GENETIC ENGINEERING

	Semester	Subject	Category	Lecture		Theory		Practical		Credits
		code		Total	Hrs/	Total	Hrs/	Total	Hrs/	
				hrs	week	hrs	week	hrs	week	
Ī	II	21CPMB2B	Core-V	60	4	60	4	0	0	4

COURSE OBJECTIVES:

To enable the students to understand the aspects of Genetic Engineering.

COURSE OUTCOMES:

On successful completion of the course students should gained a sound knowledge on the tools, vectors, mechanism and application of genetic engineering

CO Number	Co Statement	Knowledge Level (K1-K4)
CO1	To execute the molecular tools required for	K 2
	genetic engineering	
CO2	To gain insight in the types of cloning	K2
	vehicles involved in cloning	
CO3	To impart knowledge on the mechanism of	K2
	cloning strategies and gene libraries	
CO4	To execute the different techniques	К3
	involved in screening and identification of	
	positive clones	
CO5	To elucidate the output and application of	K2
	cloned vector for social benefit	

MAPPING WITH PROGRAMME OUTCOMES:

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	S	M	S	M	S
CO2	S	S	M	S	S	S
CO3	S	S	S	M	S	S
CO4	S	S	S	S	S	S
CO5	S	S	S	M	S	S

S- Strong; M- Medium; L- Low

UNIT- I: Nucleic acid modifying enzymes

9 Hours

Restriction enzymes – nomenclature – classification- restriction and methylation – Type II restriction endonuclease – uses of restriction endonucleases – Restriction mapping and its application. Nucleases, polymerases – Taq polymerase, reverse transcriptase, DNA ligases, alkaline phosphatase, terminal transferase and polynucleotide kinases.

UNIT – II: Cloning vehicles

9 Hours

Biology of genetic engineering – Prokaryotic and Eukaryotic hosts – E. coli and Yeasts. Plasmids vectors – pBR322structure and construction, pUC and pSC 101, Ti Plasmids, Vectors based on Bacteriophage – lambda and M-13 phage vector, cosmids, shuttle vectors, phagemids, *in vitro* packaging of Bacteriophage DNA. Expression vectors, screening of recombinants-antibiotic resistance and LacZ. Alternative DNA delivery synthesis – artificial chromosomes – BAC, YAC and HAC.

UNIT – III: Cloning strategies and Gene libraries

9 Hours

Cloning from mRNA – Synthesis of cDNA – Cloning cDNA in plasmid and Bacteriophage vectors. Cloning from genomic DNA. Genomic libraries, preparations of DNA fragments for cloning ligation, packaging and amplification of libraries. Genetic selection and screening methods.

UNIT IV: Techniques in genetic engineering

9 Hours

Gene Analysis Techniques- Isolation of DNA and RNA from microbes – Handling and quantification of nucleic acids- Radio labeling of nucleic acids – End labeling- Nick translation – Labelling by primer extension. Pulse Field Gel Electrophoresis- modifications and applications. Nucleic acid hybridization – Southern, Northern, Western, South-Western and Dot-slot blotting. PCR.

UNIT V: Application of r DNA technology

9 Hours

Application of r DNA technology – Human protein replacements – insulin, Human growth hormone, therapeutic agents for human diseases, TPA, interferons, recombinant vaccines

TEXT BOOKS:

S.No	Authors	Title	Publishers	Year of
				Publication
1.	Maloy SR, Cronan JR, JE.	Microbial	Jones & Bartlet	1994
	Friedfelder	Genetics		
2	Lodish H,Baltimore	Molecular Cell	Scientific	1995
	O,Berk A,Zipursky S	Biology	American	
	L,Matsudaira P, Darnell L		Books	

REFERENCE BOOKS:

S.No	Authors	Title	Publishers	Year of
				Publication
1.	Lodish,Berk,Zippursky	Molecular cell	W.H.Freeman	
		biology		
2.	William Hayes	The genetics of	Blackwell	1995
		bacteria and their	Scientific	
		viruses	Publishers	
3.	Benjamin Lewin	Genes VIII	Pearson Prentice	2004
			Hall, USA	
4.	Innis M.A.	PCR Strategies	Academic press	
5.	Brown. T.A	Essentials of	Freeman	2003
		Molecular	Publishing	
		Biology	House	

TEACHING METHODOLOGY:

- Lectures
- Power point presentation
- Charts
- Models
- Group discussion
- Group assignments
- Seminars

WEB SOURCES:

http://biotech.icmb.utexas.edu/pages/scitools.html

http://biotech.icmb.utexas.edu/pages/resources.html

http://4biotech.4anything.com/

http://bio.com/resedu/educate.html

http://www.accessexellence.org/

SYLLABUS DESIGNER:

- Dr.S. Ramya Assistant Professor
- Dr. A.Vidhya HOD & Assistant Professor