ORGANIC CHEMISTRY - II

Semester	Subject Code	Category	Lecture Theory hours Hours		•	Practical Hours		Credits	
			Per week	Per sem.	Per week	Per sem.	Per week	Per sem.	
VI	21CCH6B	Core paper-IX	6	90	6	90	-	-	5

COURSE OBJECTIVES:

The students will be able to

• Students gain knowledge about the importance of various natural products such as carbohydrates, amino acids, proteins, nucleic acids, terpenoids and alkaloids.

COURSE OUTCOMES:

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number		Level
		(K1-K4)
CO1	Understand about the classification, reactions and structural	K4
	features of monosaccharides.	
CO2	Know about the structural features and uses of di and	K4
	polysaccharides.	
CO3	Understand the classification, preparation and properties of	K4
	amino acids.	
CO4	Understand about the structural features and importance of	K3
	polypeptides, proteins and nucleic acids	
CO5	Learn the classification, structure and properties of Alkaloids	K4
	and Terpenoids.	

^{*}CO – Course Outcomes

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze.

MAPPING WITH PROGRAMME OUTCOMES:

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	S	S	S	S	S
CO2	S	S	S	S	S	S
CO3	S	S	S	S	S	S
CO4	S	S	S	S	S	S
CO5	S	S	S	S	S	S

⁽S - Strong; M - Medium; L - Low)

UNIT - I: Carbohydrates - I

18 Hours

- 1.1 Carbohydrates Definition Classification Reducing and non-reducing sugars Reactions of glucose and fructose Properties Oxidation, reduction, acetylation, methylation, fermentation, action of alkali Osazone formation Epimerisation Mutarotation and its mechanism Reactions with Tollen's reagent, Fehling's solution, Barfoed's reagent and Molisch's reagent Uses of glucose.
- 1.2 Structural elucidation of glucose and fructose Open chain structure Configuration pyranose and furanose forms Determination of ring size Haworth's method Haworth's projection formula Conformations of glucose Analytical tests of carbohydrates.

UNIT-II: Carbohydrates-II

18 Hours

- 2.1 Chain lengthening of aldoses: Kiliani-Fischer synthesis Chain shortening of aldoses: Wohl's method, Ruff's method and Weerman's reaction Interconversion of aldose to ketose and ketose to aldose.
- 2.2 Disaccharides Sucrose and maltose Properties structural elucidation of sucrose and maltose- polysaccharides Properties of starch and cellulose Structure of starch and cellulose (elementary treatment only) Uses of starch Applications of cellulose derivatives.

UNIT – III: Amino Acids

18 Hours

- 3.1 Introduction Classification and structure of amino acids: based on the position of amino group, nutritional requirement and the relative number of amino and carboxyl group Nomenclature Essential aminoacids Preparation of alpha amino acids Gabriel phthalimide synthesis, Strecker synthesis and Erlenmeyer azlactone synthesis.
- 3.2 Properties General reactions due to amino and carboxyl groups Zwitterion isoelectric point Action of heat on alpha, beta and gamma- amino acids Ninhdyrin test.

UNIT- IV: Polypeptides, Proteins and Nucleic acids

18 Hours

4.1 Peptide synthesis by Bergmann method – Peptide linkage – Peptide synthesis – Structural determination of polypeptides – End group analysis – Classification of proteins based on physical properties, chemical properties and physiological functions – Primary and

- secondary structure of proteins alpha-helical and beta-sheet structures Denaturation of proteins.
- 4.2 Nucleoside, nucleotide, degradation of nucleotide chain Types of nucleic acids structure of nucleic acids Components of RNA and DNA Differences between RNA and DNA Double helical structure of DNA Functions of nucleic acids Transcription and translation Elementary idea about protein synthesis.

UNIT - V: Terpenoidss and Alkaloids

18 Hours

- 5.1 Terpenoids Classification Isoprene rule Isolation Structural elucidation of menthol, limonene, alpha terpineol and geraniol.
- 5.2 Alkaloids General isolation of alkaloids Introduction Classification Structural elucidation of coniine, piperine, quinine and nicotine.

TEXT BOOKS:

S.	Authors	Title	Publishers	Year of
No.				publication
1.	P. L. Soni and H. M.	Textbook of Organic	Sultan Chand and	1994
	Chawla	Chemistry	Sons	
2.	K. S. Tewari, N. K.	A Textbook of Organic	Vikas Publishing	2006
	Vishal and S. N.	Chemistry	House	
	Mehrotra	-		

REFERENCE BOOKS:

S.	Authors	Title	Publishers	Year of
No.				publication
1.	B. S. Bahl and Arun	Advanced Organic	S. Chand and	1987
	Bahl	Chemistry	Company Ltd.	
2.	Gurdeep R. Chatwal	Chemistry of Natural	Himalaya	2005
		Products	Publishing House	
3.	I. L Finar	Organic Chemistry	Pearson Education	2002
		Volume I and II		
4.	O. P. Agarwal	Chemistry of Organic	Goel Publishing	1993
		Natural Products	House	
5.	Ashutosh Kar	Medicinal Chemistry	New Age	2010
			International	
			Publishers	
6.	M. K. Jain and S. C.	Modern Organic	Vishal Publishing	2017
	Sharma	Chemistry	Co.	

TEACHING METHODOLOGY:

- Chalk and Board
- Power Point Presentations
- Assignments
- Animated videos
- Seminars
- Models
- Quizzes

SYLLABUS DESIGNER:

• Dr. S. Santha Lakshmi, Assistant Professor of Chemistry