NANOCHEMISTRY

Semester	Subject Code	Category	Lecture Hours		Theory hours		Practical hours		Credits
			Per week	Per sem.	Per week	Per sem.	Per week	Per sem.	
VI	21CCH6Ca	Elective - III (Option-2)	4	60	4	60	-	-	3

COURSE OBJECTIVES:

The students will be able to

• Know the basics of nanotechnology, classification of nanomaterials and applications of nanotechnology in medicine, defence, agriculture and consumer products.

COURSE OUTCOMES:

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level (K1-K4)
CO1	Learn about the basics of Nanochemistry and classification of nanomaterials.	K2
CO2	Learn about the various properties of nanomaterials.	K4
CO3	Learn about different methods for the synthesis of nanoparticles.	K2
CO4	Learn about the nanowires, nanoclusters and their applications.	К3
CO5	Learn about nanotubes and the general applications of nanomaterials.	К3

*CO – Course Outcomes

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze.

MAPPING WITH PROGRAMME OUTCOMES:

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	М	М	S	М	S
CO2	S	М	S	S	S	S
CO3	S	S	S	S	S	S
CO4	S	М	S	S	S	S
CO5	S	S	S	S	S	S

(S - Strong; M - Medium; L - Low)

Properties of Nanomaterials – Thermal, electrical, mechanical, optical, chemical and

- magnetic properties.2.2 Size dependent properties Property and influence of size reduction on properties of
- nanoparticles Structural, mechanical, thermal, thermodynamical, electrical, magnetic, optical and chemical properties.

UNIT-III: Synthesis of Nanoparticles

- 3.1 Synthesis of Nanoparticles Top-Down Approach Laser ablation, Chemical vapour Deposition – Hot Wire CVD, Plasma Enhanced CVD, Atomic Layer CVD and Metal Organic CVD and Electrode position.
- 3.2 Bottom-up Approach Precipitation and thermolysis Hydrothermal method and solvothermal method.

UNIT-IV: Nanowires and Nanoclusters

- 4.1 Nanowires Definition, characterizations, types of nanowires Synthesis of nanowires –
 Solution Phase Synthesis, template assisted synthesis and VSL Method (Vapour-Liquid –Solid)–Applications of nanowires Uses of nanowires.
- 4.2 Nanoclusters Definition Characterisation Magic number –Source of nanoclusters Seeded supersonic nozzle sources and Gas aggregation cluster sources – Uses.

UNIT-V: Nanotubes and Applications of Nanomaterials

5.1 Nanotubes – Carbon nanotubes - Types of nanotubes – Single walled carbon nanotubes – zig-zag nanotubes, chiral nanotubes and armchair nanotubes – Multi- walled carbon nanotubes.

UNIT-I: Basics of Nanochemistry

- 1.1 Introduction Basic Terminology– Particle, nano, nanometer, nanoparticle, nanomaterial, nanochemistry and nanotechnology (only definition).
- 1.2 Classification of Nanomaterials Zero (0-D), One (1-D), Two (2-D) and Three (3-D) Dimensional (dimensions, criteria and examples) – Molecules, nanoparticles and bulk materials (differences).

UNIT-II: Properties of Nanomaterials

2.1

12 Hours

12 Hours

12 Hours

12 Hours

12 Hours

5.2 Applications of nanomaterials in energy production, defence, agriculture, electronics manufacturing, drug delivery, therapy techniques, diagnostic techniques, space flight and consumer products.

TEXT BOOKS:

S.	Authors	Title	Publishers	Year of
No.				publication
1.	S. Shanmugam	Nanotechnology	MJP Publishers,	2010
			Chennai	
2.	S. Balaji	Nanobiotechnology	MJP Publishers,	2010
	-		Chennai.	
3.	T. Pradeep	Nano: The Essentials	Tata Mc-Graw Hill,	2007
	-		New Delhi	

REFERENCE BOOKS:

S. No.	Authors	Title	Publishers	Year of publication
1.	Wilson, Kamali	Nanotechnology: Basic	Overseas Press	2005
	Kannangara, Geoff	Science and Emerging		
	Smith, Michelle	Technologies		
	Simmons, Burkhard			
	Raguse and Mick			
2.	G. B. Segreev	Nanochemistry	Elsevier, New York	2006
3.	S. Sivanesan and J.	A Textbook of Engineering	VK Publications	2015
	Nandagopal	Chemistry-I		
4.	P. Charles P. Poole and	Introduction to	A John Wiley and	2003
	Frank J. Owens	Nanotechnology	Sons, Inc.	

TEACHING METHODOLOGY:

- Conventional chalk and board teaching
- Power Point Presentations
- Assignments
- Animated videos
- Chalk and Board
- Interactive sessions
- To get recent information through the internet.
- Engaging students in cooperative learning.
- Learning through quiz design

SYLLABUS DESIGNER:

• Dr. S. Sashikala, Assistant Professor of Chemistry