology	and	Learning Pvt. Ltd.	
2.	Charles P. Poole	An Introduction Nanotechnology	to	Wiley-Interscience	2008

3.	Victor E. Borisenko	A Handbook	on	Wiley VCH	2008
		Nanoscience and			
		Nanotechnology			
4.	T. Pradeep	A Textbook	of	McGraw Hill	2017
		Nanoscience	and	Education	
		Nanotechnology			
5.	B. K. Parthasarathy	Nanoscience	and	Isha books	2017
		Nanotechnology			
6.	B. S. Murthy	Textbook of Nanoscience		Springer	2013
		and Nanotechnology	7		
7.	Hari	Encyclopedia	of	American Scientific	2004
	Singh Nalwa	Nanoscience	and	Publishers	
		Nanotechnology			

TEACHING METHODOLOGY:

- Board and chalk
- PowerPoint presentation
- Group discussion
- Seminar and Assignments
- Animated videos
- Board and chalk

SYLLABUS DESIGNER:

Dr. T. Gomathi, Assistant Professor, Department of Chemistry