ELECTIVE III

MICROBIAL BIOTECHNOLOGY

Semester	Subject	Categor	Lecture		Theory		Practical		Credi
	code	У	Tota 1 hrs	Hrs/	Tota 1 hrs	Hrs	Tot al	Hrs/ wee	t
				k		wee	hrs	k	
						k			
VI		Core	45	3	45	3	0	0	3

COURSE OBJECTIVES

To provide the first- line knowledge of utilizing microbes for the industrial production of an array of economically viable products possessing a variety of human applications.

COURSE OUTCOMES

On the successful completion of the course, students will be able to develop strong and potential skills in the various aspects of microbial processes in industries.

СО	CO Statement	Knowledge
Number		Level
		(K1-K4)
CO1	To enable the students to acquire knowledge in	К3
	Microbial Biotechnology and Fermentation.	
CO2	To enable the students obtain the advanced	K2
	knowledge in Industrial productions and to work	
	in fermentation industries.	
CO3	To impart knowledge in producing SCP and	K2
	Biofuels. Entrepreneurship can be established	

	with the gained knowledge.					
CO4	To impart knowledge of various biofertilizers,	K2				
	biopesticides and transgenic animals. With the					
	knowledge students can acquire interest in doing					
	research in agricultural Microbiology.					
CO5	To understand and acquire knowledge of IPR and	К3				
	Biological ethics.					

MAPPING WITH PROGRAMME OUTCOMES:

cos	PO1	PO2	PO3	PO4	PO5	P06
CO1	S	S	S	S	S	S
CO2	M	S	M	S	S	S
CO3	S	S	S	S	S	S
CO4	S	M	M	S	S	S
CO5	S	M	M	S	S	S

S- Strong;

M- Medium;

L- Low

MICROBIAL BIOTECHNOLOGY

UNIT- I: Fermentation Technology

12 hrs

Basic design and construction of fermenter - Mode of operation - instrumentation and control, Fermentation- general concepts, Applications of fermentation; Types of fermentation- Submerged and solid state fermentation, Antifoams, Downstream processing.

UNIT-II: Microbial Biotechnology

12 hrs

Biotechnology: Definition - Milestones in History - Scope of microbial biotechnology and its applications. Microbial production

of streptokinase, Edible vaccine, Xanthan, Dextran, Biosurfactants, Microbial production of bioplastics.

UNIT-III: Algal Biotechnology

12 hrs

Single cell protein (algae and yeast). Microalgal technology – Industrial cultivation methods of *Spirulina* – biotechnological potentials of *Spirulina* as: food and feed – fuel production from microalgae – pharmaceutically valuable compounds from microalgae. Commercial production of bio-ethanol and bio-diesel using lignocellulosic waste, Biogas.

UNIT-IV: Plant and Animal Biotechnology

12 hrs

Microbial production of biofertilizers – (*Rhizobia, Azospirillum, Frankia* and VAM). Microbial production of bio-pesticides (*Bacillus thuriengiensis*) – Development of insect, virus and herbicide resistant plants. Transgenic animals: methods of creating transgenic mice and sheep.

UNIT-V: IPR and Bioethics

12 hrs

Intellectual Property Rights (IPR) - different types of IPRs - Principles of Bioethics (IB) - Definition of Ethics and Bioethics. - Ethics committee - Brief account on risks and ethics of modern biotechnology - Ethical concerns in human gene therapy - Ethical limits of animal use.

DISTRIBUTION OF MARKS: Theory - 100% and Problems – Nil

TEACHING METHODOLOGY:

- ***** Lectures
- Power point presentation
- ❖ Charts
- ❖ Models

- ❖ Group discussion
- **❖** Group assignments

TEXT BOOKS

S1 No:	Book Name	Author	Publisher	Year of Publicatio
				n
01	Molecular	Glick BR. and	ASM press,	2010
	Biotechnolog	Pasternak JJ	Washington DC	
	у			
02	Biotechnolog	Satyanarayana U.	Books and Allied	2013
	у		Pvt. Ltd.	
03	A textbook of	Dubey RC. 2013.	S. Chand and	2014
	Biotechnolog		Company Ltd.	
	y.			
04	Elements of	Gupta PK. 2nd	Rastogi	2015
	Biotechnolog	edition.	Publications.	
	у			

REFERENCES

SI	Book Name Author P		Publisher	Year of
No				Publicati
				on
01	Principles of	Old RW	Blackwell Scientific	2006
	Gene	and	Publications,	
	Manipulation,	Primrose	London.	
		SB.		
02	An	Desmond	Cambridge	2012
	Introduction	ST Nicholl.	university	
	to Genetic		press.	
	Engineering			
03	Biotechnology	Trevan	Tata McGraw Hill	1995
	- The basic	MD, Boffey		
	principles	S,		
		Coulding		
		KH and		

		Stanbury P edition.		
04	Recombinant DNA-	Watson JD, Gilman M, Witkowski J, Zoller M.	Scientific American Books.	1992

SYLLABUS DESIGNER:

1. Dr. A.Vidhya HOD & Assistant Professor