CORE IX
ENVIRONMENTAL AND AGRICULTURAL MICROBIOLOGY

Semester	Subject	Categor	Lecture		Theory		Practical		Cred
	code	y	Tota	Hrs/	Tota	Hrs/	Tota	Hrs/	it
			1 hrs	wee	1 hrs	wee	1 hrs	wee	
				k		k		k	
VI		Core	60	4	60	4	0	0	4

COURSE OBJECTIVES

To enable the students to understand the concepts of Environmental and Agricultural Microbiology.

COURSE OUTCOMES

On the successful completion of the course students will be able to acquire knowledge about common agents and its causes

СО	CO Statement	Knowledge
Number		level (K1-
		K4)
CO1	To learn the diversity of microorganism and microbial	кз
	communities inhabiting at a multitude of habitats and	
	occupying a wide range of ecological habitats.	
CO2	To know the Microorganisms responsible for Air	кз
	pollution especially Air-borne pathogenic	
	microorganisms and their transmission	
СОЗ	To comprehend the various methods to determine the	кз
	Sanitary quality of water and sewage treatment methods	
	and Water-borne pathogenic microorganisms and their	
	transmission	

CO4	To understand various plant microbes interactions especially rhizosphere, phyllosphere and mycorrhizae and their applications especially the biofertilizers and various biogeochemical cycles – Carbon, Nitrogen, Phosphorus cycles etc. and microbes involved	КЗ
CO5	To understand the basic principles of environment microbiology and be able to apply these principles to understanding and solving environmental problems – waste water treatment and bioremediation.	КЗ

MAPPING WITH PROGRAMME OUTCOMES:

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	M	M	M	S	S
CO2	M	S	S	S	M	M
CO3	S	S	S	S	S	M
CO4	M	S	M	M	S	S
CO5	S	M	S	M	S	S

S- Strong; M- Medium; L- Low

Unit I: Microbial ecology

(12

Hrs)

Introduction: structure and function of ecosystem, Natural habitats of microorganisms. Microbial communities in aquatic & terrestrial habitats, Extreme habitats in environment Microorganisms as components of ecosystems as producers & decomposers.

Unit II: Microbiology of air

(12

Hrs)

Microbiology of air - Composition, Distribution and sources of air borne organisms, Droplet and droplet nuclei, Assessment of air quality; Air sanitation, Air borne disease.

Unit III: Aquatic microbiology

(12

Hrs)

Aquatic microbiology – Microbial assessment of water quality, purification. Waterborne disease. Microbiological analysis of water purity, Indicator organisms, ground water quality.

Unit IV: Soil microbiology

(12

Hrs)

Soil microbiology – Physiochemical properties of soil and interaction of microorganisms with – plants – rhizosphere – phyllosphere – Microbial interactions – symbiosis, mutualism, commensalisms, competition, ammensalism, synergism, parasitism and predation – Major Biogeochemical cycles – carbon, nitrogen, phosphorus, sulfur.

Unit V: Waste water Microbiology

(12

Hrs)

Waste water treatment – liquid wastes, solid wastes. Bioremediation-Degradation of xenobiotic compounds. bio manure ,- advantages and processing parameters.

DISTRIBUTION OF MARKS: Theory - 100% and Problems – Nil

TEACHING METHODOLOGY:

- Lectures
- **❖** Power point presentation
- **♦** Charts
- ❖ Models
- ❖ Group discussion
- Group assignments

TEXT BOOKS:

S1 No:	Book name	Author	Publisher	Year of publication
01	Biofertilizers in Agriculture and Forestry,	Subba Rao. N.S	Medtech	2017
02	Environmental aspects of Microbiology	Joseph C. Daniel	MFJ Publications	1998
03	Environmental Microbiology	Vijaya Ramesh, K.	MJP Publishers, Chennai, India.	2019
04	Soil Microbiology	Subba Rao N.S.	Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, India.	2020

REFERENCE BOOKS:

SI	Book name	Author	Publisher	Year of
no:				publication
01	Microbial	Campbell R	2 nd Ed. Blackwell	1983
	Ecology.		Scientific	
			Publications.	
			London	
02	Aquatic	Reinheimer, G	2 nd Ed. John	2001
	Microbiology,		Wiley andSons,	
			hichestes,	
			London.	
03	Introduction to	Alexander M	John Wiley and	2000
	Soil Microbiology.		Sons N.Y.press	
04	Introduction to	Mitchell R	Prentice - Hall.	1994
	Environmental		Inc. Englewood	

	Microbiology.		Clifs – New Jerry.	
05	Environmental Microbiology	Maier, R. M., I. L. Pepper and C. P. Gerba.	Edition, Academic Press, United States.	2014

WEB SOURCES:

http://www.environmentalmicrobiology.mpg.de/

http://www.wastewater.com/

http://aquatis dcsc.edu/

http://www.env.harvard.edu/biolinks.html

http://www.horizonpress.com/gateway

SYLLABUS DESIGNER:

- 1. Mrs. S.Arunadevi Assistant Professor
- 2. Dr. A.Vidhya HOD, Assistant Professor